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In this article we study the trapped motion of a molecule undergoing diffusivity fluctuations inside a harmonic
potential. For the same diffusing-diffusivity process, we investigate two possible interpretations. Depending
on whether diffusivity fluctuations are interpreted as temperature or friction fluctuations, we show that they
display drastically different statistical properties inside the harmonic potential. We compute the characteristic
function of the process under both types of interpretations and analyze their limit behavior. Based on the integral
representations of the processes we compute the mean-squared displacement and the normalized excess kurtosis.
In the long-time limit, we show for friction fluctuations that the probability density function (PDF) always
converges to a Gaussian whereas in the case of temperature fluctuations the stationary PDF can display either
Gaussian distribution or generalized Laplace (Bessel) distribution depending on the ratio between diffusivity and
positional correlation times.

DOI: 10.1103/PhysRevE.106.064127

I. INTRODUCTION

The description of molecular diffusion in heterogeneous
media is a long-standing collective endeavor. With the de-
velopment of advanced microscopy techniques [1–3] and
single-particle tracking algorithms [4–7], it is now possible to
record the diffusive motion of individual molecules with high
spatial and temporal resolution. A number of methods have
been developed to analyze such scenarios (see [8–15] and
references therein). The progress in experimental diffusion
measurements has fostered physical modeling of observed
phenomena such as anomalous diffusion [16,17], which in
turn has allowed a more quantitative description of biological
phenomena [18–21]. Cases of transient anomalous diffusion
have been observed [22] and studied as well [23].

Recently, a new phenomenon under the name “anomalous
yet Brownian” diffusion has been discovered, whereby the
displacement probability density function (PDF) of diffusive
particles in a complex medium displays exponential tails as
opposed to the usual Gaussian distribution. In most cases, the
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PDF shows exponential tails at short times and converges to a
Gaussian PDF at long times. It also displays large fluctuations
of the time-averaged mean-squared displacement (TAMSD)
[24,25]. Most notably, Granick and co-workers [26,27] were
the first to discover such anomalous yet Brownian diffusion
phenomenon. Next, Chubynsky and Slater [28] introduced
the now popular diffusing-diffusivity model, in which the
diffusion coefficient of the tracer particle evolves in time
like the position of a Brownian particle in a potential field.
Then, Jain and Sebastian formalized the diffusing-diffusivity
model using a path-integral approach, which they explicitly
solved in two spatial dimensions [29]. This model has been
further studied by Chechkin and co-workers (see [30]) using
the subordination technique. The model used in the present
paper and introduced in [31] is a natural generalization of
the previous model [29,30]. However, the dynamical foun-
dations of nonextensive statistical mechanics were analyzed
much earlier in [32]. Chechkin et al. also described a general
method to build diffusing diffusivity from a Gaussian process
[33] and applied it to fractional Brownian motion [34]. The
question of fluctuating diffusivity has also been studied by
Miyaguchi et al. [24,35,36], who applied it to two-state dif-
fusivity models as well as diffusing diffusivity. One can also
bridge the gap between multistate diffusivity and diffusing
diffusivity with the choice of a suitable state transition matrix
[25]. The simplest model of integrated diffusing diffusivity
(without memory), the “continuous-time random integrated
diffusivity,” was shown to display exponential tails on the
extremities of the distribution at all times which become vir-
tually invisible at long time such that the PDF converges to
Gaussian distribution, as long as diffusivity increments have
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finite moments and exponential tails [37]. Furthermore, it
has been shown by Barkai and Burov [38] that exponential
tails exhibit a universal behavior based on a large deviation
approach to continuous-time random walk. Cases of space-
dependent diffusivity have also been studied [39,40].

The Stokes-Einstein relationship expresses the diffusion
coefficient D as a function of other physical quantities,
namely,

D = kBT

γ
, (1)

where kB is the Boltzmann constant, T is the temperature,
and γ denotes the friction coefficient. The expression for
the friction coefficient takes the form γ = 6πηr, where η is
the medium viscosity, and r is the hydrodynamic radius of
the particle. There is a wealth of studies that consider the
impact of fluctuating diffusivity on the statistical properties
of a particle diffusing without the presence of a force. With-
out external force, fluctuations of either of these values are
indistinguishable. However, in the presence of a potential, the
potential-derived force is scaled by friction and does not de-
pend on temperature. In general, the Langevin equation with
an external potential is written as

dxt = − 1

γ
�(V (xt ))dt +

√
2D dWt , (2)

where �(V (xt ) is the gradient of the potential at position xt .
Here, the dynamics will be affected differently depending on
whether it is temperature or friction that fluctuates. This gives
an opportunity to tell friction from temperature fluctuations
apart.

In the context of diffusion in living cells, trapping of later-
ally diffusing molecules on the plasma membrane is relevant
to signal transduction. Receptors at the plasma membrane
mediate intracellular downstream signaling pathways upon
their stimulation with the proper external stimulus. It has
been shown that receptor-effector interaction is increased in
the presence of nanodomains at the plasma membrane, where
both molecule types are confined [19]. Depending on the
receptor, there are different candidates for the nature of these
domains, whether they are phase-separated lipid domains
[41], or being defined by structural components like clathrin-
coated pits [42] or actin-delimited barriers or even anchor
points on actin filaments [43].

Physically, many mechanisms have been invoked to ex-
plain confinement. First, molecules can be enclosed in a
boundary-delimited space [44]. An example of this is the actin
network underlying the cell plasma membrane, which can act
as a barrier for membrane proteins [43]. These phenomena
can be described as diffusion inside a domain with reflecting
boundary condition [37,45–47]. In this case, there is no force
exerted on receptors inside the domain such that the tempera-
ture fluctuations are also indistinguishable from friction ones.
Another source of trapping can be the presence of a potential
well that attracts surrounding molecules. The attracting poten-
tial can be due to the presence of a specific molecule or to a
particular composition of the local environment. The simplest
physical model for this trapping is the harmonic potential

defined by

V (x) = k

2
(x − x̄)2, (3)

where k is the spring constant. When the diffusion coefficient
is constant, this case is known as the Ornstein-Uhlenbeck
(OU) process. In living cells, molecules are compartmental-
ized into nanodomains. In these nanodomains many factors
can affect the diffusion coefficient. The hydrodynamic radius
r of the molecule can fluctuate [48] due to conformation
changes. The temperature T can vary locally due to either
endothermic or exothermic chemical reactions in the vicin-
ity [49–51], when the viscosity can be affected by the bulk
composition. Confinement of diffusive molecules being a key
feature in living cells, we aim to go one step further in its
statistical description. The effect of diffusivity fluctuations
inside a harmonic potential remains poorly understood apart
from the study [52] on relaxation functions in the case of
friction fluctuations. We wish to investigate the effects of
local fluctuations of either temperature or friction within the
trapping domain. In both cases, the fluctuations of these quan-
tities can be expressed in terms of a fluctuating diffusivity
around its equilibrium value. For both fluctuation types to
be comparable, we impose that both models share the same
diffusivity process yet with different interpretations.

We show that two dimensionless parameters are sufficient
to summarize the behavior in both cases. The first ν quantifies
the strength of diffusivity fluctuations,

ν = D̄

σ 2τD
. (4)

It compares the average diffusion coefficient D̄ to the average
amplitude of diffusivity fluctuations, σ 2τD, where σ controls
the amplitude of diffusivity stochastic component, and τD is
the “diffusivity correlation time.” Large values ν � 1 denote
almost constant diffusivity, whereas small values ν � 1 man-
ifest large fluctuations. The second parameter μ compares the
“positional correlation time” τx to the diffusivity correlation
time τD as

μ = τx

2τD
. (5)

This quantity shows whether diffusivity (μ > 1/2) or position
(μ < 1/2) equilibrium is reached faster.

First, in Sec. II we investigate the case of a molecule in a
harmonic potential, where the fluctuating diffusion coefficient
is interpreted as temperature fluctuations. We derive the exact
characteristic function of the process and study the probabil-
ity density function of displacements in the long-time limit.
Then, we proceed with computing the mean-squared displace-
ment as well as the long-time behavior of normalized excess
kurtosis of this process and demonstrate its weak ergodicity
property. So far, it has been possible to obtain a stationary
probability density function with exponential tails, but at the
cost of adding discontinuity in the motion of the particle.
The first example is stochastic resetting [53,54], where the
particle returns to the origin at random times. The second
example is a model of subordinated random walks with the
Laplace exponent being the conjugated inverse stable sub-
ordinator [55] which is a pure jump process. Here, we will
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describe conditions under which temperature fluctuations lead
to a stationary PDF with exponential tails while ensuring
continuity of the displacement.

Next, in Sec. III we investigate the case of diffusivity fluc-
tuations interpreted as friction fluctuations. In this case, the
process can be recast as a subordinated OU process. We study
its second moment and normalized excess kurtosis. We show
that, similarly to diffusing-diffusivity models without force,
the stationary PDF is Gaussian in any case. However, while
the second moment is unchanged without force, here all the
moments are strongly affected by friction fluctuations. In this
case, we also prove the weak ergodic behavior of the process.

Finally, we highlight the results and verify analytical solu-
tions with numerical simulations.

II. DIFFUSIVE MODEL IN HARMONIC POTENTIAL:
THE CASE OF TEMPERATURE FLUCTUATIONS

We present a model where molecules are trapped within a
confining potential with a fluctuating time-dependent temper-
ature Tt . In this case, Tt is a function of diffusivity, i.e.,

Tt = Dtγ

kB
, (6)

which is obtained by reversing the Stokes-Einstein relation
[Eq. (1)]. For this relation to hold, we consider a timescale
separation. The time t used in the calculations is much longer
than the time teq it takes for a molecule to locally equilibrate
with its environment. Therefore, in this context, the temper-
ature fluctuations, which are slow compared to teq, can be
approximated by a stochastic process at time t � teq while be-
ing properly defined. In this manner, the molecule is always at
equilibrium with its environment even when the environment
changes slowly over time. In general viscosity does depend on
temperature through Arrhenius’s law. However, for simplicity
we assume that molecules always have low activation energy
compared to their thermal energy, Ea � kBTt , thus yielding a
temperature-independent viscosity.

The diffusion in a harmonic potential is modeled with an
OU process with mean position x̄ and correlation time τx,
where diffusivity is time dependent. To model temperature
fluctuations we use a diffusing-diffusivity process known as
a Cox-Ingersoll-Ross process or a square-root process.

The first term of the Langevin equation for diffusivity is a
harmonic potential that drives diffusivity toward its average
D̄ with a correlation time τD. The second term describes
the fluctuations of diffusivity with strength σ proportional
to the square root of diffusivity. When D gets close to zero,
the fluctuations becomes smaller, thus ensuring non-negativity
of Dt .

The coupled Langevin equation for the position xt and the
diffusivity Dt reads

dxt = − 1

τx
(xt − x̄)dt +

√
2Dt dW (1)

t ,

(7)

dDt = − 1

τD
(Dt − D̄)dt + σ

√
2Dt dW (2)

t ,

where

τx = γ

k
(8)

is the position correlation time, x̄ and

D̄ = kBT

γ
(9)

are respectively the average position and the average diffu-
sivity, and σ is the “speed” of fluctuation of the diffusion
coefficient (here T and γ without subscript t denote the
average values). Note that the two Wiener processes are in-
dependent, i.e., 〈dW (1)

t dW (2)
t 〉 = 0.

One can show that for ν � 1 we have Dt > 0 while in the
case of ν < 1 the diffusivity may reach Dt = 0. To ensure
strict positivity as required for any diffusion coefficient to
have physical meaning, we introduce a reflecting boundary
condition at D = 0. This diffusing-diffusivity model [31,45]
is a generalization of the model based on the squared dis-
tance from the origin of an n-dimensional OU process from
[29,30,56,57], in which the value ν was limited to integer
values only.

We emphasize that in the case of temperature fluctuations,
Eq. (2) cannot be reduced to a subordination scheme of the
OU process as studied in the case of the inverse stable subor-
dinator [58]. However, this approach can be used in the case
of friction fluctuations.

The corresponding forward Fokker-Planck equation for the
joint probability P(x, D, t |x0, D0) of being at position x and
diffusivity D at time t and starting from x0, D0 has the follow-
ing form:

∂P(x, D, t |x0, D0)

∂t

= D
∂2

∂x2
P + σ 2 ∂2

∂D2
(DP) + 1

τx

∂

∂x
[(x − x̄)P]

+ 1

τD

∂

∂D
[(D − D̄)P], (10)

with the initial condition P(x, D, 0|x0, D0) = δ(x − x0)δ(D −
D0). We perform the Fourier transform for the coordinate
x and the Laplace transform with respect to the variable D
through the general integral transform

P∗(q, s, t |x0, D0)

=
∫ ∞

−∞
dx

∫ ∞

0
dD e−sD−iqxP(x, D, t |x0, D0). (11)

The detailed derivation of the characteristic function can be
found in Appendix B. Being unable to measure directly the
value Dt over time in a real experiment, we average over D0

and D. Then, we deduce the characteristic function P∗(q, t |x0)
associated with the marginal probability density P(x, t |x0) that
gives

P∗(q, t |x0) = exp(−iq(x̄ + (x0 − x̄)e−t/τx ))

×
(

et/τD/b

F1(b, t ) − D̄
σ
|q|e−t/τx F2(b, t )

)ν

, (12)

with

F1(b, t ) = I−μ(be−t/τx )K1−μ(b) + Kμ(be−t/τx )I1−μ(b), (13)

and

F2(b, t ) = I1−μ(be−t/τx )K1−μ(b) + K1−μ(be−t/τx )I1−μ(b),

(14)

064127-3



YANN LANOISELÉE et al. PHYSICAL REVIEW E 106, 064127 (2022)

where b = στx|q|, where the value στx plays the role of a
length scale. Here Kα (z) and Iα (z) are the modified Bessel
functions of the second kind [59]. Whereas the first expo-
nential term in Eq. (12) corresponds to the average position,
the second factor encompasses the intricate dynamics of tem-
perature fluctuations with the mean-reverting behavior of the
positional OU component.

A. Long-time behavior and its limiting forms

While the characteristic function in Eq. (12) is exact and
valid at all times, its behavior is not easy to grasp. In order
to better understand the PDF corresponding to Eq. (12), we
focus on the long-time limit when the system reaches equi-
librium. To do so, we first compute the characteristic function
P∗(q, t |x0) in the long-time limit t → ∞ and then study its
limiting behavior. We use the small-z argument expansion of
Kα (z) and Iα (z) to obtain the long-time characteristic function

P∗(q) = exp (−iqx̄)

(
(b/2)μ−1

�(μ)Iμ−1(b)

)ν

. (15)

This expression is much simpler than Eq. (12). To develop
a better understanding of this characteristic function, we
consider the limit behavior when the correlation time of dif-
fusivity is much larger than the correlation time of position
(μ � 1), as well as the reverse case (μ � 1).

First, we reason that when μ � 1, the correlation time
of diffusivity is much longer than the correlation time of
position, such that the diffusivity remains nearly constant for
a particle while reaching positional equilibrium. Therefore,
particles with small D will be less able to fight the attracting
force in comparison to molecules with a large D. As a result,
for each value of D there is a different conditional stationary
PDF P∞(x|D). For a specific D our model is simply an OU
process with the diffusion coefficient D. Therefore, we use the
stationary regime of the OU process for the conditional PDF
P∞(x|D) written as

P∞(x|D) = 1√
2πDτx

exp

(
− (x − x̄)2

2Dτx

)
. (16)

Figure 1(a) shows the perfect agreement between the con-
ditional probability [Eq. (16)] and simulation. To get the
marginal probability P∞(x) we average over D,

P∞(x) =
∫ ∞

0
P∞(x|D)p∞(D)dD, (17)

where p∞(D) – the stationary PDF of D – corresponds to

p∞(D) = νν

D̄ν�(ν)
Dν−1 exp

(
− ν

D̄
D

)
. (18)

Averaging over D yields

P∞(x) = 1

�(ν)

√
2ν

πD̄τx

(√
ν

2D̄τx
|x − x̄|

)ν−1/2

× Kν−1/2

(√
2ν

D̄τx
|x − x̄|

)
, (19)

with P∞(0) = �(ν−1/2)
�(ν)

√
ν

2πD̄τx
. This distribution is known as

the generalized Laplace or variance gamma [62], or K dis-
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(c) (d)

(e)

FIG. 1. (a) Stationary conditional PDF P∞(x|D) in the case of
temperature fluctuations with parameters μ = 0.1, ν = 1, τx = 20,
and D̄ = 1. (b) Stationary PDF in the case μ = 0.01 based on simu-
lation (black dots), overlaid with the exact expression (black curve)
and with the small-frequency behavior (q → 0) corresponding to the
limit μ → 0. (c) Stationary conditional PDF P∞(x|D) in the case
of temperature fluctuations with parameters μ = 10, ν = 1, τx = 20,
and D̄ = 1. (d) Simulated (dots) and theoretical (lines) stationary
PDF as a function of the ratio of correlation times taking values
μ = 0.01 (yellow), μ = 1/ν − 1 = 1 (red), and μ = 100 (blue) with
parameters ν = 0.1, τx = 20, and D̄ = 1. (e) Normalized excess
kurtosis of the long-time stationary PDF as a function of μ and ν.
Black dashed line corresponds to the value for which transition from
Laplace to Gaussian is detected using [60] and purple dashed line
corresponding to the value for which the Jarque-Bera test [61] detects
Gaussian PDF.

tribution. It is useful for modeling share price returns, where
existing choices have shortcomings [63]. Often, the price data
show that returns of financial assets are actually skewed and
have higher kurtosis than would be expected. This means that
the data is heavier in tails and have a higher center, more
“peaked” than a normal distribution. In particular, for the case
ν = 1, we have the Laplace distribution

P∞(x) = 1√
2D̄τx

e
−

√
2

D̄τx
|x|

(20)

(for more information on the Laplace distribution see Ap-
pendix A). Interestingly, at small space frequencies q → 0,
the characteristic function in Eq. (15) yields the expression

P∗(q) = exp (−iqx̄)

(1 + η2q2)ν
, (21)
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where η2 = D̄τx/(2ν), which corresponds exactly to the char-
acteristic function in the case μ → 0 and to the PDF in
Eq. (19) as illustrated in Fig. 1(b). This proves the non-
Gaussian character of the distribution for small μ and finite
ν. Indeed, in the limit ν → ∞, the characteristic function in
Eq. (21) becomes that of the OU process with the diffusion
coefficient D̄, satisfying

P∗(q) ∼ e−iqx̄e−q2D̄τx/2. (22)

To study the case when μ � 1, in Appendix C we compute the
large-order expansion of Iβ (b) from which, after simplifica-
tion, we get the same characteristic function as in Eq. (22). We
conclude that in the limit μ → ∞, the distribution is Gaussian
and centered on x̄ with constant diffusion coefficient D̄, the
same stationary distribution as the usual OU process.

Our interpretation of this result is that particles explore the
possible diffusivities faster than the time needed to reach po-
sitional equilibrium within the harmonic potential. Therefore,
diffusivity is averaged out at equilibrium such that the position
is independent of D and depends only on the average diffusiv-
ity D̄. This is illustrated in Fig. 1(c), where the conditional
PDF P(x|D) of simulated data is in perfect agreement with
Eq. (22) for any value of D.

From the presented results, we conclude that the model is
very general and can therefore accommodate a large variety
of PDF shapes. This is illustrated in Fig. 1(d) where the sta-
tionary PDF for ν = 0.1 and different values of μ are shown.

B. Short-time behavior

Next, we compare the PDF shapes for the initial and the
stationary conditions. Starting from the center of the well,
x0 = x̄, at short times t � τx the diffusion is unaffected by
the potential so that the position can be approximated by
the ordinary Brownian motion with the initial diffusivity D0,
having

xt =
∫ t

0

√
2D0dWs. (23)

Then the marginal PDF P0(x, t ) reads

P0(x, t ) =
∫ ∞

0
P0(x, D0, t )p∞(D0)dD0, (24)

which can be found exactly:

P0(x, t ) = 21/2−νν1/2

√
πD̄t�(ν)

(
|x|

√
ν

D̄t

)ν−1/2

Kν−1/2

(
|x|

√
ν

D̄t

)
.

(25)

In the case of μ � 1 the distribution conserves the same
shape over time, even though the length scale of the PDF is
changed. In turn for μ � 1, the initial shape of the distribution
is completely lost when positional equilibrium has occurred.
Note that, in the case of friction fluctuations (Sec. III), the
initial distribution is exactly the same; however, we will show
that the long-time behavior is different.

C. Itô calculus and moments

In this subsection, we use the integral representation of
the processes to compute moments and the normalized excess
kurtosis. The integral representation for the position of a parti-
cle is similar to that of an OU process yet with time-dependent
diffusivity:

xt = x̄ + (x0 − x̄)e−t/τx

+ e−t/τx

∫ t

0
es/τx

√
2DsdW (1)

s . (26)

The properties of the diffusivity process (integral represen-
tation, mean, second moment, autocorrelation) have already
been studied in [31].

The mean position is not affected by temperature fluctua-
tions and reads

〈xt 〉 = x̄ + (x0 − x̄)e−t/τx . (27)

The second moment is equal to

〈x2
t 〉 = D̄τx(1 − e−2t/τx ) + 〈x2

0〉e−2t/τx

+ (〈D0〉 − D̄)τx

(1 − μ)
(e−t/τD − e−2t/τx ), (28)

where the two first terms correspond to the unperturbed OU
process, while the third term is due to fluctuations of diffusiv-
ity. Taking the diffusivity equilibrium, we have

〈x2
t 〉 = D̄τx(1 − e−2t/τx ). (29)

So far, the moments are very similar to that of the OU
process. The next step is to go beyond the second moment
to deduce in which regime the PDF is Gaussian-like or not.

The case of the fourth moment is more involved due to the
complex intricacy of diffusivity fluctuations and the attractive
force. Readers can refer to Appendix D for a more detailed
derivation. In the long-time limit, the fourth moment is

〈x4(t → ∞)〉 = 3D̄2τ 2
x

(
1 + 1

ν(1 + μ)

)
. (30)

From the second and the fourth moments we deduce the nor-
malized excess kurtosis κ in the form

κ (t ) = 1

3

〈X 4(t )〉
〈X 2(t )〉2

− 1, (31)

which is equal to 1 for the Laplace distribution and equal to
zero for the Gaussian distribution. We combine Eqs. (28) and
(30) to obtain the long-time normalized excess kurtosis,

κ (t → ∞) = 1

ν(1 + μ)
. (32)

Both in the case of μ → ∞ – when diffusivity is averaged
before reaching positional equilibrium – and in the case of
ν → ∞ – when diffusivity is constant – the normalized excess
kurtosis vanishes such that the distribution is Gaussian.

In turn, for μ → 0 corresponding to the PDF in Eq. (19),
the normalized excess kurtosis equals 1/ν, and its shape is
entirely governed by the amplitude of diffusivity fluctuations.

Figure 1(e) illustrates the theoretical normalized excess
kurtosis in the stationary regime κ (t → ∞) as a function of μ

and ν. Additionally, the PDF was simulated with a thousand
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points and its Gaussianity was tested with two methods. The
first method compares whether a Laplace or Gaussian PDF
explains better the data [60] while the second is the Jarque-
Bera goodness-of-fit test that is based on kurtosis statistics.
Lines are drawn at the critical value of κ (t → ∞) from which
both methods found a Gaussian distribution.

D. Ergodicity

When temperature fluctuates, the system is generally out
of equilibrium. However, in our case, temperature fluctuates
around an average with a stationary distribution at long time.
Therefore, one can wonder whether this model shows ergodic-
ity breaking or not. In the case of infinitely divisible processes
one can use the Wiener-Khintchine theorem to prove ergod-
icity if the autocorrelation function vanishes [64–66]. Other
approaches make use of the dynamical functional [67–69].
But in our case the process is not infinitely divisible so
these tools are not suitable. We then question ergodicity in a
weaker sense by determining the time-averaged mean-square
displacement (MSD) and comparing it to the generalized
MSD following the strategy developed in [70] for the case
of an OU process with constant diffusion coefficient. For this
we first compute the generalized MSD, 〈(xt+� − xt )2〉. Next,
we compute the average over x0 for which the process is
assumed to start at equilibrium yielding 〈x0〉 = x̄, 〈x2

0〉 = D̄τx,
and 〈D0〉 = D̄. Thus, we have

〈(xt+� − xt )
2〉 = 2D̄τx(1 − e−�/τx ). (33)

The ensemble-averaged TAMSD follows:

〈δ2(�, t )〉 = 2D̄τx(1 − e−�/τx ). (34)

Finally, we compute the ergodicity-breaking parameter
[71,72]

EB(�) = lim
t→∞

〈δ2(�, t )〉
〈(xt+� − xt )2〉 − 1 = 0, (35)

which is equal to zero, thus proving ergodicity in the weak
sense. Despite temperature fluctuations, the second moment
is ergodic.

III. DIFFUSIVE MODEL IN HARMONIC POTENTIAL:
THE CASE OF FLUCTUATING FRICTION COEFFICIENT

In this section we study the case of a particle diffusing in
a harmonic potential, where friction γt fluctuates over time
while temperature remains constant. To apply the same model
for diffusivity as in Sec. II, we use the relationship described
in Eq. (1) to express the time-dependent friction coefficient γt

as a function of Dt in the form

γt = kBT

Dt
. (36)

In this case, the coupled Langevin equation for position xt and
diffusivity Dt is written as⎧⎪⎪⎨

⎪⎪⎩
dxt = − 1

τx

Dt

D̄ (xt − x̄)dt + √
2Dt dW (1)

t ,

dDt = − 1

τD
(Dt − D̄)dt + σ

√
2Dt dW (2)

t ,

(37)

where the inverse positional correlation time 1
τx

Dt

D̄ is obtained
by combining Eq. (8) and Eq. (9). It is clear that, contrarily to
Sec. II, the inverse correlation time fluctuates around its mean
1/τx in the same way as diffusivity does fluctuate around D̄.
Note that the equation for diffusivity is identical to Eq. (7).

To study this equation, we rescale time by diffusivity dt∗ =
Dt dt , where t∗ has units of integrated diffusivity (m2). This
variable change allows one to treat the process within the
subordination framework [30]. The rescaled equation gives⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
dxt∗ = − 1

D̄τx
(xt∗ − x̄)dt∗ + √

2 dW (1)
t∗ ,

dt∗ = Dt dt,

dDt = − 1

τD
(Dt − D̄)dt + σ

√
2Dt dW (2)

t ,

(38)

where the first equation corresponds to the parent process
that is an OU process and the second equation corresponds
to the subordinator that defines the integrated diffusivity t∗ =∫ t

0 Dsds.
The probability density function of the parent process

p(x, t∗) for the position x as a function of the subordina-
tor t∗ is Gaussian with mean 〈xt∗ 〉 = x̄ + (x0 − x̄)e−t∗/(D̄τx )

and variance 〈(xt∗ − 〈xt∗ 〉)2〉 = D̄τx(1 − e−2t∗/(D̄τx ) ). The cor-
responding characteristic function of the parent process takes
the form

p̃(q, t∗) = e−iq[x̄+(x̄−x0 )e−t∗/(D̄τx )]e− q2

2 D̄τx (1−e−2t∗/(D̄τx ) ). (39)

To obtain the characteristic function of the process, one
needs to integrate the characteristic function p̃(q, t∗) of the
parent process over the probability density �(t∗, t ) of inte-
grated diffusivity, namely,

P̃(q, t ) =
∫ ∞

0
p̃(q, t∗)�(t∗, t )dt∗. (40)

As the exact expression for �(t∗, t ) is unknown, the integral
cannot be computed explicitly. However, the integral repre-
sentation of the characteristic function in Eq. (40) will be
useful to find the moments of the process in the next section.

A. Moments and normalized excess kurtosis

Now we study the effect of friction fluctuations on the
moments and the normalized excess kurtosis of the process.
At small values q the characteristic function reads

P̃(q, t ) ∼ 1 − iq
∫ ∞

0

[
x̄ + (x̄ − x0)e− t∗

(D̄τx )
]
�(t∗, t )dt∗

− q2 D̄τx

2

∫ ∞

0
(1 − e−2t∗/(D̄τx ) )�(t∗, t )dt∗

+ q4

2

(
D̄τx

2

)2 ∫ ∞

0
(1 − e−2t∗/(D̄τx ) )2�(t∗, t )dt∗.

(41)

Using the formula for the moments 〈xk (t )〉 =
i−k dkP̃(q,t )

dqk |q=0, we deduce the first moment

〈xt 〉 = x̄ + (x̄ − x0)�̂(s, t )
∣∣
s=1/(D̄τx ), (42)
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where �̂(s, t ) stands for the Laplace transform of the inte-
grated diffusivity PDF. Similarly, one can find the second
moment, i.e., 〈

x2
t

〉 = D̄τx
(
1 − �̂(s, t )

∣∣
s=2/(D̄τx )

)
. (43)

Both first and second moments are strongly affected by fric-
tion fluctuations (as opposed to the temperature fluctuation
case) because the positional correlation time is fluctuating.

For our model, it is known [31,73] that

�̂(s, t |D0) =
[

e
t

2τD

cosh
(

ωst
2τD

) + 1
ωs

sinh
(

ωst
2τD

)
]ν

× exp

[
− sD0τD

ωs

2 sinh
(

ωst
2τD

)
cosh

(
ωst
2τD

) + 1
ωs

sinh
(

ωst
2τD

)
]
,

(44)

with ωs =
√

1 + 4sσ 2τ 2
D. Averaging over D0, this expression

yields

�̂(s, t ) =
(

2e−αst

1 + e− ωst
τD

)ν 1(
1 + 1

ωs

(
1 + s 2D̄τD

ν

)
tanh

(
ωst
2τD

))ν

(45)

with αs = (ωs − 1)/(2τD), and lim
x→∞ tanh(x) = 1. Here, fric-

tion fluctuations strongly affect the relaxation time to
positional equilibrium. For an arbitrary number p, we have
ω2p/(D̄τx ) = √

1 + 4p/(μν), which explicitly depends on the
product νμ. In the case where μ is small, we have α2p/(D̄τx ) ≈
2
√

pν/(τDτx ) such that the relaxation does not only depend
on τx but also on the product with τD thus explaining the
much slower relaxation of friction fluctuations compared to
temperature fluctuations as illustrated in Fig. 2(a) using the
same parameters for both cases.

However, when the length scale of thermal fluctuations√
D̄τx is larger than the length scale associated with diffusivity

fluctuations στD, then diffusive molecules have enough time
to average out diffusivity fluctuations. Thus, the expression
of the MSD turns to that of the temperature fluctuation case,
Eq. (29), but the PDF is Gaussian so the dynamic is that of a
simple OU process.

In any case, at long times the MSD reads

〈x2(t → ∞)〉 = D̄τx. (46)

Similarly the fourth moment is equal to〈
x4

t

〉 = 3(D̄τx )2(1 − 2�̂(s, t )
∣∣
s=2/(D̄τx )

+ �̂(s, t )
∣∣
s=4/(D̄τx )

)
, (47)

from which we deduce the normalized excess kurtosis,
namely,

κ (t ) =
�̂(s, t )

∣∣
s=4/(D̄τx ) − (

�̂(s, t )
∣∣
s=2/(D̄τx )

)2

(
1 − �̂(s, t )

∣∣
s=2/(D̄τx )

)2 , (48)

which vanishes in the long-time limit

κ (t → ∞) = 0. (49)

(a) (b)

(c) (d)

D x

FIG. 2. All the results presented in this figure have been obtained
with parameters D̄ = 1, ν = 0.1, τx = 20, and μ = 0.1. (a) Simula-
tion (dots) overlaid with theory (lines) for the MSD in the case of
temperature fluctuations (green) and friction fluctuations (magenta).
(b) Simulation overlaid with theoretical curve for the normalized
excess kurtosis κ (t ) in the case of temperature fluctuations (green)
and friction fluctuations (magenta). Parameters are ν = 1, μ = 0.01,
τx = 20, and D̄ = 1. (c) Simulation overlaid with theoretical curve
for the stationary PDF in the case of temperature fluctuations (green)
and friction fluctuations (magenta). (d) Simulation (colored surface)
overlaid with theory (magenta mesh) for the stationary conditional
probability P∞(x|D) in the case of friction fluctuations.

Figure 2(b) shows the decay of the normalized excess kurtosis
in the case μ � 1 as well as that of temperature fluctuation
which remains constant. Moreover, the 2nth moment can be
computed:

〈x2n(t )〉 = (2n − 1)!!(D̄τx )n

×
(

1 +
n∑

p=1

(−1)p

(
n

p

)
�̂(s, t )

∣∣∣∣
s=2p/(D̄τx )

)
, (50)

where n!! = n × (n − 2) × (n − 4) × · · · is the double fac-
torial. Given that lim

t→∞ �̂(s, t ) = 0, all the even moments

converge to those of a Gaussian distribution in the long-time
limit, meaning that the stationary PDF for the position is
Gaussian in all scenarios as shown in Fig. 2(c), in striking
contrast with the temperature fluctuation case. Additionally
the conditional probability distribution is independent of D
and depends solely on D̄ as illustrated in Fig. 2(d). Moreover,
in the case μ � 1, the relaxation of the PDF to its stationary
form is much slower for friction fluctuations than for temper-
ature fluctuations. This can be explained by the fact that all
the moments for friction fluctuations depend on �̂(s, t ) that
decays much slower than e−t/τx where τx is very small.

B. Ergodicity

To investigate the ergodic properties, we start with the
generalized second moment of the subordinator:

〈(xt∗+�∗ − xt∗ )2〉 = 2D̄τx(1 − e−�∗/(D̄τx ) ). (51)
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For the parent process the time-averaged MSD is equal to
the MSD,

δ(�∗, t∗) = 〈(xt+� − xt )
2〉

= 2D̄τx(1 − e−�∗/(D̄τx ) ). (52)

Then we average over the integrated diffusivity probability
density for t∗ at time t and for �∗ at time � to get

δ2(�, t ) = 2D̄τx
(
1 − �̂(s,�)

∣∣
s=2/(D̄τx )

)
. (53)

As a result, the ergodicity breaking parameter is zero. We
conclude that, for friction fluctuations as well, the process is
ergodic in the weak sense.

IV. CONCLUSION

In this article, we have investigated the motion of a particle
trapped inside a harmonic potential with diffusing diffusiv-
ity. Two cases were considered. In the first case, diffusing
diffusivity is interpreted as temperature fluctuations. In the
second case, it was interpreted as friction fluctuations. We
showed that, in both cases, two essential quantities are useful
to describe the system. The first value is ν, which defines the
inverse strength of diffusivity fluctuations, whereas the second
is μ, which quantifies the ratio between the position and the
diffusivity correlation times. In both cases, when ν → ∞,
diffusivity becomes a constant process, and the usual OU
process is recovered at all times. When μ � 1, but ν remains
finite, in both cases the initial PDF of displacement shows
exponential tails with a shape determined by ν. The models
converge to OU because diffusivity has time to self-average
before particles can reach positional equilibrium.

However, in all the intermediate cases (finite ν and μ), their
behavior is drastically different. In the case of temperature
fluctuations, the stationary long-time PDF displays exponen-
tial tails, and in the limit case μ → 0 the PDF conserves
the same shape as in the initial condition. However, the first
and second moments are the same as for the OU case, while
the fourth moment differs. In turn, for friction fluctuations
the long-time stationary PDF is Gaussian in any case while
the moments depart from that of an OU process because of
the fluctuating positional correlation time.

The main results of the paper are as follows:
(1) We find a non-Gaussian PDF with a continuous model

and its ergodic properties.
(2) We find a generalized Laplace distribution with a con-

fining potential for temperature fluctuations.
(3) In both studied cases the diffusion coefficient has ex-

actly the same distribution; however, we show that, depending
on whether it is a friction or a temperature fluctuation, the
statistical properties of the process are very different.

We anticipate that these results will be instrumental in
understanding what happens to trapped molecules in an exper-
imental setup, and offer far more greater detail than previous
methods. Indeed one could experimentally test the presence of
either temperature or friction fluctuations and use the statisti-
cal properties described here to quantify these distinct types
of fluctuations. First, the stationary PDF should be checked
for Gaussianity. If the Gaussian hypothesis is not rejected,
a better fitting of the MSD with Eq. (43) rather than with

Eq. (29) would suggest that friction fluctuations are present.
Alternatively, a better fitting of the MSD with Eq. (29) would
suggest that diffusivity fluctuations are not present at all. On
the other hand, if the Gaussian hypothesis is rejected and the
empirical characteristic function can be fitted with Eq. (15),
as well as the MSD described by Eq. (29), then temperature
fluctuations would be implied.

Additionally, this article offers an experimental way to
distinguish between space-dependent and time-dependent dif-
fusivity. An experiment resulting in exponential tails of the
PDF for a free molecule in a complex medium can be com-
pared to another one where the molecule is optically trapped
[74]. If either exponential tails are still present or deviations
from the usual MSD in a harmonic potential are observed,
diffusivity fluctuates over time. Alternatively, full agreement
of PDF and MSD with the constant diffusivity model would
demonstrate space-dependent diffusivity.

On the theoretical side, our results raise questions about the
relationship between the temperature fluctuation case studied
here and stochastic resetting that can yield a similar stationary
PDF with exponential tails.
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APPENDIX A: LAPLACE DISTRIBUTION

The emergence of Laplace (or double exponential statis-
tics) like the Gaussian, for various random observables in
nature, engineering, and finance, is widespread. Many ex-
amples range from the first law of errors [75] to Laplace
motion [76]. The Laplace distribution suggests a much better
model to describe observations than the Gaussian distribution
with common variance, because each observer instrument
has its own variability, and all the participants of observa-
tions together result in large errors. Moreover, the explanation
of anomalous diffusion tending to the confinement with the
Laplace distribution is that diffusive motion, also accompa-
nied by multiple trapping events with infinite mean sojourn
time, makes it impossible to leave such traps [77]. The
Laplace distribution also occurs as a steady state of Brownian
motion under Poissonian resetting [53].

It was shown recently [77] that the Laplace confinement
is present in confined random motions of both G proteins
and receptors in living cells. It should be pointed out that
the confined distribution form depends on the PDF of the
parent process used for subordination. If we take Brownian
motion, then the confined distribution has the Laplace form.
This means that the presented mechanism can manifest itself
as a source of the origin of jumps in heterogeneous systems.
It is interesting that Lévy motion as a parent process produces
another confinement having the Linnik distribution [78–80].
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APPENDIX B: FULL DERIVATION FOR THE
FLUCTUATING TEMPERATURE CASE

The corresponding forward Fokker-Planck equation for the
joint probability P(x, D, t |x0, D0) of being at position x and
diffusivity D at time t starting from values x0, D0 is

∂P(x, D, t |x0, D0)

∂t

= 1

τx

∂

∂x
[(x − x̄)P] + D

∂2

∂x2
P

+ 1

τD

∂

∂D
[(D − D̄)P] + σ 2 ∂2

∂D2
(DP) (B1)

with the initial condition being P(x, D, 0|D0) = δ(x −
x0)δ(D − D0) that is equivalent to

∂P(x, D, t |x0, D0)

∂t

= 1

τx

∂

∂x
[(x − x̄)P] + D

∂2

∂x2
P − ∂

∂D
JD, (B2)

where JD(D, t ) is the diffusivity flux, i.e., JD(D, t ) =
− 1

τD
[(D − D̄)P] − σ 2 ∂

∂D (DP). The PDF can be translated in
the Fourier (space)-Laplace (diffusivity) domain through the
integral transform

P∗(q, s, t |x0, D0)

=
∫ ∞

−∞
dx

∫ ∞

0
dD e−sD−iqxP(x, D, t |x0, D0), (B3)

from which we deduce the new equation:

∂

∂t
P∗ + Q(s)

∂

∂s
P∗ + 1

τx
q

∂

∂q
P∗

=
(

−i
1

τx
x̄q − 1

τD
D̄s

)
P∗ + JD(D = 0, t ), (B4)

where Q(s) = (σ 2s2 + 1
τD

s − q2) and JD(D = 0, t ) = (D̄/τ −
σ 2)P(q, D = 0|x0, D0).

To ensure diffusivity reaches a stationary distribution, we
focus on the case when there is a reflecting boundary condi-
tion at D = 0. Therefore, the flux cancels at D = 0 from which
JD(D = 0, t ) = 0, and we then obtain

∂

∂t
P∗ + Q(s)

∂

∂s
P∗ + 1

τx
q

∂

∂q
P∗ =

(
−i

1

τx
x̄q − 1

τD
D̄s

)
P∗

(B5)

with the initial condition taking the form P∗(q, s, 0|x0, D0) =
e−iqx0 e−sD0 .

1. Method of characteristics

Our Eq. (B5) is a first-order partial differential equation.
To solve it, we use the conventional method of characteristics.
The Lagrange-Charpit equations [81] corresponding to the
problem are

dt = dq
1
τx

q
= ds(

σ 2s2 + 1
τD

s − q2
) = dP∗(−i 1

τx
x̄q − 1

τD
D̄s

) , (B6)

from which we obtain a system of differential equations:⎧⎪⎪⎨
⎪⎪⎩

dq
dt = 1

τx
q,

ds
dt = σ 2s2 + 1

τD
s − q2,

dP∗
dt = (−i 1

τx
x̄q − 1

τD
D̄s

)
P∗.

(B7)

The first equation of system (B7) yields

q = C1e
t
τx (B8)

with C1 an integration constant.
We then substitute it into the second equation to get

ds

dt
− σ 2s2 − 1

τD
s + C2

1 e2t/τx = 0. (B9)

After the variable change s = − 1
σ 2 y′/y and the coordinate

change v = exp(2t/τx ) we come to the equation

v
d2y

dv2
+

(
1 − τx

2τD

)
dy

dv
− σ 2C2

1 τ 2
x

4
y = 0. (B10)

2. Solving the second equation

Our equation is of the following form:

vy′′ + (1 − a)y′ − by = 0, (B11)

for which the solution is expressed in terms of modified Bessel
functions [59], namely,

y(v) = c1ba/2va/2�(1 − a)I−a(2
√

bv)

+ (−1)ac2ba/2va/2�(a + 1)Ia(2
√

bv), (B12)

with two integration constants, c1 and c2. Translating the
solution back to our parameters and defining C2 = c1/c2, as
well as A = c2(−1)

τx
2τD �( τx

2τD
+ 1), we get

y(t ) = A

(
σ 2C2

1 τ 2
x

4

) τx
4τD

et/(2τD )

×
(

C2

�(1 − τx
2τD

)

A
I− τx

2τD
(στx|C1|et/τx )

+ I τx
2τD

(στx|C1|et/τx )

)
. (B13)

From this we can deduce s, i.e.,

s = − 1

σ
|C1|et/τx

(
C2

�
(
1 − τx

2τD

)
A

I1− τx
2τD

(στx|C1|etτx )

+ I−1+ τx
2τD

(στx|C1|etτx )

)

×
(

C2

�
(
1 − τx

2τD

)
A

I− τx
2τD

(στx|C1|etτx )

+ I τx
2τD

(στx|C1|etτx )

)−1

. (B14)
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So we obtain

C2 = − A

�
(
1 − τx

2τD

)W, (B15)

where

W =
(

I−1+ τx
2τD

(στx|q|) + sσ
|q| I τx

2τD
(στx|q|)

sσ
|q| I− τx

2τD
(στx|q|) + I1− τx

2τD
(στx|q|)

)
. (B16)

3. Third equation

Then the last of Eqs. (B7) is written as∫
dP

P
= −i

1

τx
x̄
∫

q(t )dt − D̄

τD

∫
s(t )dt, (B17)

for which the solution reads

P = C4 exp

(
−i

1

τx
x̄
∫

q(t )dt − D̄

τD

∫
s(t )dt

)
, (B18)

where q is substituted from Eq. (B8). By definition we have∫
s(t )dt = − 1

σ 2 ln(y(t )), from which we get

P = H (C1,C2) exp(−ix̄C1e
t
τx )y

D̄
σ2τD , (B19)

where H (C1,C2) depends on the constants C1 and C2.

4. Initial condition

At t = 0, we have P(q, s, t = 0) = e−iqx0−sD0 so that

H (C1,C2) = exp (−iC1x0) exp (ix̄C1)

× exp (−D0F (C1,C2))[G(C1,C2)]
− D̄

σ2τD ,

(B20)

where G(C1,C2) = y(C1,C2, t = 0) and F (C1,C2) =
s(C1,C2, t = 0). We then replace C1(q, t ),C2(q, s, t ) by
their expressions in P.

5. Averaging over D0

Injecting Eq. (B20) into Eq. (B19), we obtain the following
propagator:

P∗(q, s, t |x0, D0) = exp (−D0F (C1,C2))

× exp
(−iC1(x0 − x̄(1 − e

t
τx ))

)
×

(
y

G(C1,C2)

) D̄
σ2τD

. (B21)

Next, we integrate over the initial distribution of diffusivity
D0 in the form

�(D0) = Dν−1
0

�(ν)D̄ν
exp(−D0/D̄) (B22)

such that the propagator becomes

P∗(q, s, t |x0) = exp(−iq(x̄(1 − e−t/τx ) + x0e−t/τx ))

×
(

y(C1,C2)

G(C1,C2)(1 + D̄F (C1,C2))

) D̄
σ2τD

.

(B23)

6. Averaging over D

To find the characteristic function P∗(q, t |x0), we average
over D by simply setting s = 0. Thus, we deduce

W =
(

I−1+ τx
2τD

(στx|q|)
I1− τx

2τD
(στx|q|)

)
. (B24)

In this case we inserted expressions for y(C1,C2) and
G(C1,C2) to get this expression. Next, we can also include
the expression for F (C1,C2). Using the property I−ν (z) =
Iν (z) + (2/π ) sin(νπ )Kν (z) and the Wronskian formula
W {K−μ(b), I−μ(b)}=I−μ(b)K1−μ(b) + K−μ(b)I1−μ(b) = 1/b,
we come to the full characteristic function, Eq. (12). One
can check normalization by setting q = 0 and verify that
P∗(q = 0, t |x0) = 1.

APPENDIX C: LARGE-ORDER DEVELOPMENT OF Iβ(b)

Based on the asymptotic large-order expansion for Iμ−1(b),
we start with the integral representation,

Iβ (b) = (b/2)β√
π�(β + 1/2)

∫ 1

−1
(1 − t2)β−1/2e−bt dt . (C1)

With help of the variable change −u2 = ln(1 − t2) from

which t =
√

1 − e−u2 and dt = ue−u2√
1−e−u2

du, we proceed to

Iβ (b) = (b/2)β√
π�(β + 1/2)

∫
R

e−βu2
f (u)du, (C2)

where f (u) = ue−b
√

1−e−u2 e−u2/2√
1−e−u2

. Next, we find the asymp-

totic behavior for large μ written as

zβ

uβ�(β + 1/2)
= 1√

2π

(
eb

2β

)β

+ O(β−1−β ). (C3)

For f (u) we expand u for small order:

f (u) ≈ e−bu(1 − u2/2). (C4)

The integral over u yields∫
R

e−βu2
f (u)du = eb2/(4β )

√
π

4β3/2

(
8β2 − b2

2β
− 1

)
. (C5)

So we deduce

Iβ (b) ≈ eb2/(4β )

√
2

(
eb

2β

)β 1

4β3/2

(
8β2 − b2

2β
− 1

)
. (C6)

APPENDIX D: FOURTH MOMENT COMPUTATION

In this section we study the fourth moment in the case of
temperature fluctuations. For this purpose we proceed to the
variable change zt = x2

t for which the integral representation
is

zt = z0e−2t/τx +
∫ t

0
2Dse

2(s−t )/τx ds

+
∫ t

0
2e2(s−t )/τx

√
2zsDsdWs, (D1)
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from which we deduce the integral representation for the
fourth moment:〈
x4

t

〉 = 〈
z2

t

〉
= 〈

x4
0

〉
e−4t/τx + 4e−4t/τx

∫ t

0

∫ t

0
e2(s1+s2 )/τx 〈Ds1 Ds2〉ds1ds2

+ 8
∫ t

0
e4(s−t )/τx 〈x2

s Ds〉ds. (D2)

We proceed to use the Itô formula for the variable change from
x to x2:

dx2
t =

(
− 2

τx
x2

t + 2Dt

)
dt + 2xt

√
2Dt dW (1)

t ,

dDt = − 1

τD
(Dt − D̄)dt + σ

√
2Dt dW (2)

t . (D3)

From the Itô product rule we have

x2
t Dt = x2

0D0 +
∫ t

0
x2

s dDs

+
∫ t

0
Dsdx2

s +
∫ t

0

〈
dx2

s dDs
〉
, (D4)

with the last term being equal to zero because of the inde-
pendence of Wiener processes W (1)

t and W (2)
t . From 〈x2

t Dt 〉 it
follows an integral equation in the form

y(t ) = y(0) − a
∫ t

0
y(s)ds +

∫ t

0
b(s)ds, (D5)

where a = 2
τx

+ 1
τD

and b(t ) = 〈x2
s 〉D̄/τD + 2〈D2

s 〉. Taking the
derivative on both sides, we get

y′(t ) = −ay(t ) + b′(t ), (D6)

from which we have

〈
x2

t Dt
〉 =

∫ t

0
e(s−t )/τx

(〈
x2

s

〉
D̄/τD + 2

〈
D2

s

〉)
ds. (D7)

The exact calculation is achievable, although it is tedious and
cumbersome. Instead we find it more informative to focus
on the long-time limit. When t → ∞, only constant terms
contribute to convolution integrals from which we deduce
Eq. (30).
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