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We study semantic models of probabilistic programming languages over graphs, and establish a connection to

graphons from graph theory and combinatorics. We show that every well-behaved equational theory for our

graph probabilistic programming language corresponds to a graphon, and conversely, every graphon arises in

this way.

We provide three constructions for showing that every graphon arises from an equational theory. The �rst is

an abstract construction, using Markov categories and monoidal indeterminates. The second and third are more

concrete. The second is in terms of traditional measure theoretic probability, which covers ‘black-and-white’

graphons. The third is in terms of probability monads on the nominal sets of Gabbay and Pitts. Speci�cally,

we use a variation of nominal sets induced by the theory of graphs, which covers Erdős-Rényi graphons. In

this way, we build new models of graph probabilistic programming from graphons.
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1 INTRODUCTION

This paper is about the semantic structures underlying probabilistic programming with random
graphs. Random graphs have applications in statistical modelling across biology, chemistry, epidemi-
ology, and so on, as well as theoretical interest in graph theory and combinatorics (e.g. [Bornholdt
and Schuster 2002]). Probabilistic programming, i.e. programming for statistical modelling [van de
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Meent et al. 2018], is useful for building the statistical models for the applications. Moreover, as we
show (Theorem 23 and Corollary 26), the semantic aspects of programming languages for random
graphs correspond to graphons [Lovász 2012], a core structure in graph theory and combinatorics.
To set the scene more precisely, we recall the setting of probabilistic programming with real-

valued distributions, and contrast it with the setting with graphs. Many probabilistic programming
languages provide a type of real numbers (real) and distributions such as the normal distribution

normal : real ∗ real→ real (1)

together with arithmetic operations such as

(+) : real ∗ real→ real. (2)

Even if we encounter an unfamiliar distribution over (real) in a library, we have a rough idea of
how to explain what it could be, in terms of probability densities and measures.
In this paper, we consider the setting of probabilistic programming with graphs, where the

probabilistic programming language or library provides a type (vertex) and some distribution

new : unit→ vertex (3)

together with a test

edge : vertex ∗ vertex→ bool. (4)

Our goal is to analyze the interface (vertex, new, edge) for graphs semantically, and answer, for
instance, what they could be and what they could do. We give one example analysis in Section 1.1
�rst, and the general one later in Theorem 23 and Corollary 26, which says that to give an im-
plementation of (vertex, new, edge), satisfying the laws of probabilistic programming, is to give a
graphon. In doing so, we connect the theory of probabilistic programming with graph theory and
combinatorics.
Probabilistic programming is generally used for statistical inference, in which we describe a

generative model by writing a program using primitives such as (1)–(4) above, and then infer
a distribution on certain parameters, given particular observed data. This paper is focused on
the generative model aspect, and not inference (although for simple examples, generic inference
methods apply immediately, see §1.5).

1.1 Example of an Implementation of a Random Graph: Geometric Random Graphs

To illustrate the interface (vertex, new, edge) of (3)–(4), we consider for illustration a random
geometric graph (e.g. [Bubeck et al. 2016; Penrose 2003]) where the vertices are points on the
surface of the unit sphere, chosen uniformly at random, and where there is an edge between two
vertices if the angle between them is less than some �xed \ . This random graph might be used, for
instance, to model the connections between people on the earth.
For example, a simple statistical inference problem might start from the observed connectivity

in Figure 1(a). We might ask for the distribution on \ given that this graph arose from the spherical
random geometric graph. One sample from this posterior distribution on random geometric graphs
with \ = c/3 is shown in Figure 1(b). Another, unconditioned sample from the random geometric
graph with \ = c/6 is shown in Figure 1(c).

We can regard this example as an implementation of the interface (vertex, new, edge) as follows:
we implement (vertex) as the surface of the sphere (e.g. implemented as Euclidean coordinates).

• new() : vertex randomly picks a new vertex as a point on the sphere uniformly at random.
Figure 1(c) shows the progress after calling new() 15 times.
• edge : vertex ∗ vertex → bool checks whether there is an edge between two vertices; this
amounts to checking whether the angle between two points is less than \ .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 61. Publication date: January 2024.



Probabilistic Programming Interfaces for Random Graphs: Markov Categories, Graphons, and Nominal Sets 61:3

(a) (b) (c)

Fig. 1. (a) A graph; (b) an inferred geometric realization of it (\ ≈ c/3); (c) a generated sample for \ = c/6.

For a simple example, we can write a program over the interface to calculate the probability of
three random vertices forming a triangle: the program

let0 = new() in let1 = new() in let 2 = new() in

edge(0, 1) & edge(1, 2) & edge(0, 2) : bool
(5)

randomly returns true or false; the probability of true is the probability of a triangle.
This implementation using the sphere is only one way to implement (vertex, new, edge). There

are implementations using higher-dimensional spheres, or other geometric objects. We can also
consider random equivalence relations as graphs, i.e. disjoint unions of complete graphs, or random
bipartite graphs, which are triangle-free. We can consider the Erdős–Rényi random graph, where the
chance of an edge between two vertices is independent of the other edges, and has a �xed probability.
These are all di�erent implementations of the same abstract interface, (vertex, new, edge), and
programs such as (5) make sense for all of them. The point of this paper is to characterize all these
implementations, as graphons.

1.2 Implementations Regarded as Equational Theories

The key method of this paper is to treat implementations of the interface (vertex, new, edge) exten-
sionally, as equational theories. That is, rather than looking at speci�c implementation details, we
look at the equations between programs that a user of the implementation would rely on. (This is
analogous to the idea in model theory of studying �rst-order theories rather than speci�c models;
similar ideas arise in the algebraic theory of computational e�ects [Plotkin and Power 2002].) For
example, if an implementation always provides a bipartite random graph, we have the equation

Program (5) ≡ false between programs,

because a triangle is never generated. This equation does not hold in the example of Figure 1(b–c),
since triangles are possible.

We focus on a class of equational theories that are well behaved, as follows. First, we suppose that
they contain basic laws for probabilistic programming (eqns. (7) – (11), §2.2). This basic structure
already appears broadly in di�erent guises, including in Moggi’s monadic metalanguage [Moggi
1989], in linear logic [Ehrhard and Tasson 2019], and in synthetic probability theory [Fritz 2020].
Second, we suppose that the equational theories are equipped with a ‘Bernoulli base’, which means
that although we do not specify an implementation for the type (vertex), each closed program
of type (bool) is equated with some ordinary Bernoulli distribution, in such a way as to satisfy
the classical laws of traditional �nite probability theory (§ 2.4). Finally, we suppose that the edge
relation is symmetric (the graphs are undirected) and that it doesn’t change when the same question

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 61. Publication date: January 2024.
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is asked multiple times (‘deterministic’), e.g.

let0 = new() in let1 = new() in edge(0, 1) &¬edge(0, 1) ≡ false. (6)

A graphon is a symmetric measurable function [0, 1]2 → [0, 1]. We show that every equational
theory for the interface (vertex, new, edge) gives rise to a graphon (Theorem 23), and conversely
that every graphon arises in this way (Corollary 26).
We emphasize that this abstract treatment of implementations, in terms of equational theories,

is very open-ended, and permits a diverse range of implementation methods. Indeed, we show in
Section 5 that any implementation using traditional measure-theoretic methods will only produce
black-and-white graphons, so this abstract treatment is crucial.

1.3 From Equational Theories to Graphons

In Section 3, we show how an equational theory over programs in the interface (vertex, new, edge)
gives rise to a graphon. The key �rst step is that graphons (modulo equivalence) can be character-
ized in terms of sequences of �nite random graphs that satisfy three conditions: exchangeability,
consistency, and locality.

To de�ne a graphon, we show how to de�ne programs that describe �nite random graphs, by using
new and edge to build boolean-valued = ×= adjacency matrices, for all = (shown in (18)). Assuming
that the equational theory of programs is Bernoulli-based, these programs can be interpreted as
probability distributions on the �nite spaces of adjacency matrices which, we show, are �nite
random graphs.
It remains to show that the induced sequence of random graphs satis�es the three conditions

for graphons (exchangeability, consistency, and locality). These can be formulated as equational
properties, and so they can be veri�ed by using the equational reasoning in the equational theory.
This is Theorem 23. A key part of the proof is the observation that exchangeability for graphons
connects to commutativity of let (9): we can permute the order in which vertices are instantiated
without changing the distributions.

1.4 From Graphons to Equational Theories

We also show the converse: every graphon arises from a good equational theory for the interface
(vertex, new, edge). We look at this from three angles: �rst, we prove this in the general case using
an abstract method, and then, we use concrete methods for two special cases.
Fixing a graphon, we build an equational theory by following a categorical viewpoint. A good

equational theory for probabilistic programming amounts to a ‘distributive Markov category’,
which is a monoidal category with coproducts that is well-suited to probability (§2.2 and [Fritz
2020]). The idea that distributive categories are a good way to analyze abstract interfaces goes
back at least to [Walters 1989], which used distributive categories to study interfaces for stacks and
storage. We can thus use now-standard abstract methods for building monoidal and distributive
categories to build an equational theory for the programming language.
We proceed in two steps. We �rst use methods such as [Hermida and Tennent 2012; Hu

and Tholen 1995] to build an abstract distributive Markov category that supports the interface
(vertex, new, edge) in a generic way. This equational theory is generic and not Bernoulli-based:
although it satis�es the equational laws of probabilistic programming, there is no given connection
to traditional probability. The second step is to show that (a) it is possible to quotient this generic
category to get Bernoulli-based equational theories; (b) the choices of quotient are actually in
bijective correspondence with graphons. Thus, we can build an equational theory from which any
given graphon arises, via (18): this is Corollary 26. (The framework of Bernoulli-based Markov
categories is new here, and the techniques of [Hermida and Tennent 2012; Hu and Tholen 1995]
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have not previously been applied in categorical probability, so a challenge for future work is to
investigate these ideas in other aspects of categorical probability.)
Although this is a general method, it is an abstract method involving quotient constructions.

The ideal form of denotational semantics is to explain what programs are by regarding them as
functions between certain kinds of spaces. Although Corollary 26 demonstrates that every graphon
arises from an equational theory, the type (vertex) is interpreted as an object of an abstract category,
and programs are equivalence classes of abstract morphisms. In the remainder of the paper, we
give two situations where we can interpret (vertex) as a genuine concrete space, and programs
are functions or distributions on spaces. Such an interpretation immediately yields an equational
theory, where two programs are equal if they have the same interpretation.

• Section 5: For ‘black-and-white graphons’, we present measure-theoretic models of the in-
terface, based on a standard measure-theoretic interpretation of probabilistic programming
(e.g. [Kozen 1981]). We interpret (vertex) as a measurable space, and (new) as a probability
measure on it, and (edge) in terms of a measurable predicate. Then, the composition of
programs is de�ned in terms of probability kernels and Lebesgue integration. This kind of
model exactly captures the black-and-white graphons (Prop. 29).
• Section 6: For ‘Erdős–Rényi’ graphons, which are constantly gray, and not black-and-white,
we present a model based on Rado-nominal sets (§6.1). These are a variant of nominal
sets ([Gabbay and Pitts 1999; Pitts 2013]) where the atoms are vertices of the Rado graph
(following [Bojańczyk et al. 2014]). We consider a new notion of ‘internal probability measure’
in this setting, and use this to give a compositional semantics that gives rise to the Erdős–Rényi
graphons (Corollary 45).

Together, these more concrete sections then provide further intuition for the correspondence
between equational theories and graphons.

1.5 Connection to Practice

We conclude this introduction with remarks on the connection to practical modelling. In practice,
the graph interface might form part of a generative model, on which we perform inference. The
structure is clearest in a typed language, and one example is the LazyPPL library for Haskell [Dash
et al. 2023]. (Similar examples are implemented in [Goodman and Tenenbaum 2023, Ch. 12], albeit
untyped.) Then our interface is captured by a Haskell type class:1

class RandomGraph p vertex | p → vertex where

new :: p → Prob vertex

edge :: p → vertex → vertex → Bool

Here p is a parameter type, and we write Prob for a probability monad. A spherical implementation
of the interface (following §1.1) is parameterized by the dimension 3 and the distance \ , as follows:

data SphGrph = SG Int Double -- parameters for a sphere graph

data SphVertex = SV [Double] -- vertices are Euclidean coordinates

instance RandomGraph SphGrph SphVertex where

new :: SphGrph → Prob SphVertex

new (SG d theta) = ... -- sample a random unit d-vector uniformly

edge :: SphGrph → SphVertex → SphVertex → Bool

edge (SG d theta) v w = ... -- check whether arccos(v.w) < theta

We can use this as a building block for more complex models. For a simple example, we generated
Figure 1(b) by using the genericMetropolis-Hastings inference of the LazyPPL library to infer\ given

1See https://lazyppl-team.github.io/GraphDemo.html for full details in literate Haskell.
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a particular graph (Fig. 1(a)). We have also implemented other random graphs; our implementation
of the Erdős–Rényi graph uses stochastic memoization [Kaddar and Staton 2023; Roy et al. 2008].

Summary and context. As we have discussed, our main result is that equational theories for the
programming interface (§1.1) give rise to graphons (§1.3) and every graphon arises in this way (§1.4).

These results open up new ways to study random graphs, by using programming semantics. On
the other hand, our results here put the abstractions of practical probabilistic programming on a
solid theoretical foundation (see also §7).

2 PROGRAMMING INTERFACES FOR RANDOM GRAPHS: EQUATIONAL THEORIES
AND MARKOV CATEGORIES

In Section 1.1, we considered probabilistic programming over a graph interface. To make this
formal, we now recall syntax, types, and equational reasoning for simple probabilistic programming
languages. We begin with a general syntax (§2.1), which can accommodate various interfaces in
the form of type and term constants, including the interface for graphs (Ex. 1(3)).
We study di�erent instantiations of the probabilistic programming language in terms of the

equational theories that they satisfy. We consider two equivalent ways of understanding equational
theories: as distributive Markov categories (§2.2) and in terms of a�ne monads (§2.3). Markov
categories are a categorical formulation of probability theory (e.g. [Fritz 2020]), and a�ne monads
arise in the categorical analysis of probability (e.g. [Fritz et al. 2023; Jacobs 2018; Kock 2012]) as
well as in the semantics for probabilistic programming (e.g. [Azevedo de Amorim 2023; Dahlqvist
et al. 2018; Dash et al. 2023]). We make a connection with traditional probability via the notion of
Bernoulli base (§2.4).
Much of this section will be unsurprising to experts: the main purpose is to collect de�nitions

and results. The de�nition of distributive Markov category appears to be novel, and so we go over
that de�nition and correspondence with monads (Propositions 8 and 13). In Section 2.5, we give a
construction for quotienting a distributive Markov category, which we will need in Section 4. We
include the result in the section because it may be of independent interest.

2.1 Syntax for a Generic Probabilistic Programming Language

Our generic probabilistic programming language is, very roughly, an idealized, typed fragment of a
typical language like Church [Goodman et al. 2008]. We start with a simple programming language
(following [Ehrhard and Tasson 2019; Staton 2017; Stein 2021] but also [Moggi 1989]) with at least
the following product and sum type constructors:

�,�1, �2, � ::= unit | 0 |�1 ∗�2 |�1 +�2 | . . .

and terms, including the typical constructors and destructors but also explicit sequencing (let in)

C, C1, C2, D ::= G | () | (C1, C2) | c1 C | c2 C | in1 C | in2 C
| letG = C1 in C2 | case C of {} | case C of {in1 (G1) ⇒ D1; in2 (G2) ⇒ D2} | . . .

We consider the standard typing rules (where 8 ∈ {1, 2}):

Γ, G : �, Γ′ ⊢ G : � Γ ⊢ () : unit

Γ ⊢ C1 : �1 Γ ⊢ C2 : �2

Γ ⊢ (C1, C2) : �1 ∗�2

Γ ⊢ C : �1 ∗�2

Γ ⊢ c8 C : �8

Γ ⊢ C : �8

Γ ⊢ in8 C : �1 +�2

Γ ⊢ C : � Γ, G : � ⊢ D : �

Γ ⊢ letG = C inD : �
Γ ⊢ C : 0

Γ ⊢ case C of {} : �

Γ ⊢ C : �1 +�2

(
Γ, G8 : �8 ⊢ D8 : �

)
8∈{1,2}

Γ ⊢ case C of {in1 (G1) ⇒ D1; in2 (G2) ⇒ D2} : �

(Here, a context Γ is a sequence of assignments of types � to variables G .)
In what follows, we use shorthands such as bool = unit + unit, and if-then-else instead of case.
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This language is intended to be a generic probabilistic programming language, but so far there is
nothing speci�cally probabilistic about this syntax. Di�erent probabilistic programming languages
support distributions over di�erent kinds of structures. Thus, our language is extended according
to an ‘interface’ by specifying type constants and typed term constants 5 : �→ �. For each term
constant 5 : �→ �, we include a new typing rule,

Γ ⊢ C : �
Γ ⊢ 5 (C) : �

Example 1. We consider the following examples of interfaces.

(1) For probabilistic programming over �nite domains, we may have term constants such as

bernoulli0.5 : unit→ bool, intuitively a fair coin toss.

(2) For probabilistic programming over real numbers, we may have a type constant real and term

constants such as normal : real ∗ real→ real, intuitively a parameterized normal distribution,

and arithmetic operations such as (+) : real ∗ real→ real.

(3) The main interface of this paper is for random graphs: this has a type constant vertex and term

constants new : unit→ vertex and edge : vertex ∗ vertex→ bool.

(We have kept this language as simple as possible, to focus on the interesting aspects. A practical
probabilistic programming language will include other features, which are largely orthogonal,
and indeed within our implementation in Haskell (§1.5), programming features like higher order
functions and recursion are present and useful. See also the discussion in §2.3.4.)

2.2 Equational Theories and Markov Categories

Section 2.1 introduced a syntax for various probabilistic programming interfaces. The idea is that
this is a generic language which applies to di�erent interfaces with di�erent distributions that are
implemented in di�erent ways. Rather than considering various ad hoc operational semantics, we
study the instances of interfaces by the program equations that they support.

Regardless of the speci�cs of a particular implementation, we expect basic equational reasoning
principles for probabilistic programming to hold, such as the following laws:

(let~=(letG=C inD) in C ′) ≡ (letG=C in let~=D in C ′) (where G ∉ fv(C ′)) (7)

(C,D) ≡ (letG = C in let~ = D in (G,~)) (8)

(letG=C in letG ′=C ′ inD) ≡ (letG ′=C ′ in letG=C inD) (where G ∉ fv(C ′) and G ′ ∉ fv(C)) (9)

(letG = C ′ in C) ≡ C (where G ∉ fv(C)) (10)

The following law does not always hold, but does hold when E is ‘deterministic’.

(letG = E in C) ≡ C [E/G] (11)

Equations (9) and (10) say that parts of programs can be re-ordered and discarded, as long as
the data�ow is respected. This is a feature of probabilistic programming. For example, coins do
not remember the order nor how many times they have been tossed. But these equations would
typically not hold in a language with state.
The cleanest way to study equational theories of programs is via a categorical semantics, and

for Markov categories have arisen as a canonical setting for categorical probability. Informally, a
category is a structure for composition, and this matches the composition structure of let in our
language. We also have monoidal structure which allows for the type constructor � × � and for the
compound contexts Γ, comonoid structure which allows duplication of variables, and distributive
coproduct structure which allows for the sum types.
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Definition 2. A symmetric monoidal category (C, ⊗, � ) is a category C equipped with a functor

⊗ : C × C→ C and an object � together with associativity, unit and symmetry structure ([Mac Lane

1998, XI.1.]). AMarkov category ([Fritz 2020]) is a symmetric monoidal category in which

• the monoidal unit � is a terminal object (� = 1), and

• every object - is equipped with a comonoid Δ- : - → - ⊗ - , compatible with the tensor

product (Δ-⊗. = (- ⊗ swp ⊗ . ) · (Δ- ⊗ Δ. ), where swp is the swap map of C).

A morphism 5 : - → . in a Markov category is deterministic if it commutes with the comonoids:

(5 ⊗ 5 ) · Δ- = Δ. · 5 .
A distributive symmetricmonoidal category (e.g. [Jay 1993;Walters 1989]) is a symmetric monoidal

category equipped with chosen �nite coproducts such that the canonical maps - ⊗ / + . ⊗ / →
(- + . ) ⊗ / and 0 → 0 ⊗ / are isomorphisms. A distributive Markov category is a Markov

category whose underlying monoidal category is also distributive and whose chosen coproduct injections

- → - + . ← . are deterministic. A distributive category [Carboni et al. 1993; Cockett 1993] is a
distributive Markov category where all morphisms are deterministic.

A (strict) distributive Markov functor is a functor � : C → D between distributive Markov

categories which strictly preserves the chosen symmetric monoidal, coproduct, and comonoid structures.

In this paper we mainly focus on functors between distributive Markov categories that strictly
preserve the relevant structure, so we elide ‘strict’. (Nonetheless, non-strict functors are important,
e.g. [Fritz 2020, §10.2] and Prop. 13.)
We interpret the language of Section 2.1 in a distributive Markov category C by interpreting

types � and type contexts Γ as objects J�K and JΓK, and typed terms Γ ⊢ C : � as morphisms
JΓK→ J�K. (See e.g. [Pitts 2001] for a general discussion of terms as morphisms.)

In more detail, to give such an interpretation, type constants must �rst be given chosen interpre-
tations as objects of C. We can then interpret types and contexts using the monoidal and coproduct
structure of C. Following this, term constants 5 : �→ � must be given chosen interpretations as
morphisms J5 K : J�K→ J�K in C. The interpretation of other terms is made by induction on the
structure of typing derivations in a standard manner, using the structure of the distributive Markov
category (e.g. [Benton et al. 1992], [Stein 2021, §7.2]). For example,

JΓ, G : �, Γ′ ⊢ G : �K = JΓ, G : �, Γ′K � JΓK ⊗ J�K ⊗ JΓ′K
!⊗J�K⊗!
−−−−−−→ 1 ⊗ J�K ⊗ 1 � J�K

JΓ ⊢ letG = C inD : �K = JΓK
ΔJΓK

−−−→ JΓK ⊗ JΓK
JΓK⊗JCK
−−−−−−→ JΓK ⊗ J�K = JΓ, G : �K

JDK
−−→ J�K

JΓ ⊢ case C of {in1 (G1) ⇒ D1; in2 (G2) ⇒ D2} : �K =

JΓK
ΔJΓK

−−−→ JΓK ⊗ JΓK
JΓK⊗JCK
−−−−−−→ JΓK ⊗ J�1 +�2K � JΓ, G : �1K + JΓ, G : �2K

⟨JD1K,JD2K⟩
−−−−−−−−→ J�K

JΓ ⊢ 5 (C) : �K = JΓK
JCK
−−→ J�K

J5 K
−−→ J�K

An interpretation in a Markov category induces an equational theory between programs: let
Γ ⊢ C = D : � if JCK = JDK.

Proposition 3 (e.g. [Stein 2021], ğ7.1). The equational theory induced by the interpretation in a

distributive Markov category, with given interpretations of type and term constants, always includes

the equations (7)– (10), and also (11) whenever JEK is a deterministic morphism.

Example 4. The category (FinSet,×, 1) of �nite sets is a distributive Markov category. As in

any category with products, each object has a unique comonoid structure, and all morphisms are

deterministic. This is a good Markov category for interpreting the plain language with no type or term

constants. For example, JboolK is a set with two elements.
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Example 5. The category FinSto� has natural numbers as objects and the morphisms are stochastic

matrices. In more detail, a morphism< → = is a matrix in (R≥0)
<×= such that each row sums to 1.

Composition is by matrix multiplication. The monoidal structure is given on objects by multiplication

of numbers, and on morphisms by Kronecker product of matrices. By choosing an enumeration of

each �nite set, we get a functor FinSet → FinSto� that converts a function to the corresponding

(0/1)-valued matrix. So every object of FinSto� can be regarded with the comonoid structure from

FinSet. The deterministic morphisms in FinSto� are exactly the morphisms from FinSet [Fritz 2020,

10.3].

This is a good Markov category for interpreting the language with Bernoulli distributions (Ex. 1(1)).

We interpret the fair coin as the 1 × 2 matrix (0.5, 0.5).
We can also give some interpretations for the graph interface (Ex. 1(3)) in FinSto�. For instance,

consider random graphs made of two disjoint complete subgraphs, as is typical in a clustering model.

We can interpret this by putting JvertexK = 2, JedgeK = ( 1 0 0 1
0 1 1 0 )

⊤, and JnewK = (0.5, 0.5).

We look at other examples of distributive Markov categories and interpretations of these inter-
faces in Sections 2.3.2 and 2.3.3, and then in Sections 4–6.

2.3 Equational Theories and A�ine Monads

2.3.1 Distributive Markov Categories from A�ine Monads. One way to generate equational theories
via Markov categories is by considering certain kinds of monads, following Moggi [Moggi 1989].

Definition 6. A strong monad on a category A with �nite products is given by

• for each object - , an object ) (- );
• for each object - , a morphism [- : - → ) (- );
• for objects /,-,. , a family of functions natural in /

(>>=) : A(/,) (- )) × A(/ × -,) (. )) → A(/,) (. ))

such that >>= is associative with unit [.

(There are various di�erent formulations of this structure. When A is cartesian closed, as in
Defs. 9 and 41, then the bind (>>=) is represented by a morphism (>>=) : ) (- ) × (- ⇒ ) (. )) → ) (. ),
by the Yoneda lemma.)

Definition 7 ([Jacobs 1994; Kock 1970; Lindner 1979]). Given a strong monad ) , we say that

two morphisms 5 : -1 → ) (-2), 6 : -1 → ) (-3) commute if

5 >>= ((6 ◦ c1) >>= ([ ◦ ⟨c2 ◦ c1, c2⟩)) = 6 >>= ((5 ◦ c1) >>= ([ ◦ ⟨c2, c2 ◦ c1⟩)) : -1 → ) (-2 × -3).

A strong monad is commutative if all morphisms commute. It is a�ne if) (1) → 1 is an isomorphism.

The Kleisli category Kl() ) of a strong monad ) has the same objects as A, but the morphisms
are di�erent: Kl() ) (�, �) = A(�,) (�)). There is a functor � : A→ Kl() ), given on morphisms by
composing with [ (e.g. [Mac Lane 1998, §VI.5], [Moggi 1989]).

Proposition 8. Let ) be a strong monad on a category A. If ) is commutative and a�ne and A

has �nite products, then the Kleisli category Kl() ) has a canonical structure of a Markov category.

Furthermore, if A is distributive, then Kl() ) can be regarded as a distributive Markov category.

Proof notes. The Markov structure follows [Fritz 2020, §3]. Since) is commutative, the product
structure of A extends to a symmetric monoidal structure on Kl() ). Since ) (1) = 1, the monoidal
unit (1) is terminal in Kl() ). Every object in A has a comonoid structure, and this is extended to
Kl() ) via � . The morphisms in the image of � are deterministic, although this need not be a full
characterization of determinism.
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For the distributive structure, recall that � preserves coproducts and indeed it has a right adjoint.
Hence, the coproduct injections will be deterministic. □

We can thus interpret the language of Section 2.1 using any strong monad, interpreting the
types � as objects J�K of A, and a term Γ ⊢ C : � as a morphism JCK : JΓK → ) (J�K). This
interpretation matches Moggi’s interpretation of the language of Section 2.1 in a strong monad.

2.3.2 Example A�ine Monad: Distribution Monad.

Definition 9 (e.g. [Jacobs 2016], ğ4.1). The distribution monad D on Set is de�ned as follows:

• On objects: each set - is mapped to the set of all �nitely-supported discrete probability measures

on - , that is, all functions ? : - → R that are non-zero for only �nitely many elements and

satisfy
∑

G∈- ? (G) = 1.

• The unit [- : - → D(- ) maps G ∈ - to the indicator function _~. [~ = G], i.e. the Dirac
distribution XG .

• The bind function (>>=) is de�ned as follows:

(5 >>= 6) (I) (~) =
∑

G∈- 5 (I) (G) · 6(I, G) (~)

By the standard construction for strong monads, each morphism 5 : - → . gets mapped to
D 5 : D- → D. , that is, the pushforward in this case: D 5 (?) (~) =

∑
G∈ 5 −1 (~) ? (G).

Consider the language with no type constants, and just the term constant bernoulli0.5 (Ex. 1(1)).
This can be interpreted in the distribution monad. Since every type � is interpreted as a �nite
set J�K, and every context Γ as a �nite set JΓK, a term Γ ⊢ C : � is interpreted as a function
JΓK→ DJ�K. To give a Kleisli morphism between �nite sets is to give a stochastic matrix, and so
the induced equational theory is the same as the interpretation in FinSto� (Ex. 5).

2.3.3 Example A�ine Monad: Giry Monad. We recall some rudiments of measure-theoretic proba-
bility.

Definition 10. A f-algebra on a set is a non-empty collection of subsets that contains the empty

set and is closed under countable unions and complements. A measurable space is a pair (-, Σ) of a
set and a f-algebra on it. A measurable function (-, Σ- ) → (., Σ. ) is a function 5 : - → . such

that 5 -1 (* ) ∈ Σ- for all* ∈ Σ. .
A probability measure on a measurable space (-, Σ) is a function ` : Σ → [0, 1] that has total

mass 1 (` (- ) = 1) and that is f-additive: ` (
⊎∞

8=1*8 ) =
∑∞

8=1 ` (*8 ) for any sequence of disjoint*8 .

Examples of measurable spaces include: the �nite sets- equipped with their powerset f-algebras;
the unit interval [0, 1] equipped with its Borel f-algebra, which is the least f-algebra containing
the open sets. Examples of probability measures include: discrete probability measures (Def. 9); the
uniform measure on [0, 1]; the Dirac distribution XG (* ) = [G ∈ * ].
The product of two measurable spaces (-, Σ- ) × (., Σ. ) = (- × ., Σ- ⊗ Σ. ) comprises the

product of sets with the least f-algebra making the projections - ← - × . → . measurable. The
category of measurable spaces and measurable functions is a distributive category.

A probability kernel between measurable spaces (-, Σ- ) and (., Σ. ) is a function : : - × Σ. →
[0, 1] that is measurable in the �rst argument and that is f-additive and has mass 1 in the second
argument.
To compose probability kernels, we brie�y recall Lebesgue integration. Consider a measurable

space (-, Σ- ), a measure ` : Σ- → [0, 1], and a measurable function 5 : - → [0, 1]. If 5 is a simple
function, i.e. 5 (G) =

∑<
8=1 A8 · [G ∈ *8 ] for some<, A8 ∈ [0, 1], and *8 ∈ Σ- , the Lebesgue integral∫

5 d` =
∫
5 (G) ` (dG) ∈ [0, 1] is de�ned to be

∑<
8=1 A8 × ` (*8 ). If 5 is not a simple function, there

exists a sequence of increasing simple functions 51, 52, . . . : - → [0, 1] such that sup: 5: (G) = 5 (G)
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(for example, by taking 5: (G)
def
= ⌊10: 5 (G)⌋/10: ). In that case, the integral is de�ned to be the limit

of the integrals of the 5: ’s (which exists by monotone convergence).
Probability kernels can be equivalently formulated as morphisms - → G(. ), where G is the

Giry monad:

Definition 11 ([Giry 1980]). The Giry monad G is a strong monad on the category Meas of

measurable spaces given by

• G(- ) is the set of probability measures on - , with the least f-algebra making
∫
5 d(−) :

G(- ) → [0, 1] measurable for all measurable 5 : - → [0, 1];
• the unit [ maps G to the Dirac distribution XG ;

• the bind is given by composing kernels:

(: >>= ;) (I,* ) =

∫
; ((I, G),* ) : (I, dG). (12)

Proposition 12. The monad G is commutative and a�ne.

Proof notes. Commutativity boils down to Fubini’s theorem for reordering integrals and a�ne-
ness is marginalization (since probability measures have mass 1). See also [Jacobs 2018]. □

Consider the real-numbers language (Ex. 1(2)). Let JrealK = R, with the Borel sets, and interpret
normal as the normal probability measure on R. The basic arithmetic operations are all measurable.
Among the following three programs

letG = normal(0, 1) inG + G (13)

letG = normal(0, 1) in let~ = normal(0, 1) inG + ~ (14)

normal(0, 1) + normal(0, 1) (15)

the programs (14) and (15) denote the same normal distribution with variance 2, whereas (13)
denotes a distribution with variance 4. Notice that we cannot use (11) to equate all the programs,
because JnormalK is not deterministic.
We can also interpret the Bernoulli language (Ex. 1(1)) in the Giry monad; this interpretation

gives the same equational theory as the interpretation in FinSto� and in the distribution monad
in Section 2.3.2.

We can also give some interpretations for the graph interface (Ex. 1(3)) in the Giry monad. For an
informal example, consider the geometric example from Section 1.1, let JvertexK = (2 (the sphere),
and de�ne JnewK to be the uniform distribution on the sphere. (See also Section 5.2.)

2.3.4 A�ine Monads from Distributive Markov Categories. The following result, a converse to
Proposition 8, demonstrates that the new notion of distributive Markov category (Def. 2) is a
canonical one, and emphasizes the close relationship between semantics with distributive Markov
categories and semantics with commutative a�ne monads.

Proposition 13. Let C be a small distributive Markov category. Then, there is a distributive

category A with a commutative a�ne monad ) on it and a full and faithful functor C→ Kl() ) that
preserves symmetric monoidal structure, comonoids, and sums.

Proof notes. Our proof is essentially a recasting of [Power 2006b, §7] to this di�erent situation,
as follows.
Let Cdet be the wide subcategory of C comprising the deterministic morphisms, and write

� : Cdet → C for the identity-on-objects inclusion functor. Note that Cdet is a distributive category.
We would like to exhibit C as the Kleisli category for a monad on Cdet, but this might not be possible:
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intuitively, Cdet might be too small for the monad to exist. Instead, we �rst embed Cdet in a larger
category A and construct a monad on A.
The main construction in our proof is the idea that if X is a small distributive monoidal category,

then the category FP(Xop, Set) of �nite-product-preserving functors is such that

• FP(Xop, Set) is cocomplete and moreover total ([Street and Walters 1978]) as a category;
• FP(Xop, Set) admits a distributive monoidal structure;
• the Yoneda embeddingX→ [Xop, Set], which is full and faithful, factors through FP(Xop, Set),
and this embedding X→ FP(Xop, Set) preserves �nite sums and is strongly monoidal;
• the Yoneda embedding exhibits FP(Xop, Set) as a free colimit completion of X as a monoidal
category that already has �nite coproducts.

So we let A = FP(C
op

det
, Set) comprise the �nite-product-preserving functors C

op

det
→ Set. This is

a distributive category. To get a monad on A, we note that since FP(Cop, Set) has �nite coproducts
and Cdet → C→ FP(Cop, Set) preserves �nite coproducts and is monoidal, the monoidal structure
induces a canonical colimit-preserving monoidal functor �! : FP(C

op

det
, Set) → FP(Cop, Set). Any

colimit-preserving functor �! out of a total category has a right adjoint � ∗, and hence a monoidal
monad (� ∗ �!) is induced on A.

It remains for us to check that the embedding C→ FP(Cop, Set) factors through the comparison
functor Kl(� ∗ �!) → FP(Cop, Set), which follows from the fact that � : Cdet → C is identity on
objects. □

As an aside, we note that, although our simple language in Section 2.1 did not include higher-
order functions, the category A constructed in the proof of Proposition 13 is cartesian closed,
and since the embedding is full and faithful, this shows that higher-order functions would be
a conservative extension of our language. Indeed, this kind of conservativity result was part of
the motivation of [Power 2006b]. For the same reason, inductive types (lists, and so on) would
also be a conservative extension. We leave conservativity with other language features for future
work. Recursion in probabilistic programming is still under investigation [Ehrhard et al. 2018;
Goubault-Larrecq et al. 2021; Jia et al. 2021; Matache et al. 2022; Vákár et al. 2019]; there is also
the question of conservativity with respect to combining Markov categories, e.g. combining real
number distributions ((1)–(2)) with graph programming ((3)–(4)).

2.4 Bernoulli Bases, Numerals and Observation

Although an interface may have di�erent type constants, it will always have the ‘numeral’ types,
sometimes called ‘�nite’ types:

0 unit bool = unit + unit unit + unit + unit . . .

For probabilistic programming languages, there is a clear expectation of what will happen when
we run a program of type bool: it will randomly produce either true or false, each with some
probability. Similarly for other numeral types. For type constants, we might not have evident
notions of observation or expected outcomes. But for numeral types, it should be routine. We now
make this precise via the notion of Bernoulli base.
On the semantic side, distributive Markov categories will always have ‘numeral’ objects

0 1 2
def
= 1 + 1 3

def
= 1 + 1 + 1 . . .

For any type � formed without type constants, and any Markov category, we have that J�K � = for
some numeral object. Any equational theory for the programming language induces in particular
an equational theory for the sub-language without any type constants.
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Proposition 14. For any distributive Markov category C, let CN be the category whose objects

are natural numbers, and where the morphisms are the morphisms in C between the corresponding

numeral objects. This is again a distributive Markov category.

Example 15. (1) FinSetN = SetN is equivalent to FinSet as a category.

(2) For the �nite distributions and the Giry monad (§2.3.2–2.3.3), Kl(D)N ≃ Kl(G)N ≃ FinSto�.

Recall that a functor is faithful if it is injective on hom-sets.

Definition 16. A Bernoulli base for a distributive Markov category C is a faithful distributive

Markov functor Ψ : CN↣ FinSto�.

Thus, for any distributive Markov category with a Bernoulli base, for any closed term ⊢ C : � of
numeral type (J�K = =), we can regard its interpretation JCK : 1→ = as nothing but a probability
distributionΨ(JCK) on= outcomes. This is the case even if C uses term constants and has intermediate
subterms using type constants.

Example 17. All the examples seen so far can be given Bernoulli bases. In fact, for FinSto�, Kl(D)
and Kl(G), the functor Ψ : CN↣ FinSto� is an isomorphism of distributive Markov categories.

When Ψ is an isomorphism of categories, that means that all the �nite probabilities are present
in C. This is slightly stronger than we need in general. For instance, when C = FinSet, there is a
unique Bernoulli base Ψ : FinSetN ↣ FinSto�, taking a function to a 0/1-valued matrix, but it
is not full. We could also consider variations on FinSto�. For example, consider the subcategory
FinQSto� of FinSto� where the matrices are rational-valued; this has a Bernoulli base that is not
an isomorphism.

2.5 �otients of Distributive Markov Categories

We provide a new, general method for constructing a Bernoulli-based Markov category out of
a distributive Markov category. Our construction is a categorical formulation of the notion of
contextual equivalence.

Recall that, in general, contextual equivalence for a programming language starts with a notion
of basic observation for closed programs at ground types. We then say that programs Γ ⊢ C,D : �

at other types are contextually equivalent if for every context C with ⊢ C[C], C[D] : =, for some
ground type =, we have that C[C] and C[D] satisfy the same observations. In the categorical setting,
the notion of observation is given by a distributive Markov functor CN → FinSto�, and the
notion of context C is replaced by suitable morphisms (ℎ, : below). We now introduce a quotient
construction that will be key in showing that every graphon arises from a distributive Markov
category (Corollary 26), via Theorem 23. We note that this is a general new method for building
Markov categories.

Proposition 18. Let C be a distributive Markov category, and let Ψ : CN → FinSto� be a

distributive Markov functor. Suppose that for every object - ∈ C, either - = 0 or there exists a

morphism 1→ - . Then, there is a distributive Markov category C/Ψ with a Bernoulli base, equipped

with a distributive Markov functor C → C/Ψ and a factorization of distributive Markov functors

Ψ = CN → (C/Ψ)N↣ FinSto�.

Proof. De�ne an equivalence relation ∼ on each hom-set C(-,. ), by 5 ∼ 6 : - → . if

∀/,=.∀ℎ : 1→ - ⊗ / .∀: : . ⊗ / → =. Ψ(: · (5 ⊗ / ) · ℎ) = Ψ(: · (6 ⊗ / ) · ℎ) in FinSto�(1, =).

Informally, our equivalence relation considers all ways of generating - ’s via precomposition (ℎ),
all ways for testing . ’s via postcomposition (:), and all ways of combining with some ancillary
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data (/ ). It is essential that we consider all these kinds of composition in order for the quotient
category to have the categorical structure.
It is immediate that composition of morphisms respects ∼, and hence we have a category: the

objects are the same as C, and the morphisms are ∼-equivalence classes. This is our category C/Ψ.
It is also immediate that if 5 ∼ 6 and 5 ′ ∼ 6′ then (5 ⊗ 5 ′) ∼ (6 ⊗ 6′). Thus, C/Ψ is a monoidal

category.
For the coproduct structure, we must show that if 5 ∼ 6 : - → . and 5 ′ ∼ 6′ : - ′ → . ′ then
(5 + 5 ′) ∼ (6 + 6′) : - + - ′ → . + . ′. We proceed by noting that since we have morphisms
G : 1→ - and G ′ : 1→ - ′, as well as terminal morphisms - → 1 and - ′ → 1, we have that - +- ′

is a retract of - ⊗ - ′ ⊗ 2, with the section and retraction given by:

- +- ′
-⊗G ′+G⊗-
−−−−−−−−−→ - ⊗- ′ +- ⊗- ′ � - ⊗- ′ ⊗ 2 - ⊗- ′ ⊗ 2 � - ⊗- ′ +- ⊗- ′

-⊗!+!⊗-
−−−−−−−→ - +- ′

Thus, by composing with this retract, it su�ces to check that (5 ⊗ 5 ′ ⊗ 2) ∼ (6 ⊗ 6′ ⊗ 2), which we
have already shown.
The functor Ψ : CN → FinSto� clearly factors through (C/Ψ)N, but it remains to check that

the functor (C/Ψ)N → FinSto� is now faithful (Bernoulli base). So suppose that Ψ(5 ) = Ψ(6). To
show that 5 ∼ 6 : 1 → <, we consider ℎ : 1 → 1 ⊗ / , and : : < ⊗ / → =. We must show that
Ψ(: · (5 ⊗ / ) · ℎ) = Ψ(: · (6 ⊗ / ) · ℎ). Since ℎ = 1 ⊗ ℎ′, for some ℎ′ : 1→ / , we have

Ψ(: · (5 ⊗ / ) · ℎ) = Ψ(: · (< ⊗ ℎ′) · 5 ) = Ψ(: · (< ⊗ ℎ′)) · Ψ(5 )

= Ψ(: · (< ⊗ ℎ′)) · Ψ(6) = Ψ(: · (< ⊗ ℎ′) · 6) = Ψ(: · (6 ⊗ / ) · ℎ).

□

3 FROM PROGRAM EQUATIONS TO GRAPHONS

The graph interface for the probabilistic programming language (Ex. 1(3)) does not have one �xed
equational theory. Rather, we want to consider di�erent equational theories for the language,
corresponding to di�erent implementations of the interface for the graph (see also §1.2). We now
show how the di�erent equational theories for the graph language each give rise to a graphon, by
building adjacency matrices for �nite graphs (shown in (18)). To do this, we set up the well-behaved
equational theories (§2.4), recall the connection between graphons and �nite random graphs (§3.1),
and then show the main result (§3.2, Theorem 23).

3.1 Graphons as Consistent and Local Random Graph Models

For all = ≥ 1, let [=] be the set {1, . . . , =}. (We sometimes omit the square brackets, when it is clear.)

A simple undirected graph 6 with = nodes can be represented by its adjacency matrix �6 ∈ 2
[=]2

such that �6 (8, 8) = 0 and �6 (8, 9) = �6 ( 9, 8). Henceforth, we will assume that �nite graphs are
simple and undirected, unless otherwise stated. A random �nite graph, then, has a probability

distribution in D
(
2[=]

2 )
that only assigns non-zero probability to adjacency matrices.

Definition 19 (e.g. [Lovász 2012, ğ11.2.1]). A random graph model is a sequence of distributions
of random �nite graphs of the form:

?1 ∈ D
(
2[1]

2 )
, ?2 ∈ D

(
2[2]

2 )
, . . . , ?= ∈ D

(
2[=]

2 )
, . . .

We say such a sequence is

• exchangeable if each of its elements is invariant under permuting nodes: for every = and bijection

f : [=] → [=], we have D
(
2(f

2 )
)
(?=) = ?= (where 2(f

2 ) : 2[=]
2
→ 2[=]

2
is the function that

permutes the rows and columns according to f ; we are regardingD as a covariant functor, Def. 9,

and 2(−) as a contravariant functor);
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• consistent if the sequence is related by marginals: for every = and for the inclusion function

] : [=] ↩→ [=+1],D
(
2(]

2 )
)
(?=+1) = ?= (where 2

(]2 ) : 2( [=+1]
2 ) → 2[=]

2
is the evident projection);

• local if the subgraphs are independent: if � ⊆ [=] and � ⊆ [=] are disjoint, then we have an

injective function z : �2 + �2
↩→ [=]2, and D

(
2z
)
(?=) ∈ D

(
2(�

2 ) × 2(�
2 )
)
is a product measure

?� ⊗ ?� (where 2z : 2[=]
2
→ 2(�

2 ) × 2(�
2 ) is the evident pairing of projections).

Definition 20 (e.g. [Lovász 2012]). A graphon , is a symmetric measurable function , :

[0, 1]2 → [0, 1].

Given a graphon, , we can generate a �nite simple undirected graph 6 with vertex set [=]
by sampling = points G1, . . . , G= uniformly from [0, 1] and, then, including the edge (8, 9) with
probability, (G8 , G 9 ) for all 1 ≤ 8, 9 ≤ =. This sampling procedure de�nes a distribution over �nite
graphs: the probability ?,,= (�6) of the graph 6 = ( [=], �) is:∫

[0,1]=

∏
(8, 9 ) ∈�

, (G8 , G 9 )
∏
(8, 9 )∉�

(
1 −, (G8 , G 9 )

)
d(G1 . . . G=) (16)

Proposition 21 ([Lovász and Szegedy 2006], [Lovász 2012, ğ11.2]). Every graphon generates an

exchangeable, consistent, and local random graph model, by the sampling procedure of (16). Conversely,
every exchangeable, consistent, and local random graph model is of the form ?,,= for some graphon, .

Note. There are various methods for constructing, from an exchangeable, consistent and local
random graph model, however all are highly non-trivial. A general idea is that, is a kind of limit
object. For examples see e.g. [Lovász and Szegedy 2006, §11.3] or [Tao 2013]. Fortunately though,
we will not need explicit constructions in this paper. □

3.2 Theories of Program Equivalence Induce Graphons

In this section we consider the instance of the generic language with the graph interface (Ex. 1(3)):

vertex new : unit→ vertex edge : vertex ∗ vertex→ bool

We consider a theory of program equivalence, i.e. a distributive Markov category with a distin-
guished object JvertexK and morphisms JnewK : 1→ JvertexK and JedgeK : JvertexK ⊗ JvertexK→
1 + 1. We make two assumptions about the theory:

• The graphs are simple and undirected:

G : vertex ⊢ edge(G, G) ≡ false G,~ : vertex ⊢ edge(G,~) ≡ edge(~, G) (17)

and edge is deterministic.
• The theory is Bernoulli based (§2.4).

For each = ∈ N, we can build a random graph with = vertices as follows. We consider the following
program C= :

⊢ letG1 = new() in . . . letG= = new() in
©«
edge(G1, G1) . . . edge(G1, G=)

...
...

edge(G=, G1) . . . edge(G=, G=)

ª®®¬
: bool(=

2 ) (18)

(Here we use syntactic sugar, writing a matrix instead of iteratively using pairs.)
Because the equational theory is Bernoulli-based, the interpretation JC=K induces a probability

distribution ΨJC=K on 2(=
2 ) . For clarity, we elide Ψ in what follows, since it is faithful.

Proposition 22. Each random matrix in (18) is a random adjacency matrix, i.e. a random graph.

Proof note. This follows from (17). □
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Theorem 23. For any Bernoulli-based equational theory, the random graph model (JC=K)= in (18)
is exchangeable, consistent, and local. Thus, the equational theory induces a graphon.

Proof. We denote the matrix in (18) by (edge(G8 , G 9 ))8, 9∈[=] .

Exchangeability. We show that the distribution JC=K is invariant under relabeling the nodes. By
commutativity of the let construct (9), the program

Cf=
def
= letGf−1 (1) = new() in . . . letGf−1 (=) = new() in (edge(G8 , G 9 ))8, 9∈[=]

satis�es JCf= K = JC=K. Hence, D(2
f2
) (JC=K) = JCf= K = JC=K, for every = and bijection f : [=] → [=].

Consistency. We de�ne a macro subm� in the graph programming language to extract a submatrix
at the index set � ⊆ [=]: we have the (de�nitional) equality

subm� ((08, 9 )8, 9∈[=])
def
= (08, 9 )8, 9∈� for � ⊆ [=] .

We need to show that, if we delete the last node from a graph sampled from JC=+1K, the resulting
graph has distribution JC=K. This amounts to the a�neness property (10), as follows. Let 6 ∼ JC=+1K

be a random graph, and let 6′
def
= 6 | [=] be the graph obtained by deleting the last node from 6. Then

clearly, the adjacency matrix of 6′ is the adjacency matrix of 6 where the last row and column have
been removed, i.e. 6′ is sampled from the interpretation of the program:

C ′
def
= letG1 = new() in . . . letG= = new() in letG=+1 = new() in subm[=]

(
(edge(G8 , G 9 ))8, 9∈[=+1]

)
≡ letG1 = new() in . . . letG= = new() in letG=+1 = new() in (edge(G8 , G 9 ))8, 9∈[=]

≡ letG1 = new() in . . . letG= = new() in (edge(G8 , G 9 ))8, 9∈[=] (by (10))

≡ C= .

Locality. Without loss of generality (by exchangeability and consistency), we need to show that
for every random graph 6 ∼ JC=K and 1 < : < =, the subgraphs 6�:

, 6�:
respectively induced by

the sets �:
def
= [:] and �:

def
= {: + 1, . . . , =} are independent as random variables. Let z be the

injection z : �2
:
+ �2

:
↩→ =2, and 6′ ∼ D(2z) (JC=K) ∈ D(2

(�2
:
) × 2(�

2
:
) ). We want to show that 6′ and

(6�:
, 6�:
) ∼ JC:K⊗ JC=−:K (by consistency) are equal in distribution. Modulo U-renaming, (6�:

, 6�:
)

is sampled from the interpretation of the program:

C ′
def
=

(
letG1 = new() in . . . letG: = new() in (edge(G8 , G 9 ))8, 9∈[: ],

letG:+1 = new() in . . . letG= = new() in (edge(G8 , G 9 )):+1≤8, 9≤=
)

≡ letD1 = (letG1 = new() in . . . letG: = new() in (edge(G8 , G 9 ))8, 9∈�:
) in

letD2 = (letG:+1 = new() in . . . letG= = new() in (edge(G8 , G 9 ))8, 9∈�:
) in (D1, D2) (by (8))

≡ letG1 = new() in . . . letG: = new() in letG:+1 = new() in . . . letG= = new() in ((7),(9))

letD1 = subm�:

(
(edge(G8 , G 9 ))8, 9∈[=]

)
in letD2 = subm�:

(
(edge(G8 , G 9 ))8, 9∈[=]

)
in (D1, D2)

≡ letG1 = new() in . . . letG= = new() in

let C = (edge(G8 , G 9 ))8, 9∈[=] in letD1 = subm�:
(C) in letD2 = subm�:

(C) in (D1, D2) (by (11))

≡ letG1 = new() in . . . letG= = new() in

let C = (edge(G8 , G 9 ))8, 9∈[=] in
(
subm�:

(C), subm�:
(C)

)
(by (8))

≡ let C =
(
letG1 = new() in . . . letG= = new() in (edge(G8 , G 9 ))8, 9∈[=]

)
in(

subm�:
(C), subm�:

(C)) (by (7))
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and 6′ ∼ D(2z) (JC=K) is indeed sampled from the interpretation of the latter program, which yields
the result. □

4 FROM GRAPHONS TO PROGRAM EQUATIONS

In Section 3, we showed how a distributive Markov category modelling the graph interface (Ex. 1(3))
gives rise to a graphon. In this section, we establish a converse: every graphon arises in this way
(Corollary 26). Theorem 25 will establish slightly more: there is a ‘generic’ distributive Markov
category (§4.1) modelling the graph interface whose Bernoulli-based quotients are in precise corre-
spondence with graphons (§4.2). This approach also suggests an operational way of implementing
the graph interface for any graphon (§4.3).

4.1 A Generic Distributive Markov Category for the Graph Interface

We construct this generic category in two steps. We �rst create a distributive Markov category,
actually a distributive category, Fam(Gop), that supports (vertex, edge). We then add new using
the monoidal indeterminates method of [Hermida and Tennent 2012].

4.1.1 Step 1: A Distributive Category with edge. We �rst de�ne a distributive category that supports
(vertex, edge). Let G be the category of �nite graphs and functions that preserve and re�ect the
edge relation. That is, a morphism 5 : 6→ 6′ is a function 5 : +6 → + ′6 such that for all E,F ∈ +6
we have �6 (E,F) if and only if �6 (5 (E), 5 (F)).

Recall (e.g. [Hu and Tholen 1995]) that the free �nite coproduct completion of a category C,
Fam(C) is given as follows. The objects of Fam(C) are sequences (-1 . . . -=) of objects of C, and the
morphisms (-1 . . . -<) → (.1 . . . .=) are pairs (5 , {58 }

<
8=1) of a function 5 :< → = and a sequence

of morphisms 51 : -1 → .5 (1) , . . . , 5< : -< → .5 (<) in C.
We consider the category Fam(Gop). Let JvertexK = (1), the singleton sequence comprising the

one-vertex graph.

Proposition 24. (1) The free coproduct completion Fam(Gop) is a distributive category, with
the product JvertexK= being the sequence of all graphs with = vertices. In particular, JvertexK2 is
a sequence with two components, the complete graph and the edgeless graph with two vertices.

(2) Let edge : JvertexK × JvertexK→ 1 + 1 be the morphism (id, {!, !}), intuitively returning true
for the edge, and false for the edgeless graph. Here the terminal object 1 of Fam(Gop) is the
singleton tuple of the empty graph. This interpretation satis�es (17).

Proof notes. Item (1) follows from [Hu and Tholen 1995], which shows that limits in Fam(Gop)
amount to “multi-colimits” in G. For example, the family of all graphs with = vertices is a multi-
coproduct of the one-vertex graph in G, hence forms a product in Fam(Gop). Item (2) is then a
quick calculation. All morphisms in Fam(Gop) are deterministic. □

4.1.2 Step 2: Adjoining new. In Section 4.1.1, we introduced a distributive category that interprets
the interface (vertex, edge). But it does not support new, and indeed there are no morphisms
1→ JvertexK. To additionally interpret (new), we freely adjoin it. We essentially use the ‘monoidal
indeterminates’ method of Hermida and Tennent [Hermida and Tennent 2012] to do this. Their
work was motivated by semantics of dynamic memory allocation, but has also been related to
quantum phenomena [Andrés-Martínez et al. 2022; Huot and Staton 2018] and to categorical
gradient/probabilistic methods [Cruttwell et al. 2021; Fong et al. 2021; Shiebler 2021], where it is
known as the ‘para construction’. It is connected to earlier methods for the action calculus [Pavlović
1997].

Let FinSetInj be the category of �nite sets and injections. It is a monoidal category with
the disjoint union monoidal structure (e.g. [Fiore 2005; Power 2006a]). Consider the functor
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� : FinSetInjop → Fam(Gop), with � (=) = JvertexK= , and where the functorial action is by ex-
change and projection. This is a strong monoidal functor. (Indeed, it is the unique monoidal functor
with � (1) = JvertexK.)

For any monoidal functor, Hermida and Tennent [Hermida and Tennent 2012] provide monoidal
indeterminates by introducing a ‘polynomial category’, by analogy with a polynomial ring. Unfor-
tunately, a general version for distributive monoidal categories is not yet known, so we focus on the
speci�c case of � : FinSetInjop → Fam(Gop). We build a new category Fam(Gop) [a : � FinSetInjop],

which we abbreviate Fam(Gop) [a]. It has the same objects as Fam(Gop), but the morphisms ®- → ®.
are equivalence classes of morphisms

[:, 5 ] : JvertexK: × ®- → ®.

in Fam(Gop), modulo reindexing. The reindexing equivalence relation is generated by putting
[:, 5 ] ∼ [;, 6] when there exist injections ]1 . . . ]< : : → ; such that

6 =

(
JvertexK; × ®- �

∑<
9=1JvertexK

; ×- 9

JvertexK(] 9 )×- 9

−−−−−−−−−−−−→
∑<

9=1JvertexK
: ×- 9 � JvertexK: × ®-

5
−→ ®.

)
where ®- = (-1, . . . , -<). In particular, when< = 1, i.e. ®- = - is a singleton sequence, we have

Fam(Gop) [a] (-, ®. ) � colim
:∈FinSetInj

Fam(Gop) (JvertexK: × -, ®. ). (19)

Composition and monoidal structure accumulate in JvertexK: , as usual in the monoidal indeter-
minates (‘para’) construction, e.g.

(
®-
[:,5 ]
−−−−→ ®.

[;,6]
−−−→ ®/

)
=

(
®-
[;+:,6◦(JvertexK;×5 ) ]
−−−−−−−−−−−−−−−−−→ ®/

)
and although our equivalence relation is slightly coarser, it still respects the symmetric monoidal
category structure, and there is a monoidal functor Fam(Gop) → Fam(Gop) [a], regarding each

morphism 5 : ®- → ®. in Fam(Gop) as a morphism [0, 5 ] in Fam(Gop) [a]. But there is also now an
adjoined morphism a = [1, id] : 1→ JvertexK.
This monoidal category Fam(Gop) [a] moreover inherits the distributive coproduct structure

from Fam(Gop), and the functor Fam(Gop) → Fam(Gop) [a] is a distributive Markov functor. To

de�ne copairing of [:, 5 ] : ®- → ®/ and [;, 6] : ®. → ®/ we use the reindexing equivalence relation

to assume : = ; and then de�ne the copairing as ⟨[:, 5 ], [:,6]⟩ = [:, ⟨5 , 6⟩] : ®- + ®. → ®/ .
In summary:

• Fam(Gop) [a] is a distributive Markov category.
• Fam(Gop) [a] supports the graph interface, via the interpretation of (vertex, edge) in Fam(Gop),
but also with the interpretation JnewK = a : 1→ JvertexK.

4.2 Bernoulli Bases for Random Graph Models

The following gives a precise characterization of graphons in terms of the numerals of Fam(Gop) [a].

Theorem 25. To give a distributive Markov functor Fam(Gop) [a]N → FinSto� is to give a

graphon.

Proof outline. We begin by showing a related characterization: that graphons correspond to
certain natural transformations. Observe that any distributive Markov category C gives rise to
a symmetric monoidal functor C(1,−) : FinSetN → Set, regarding the numerals of FinSetN as
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objects of C (§2.4). Let�: = 2: (:−1)/2 be the set of :-vertex graphs. We can characterize the natural
transformations U : Fam(Gop) [a] (1,−) → FinSto�(1,−) as follows.

Nat(Fam(Gop) [a] (1,−) , FinSto�(1,−))

� Nat
(

colim
:∈FinSetInj

FinSet(�: ,−) , D(−)
)

(Ex. 15(2), Prop. 24(1) and (19))

� lim
:∈FinSetInjop

Nat(FinSet(�: ,−) , D(−)) (universal property of colimits)

� lim
:∈FinSetInjop

D(�: ) (Yoneda lemma)

An element of this limit of sets is by de�nition a sequence of distributions ?: on�: that is invariant
under reindexing by FinSetInjop. Since injections are generated by inclusions and permutations,
this is then a sequence that is consistent and exchangeable (Def. 19), respectively. Such a natural
transformation U is monoidal if and only if the sequence is also local. Hence a monoidal natural
transformation is the same thing as a random graph model.
In fact, every monoidal natural transformation U : Fam(Gop) [a] (1,−) → FinSto�(1,−) arises

uniquely by restricting a distributive Markov functor � : Fam(Gop) [a]N → FinSto�. We now
show this, to conclude our proof. Given U , let �<,= : Fam(Gop) [a]N (<,=) → FinSto�(<,=) be:

Fam(Gop) [a]N (<,=) � Fam(Gop) [a]N (1, =)
< U<

=
−−→ FinSto�(1, =)< � FinSto�(<,=).

It is immediate that this � preserves the symmetric monoidal structure and coproduct structure,
but not that � is a functor. However, the naturality of U in FinSetN gives us that � preserves
postcomposition by morphisms of FinSetN. All of this implies that general categorical composition
is preserved as well, since, in any distributive Markov category of the form CN, for 5 : ; →< and
6 :< → =, the composite 6 ◦ 5 : ; → = is equal to

; = ; ⊗ 1⊗<
5 ⊗61⊗...⊗6<
−−−−−−−−−−→< ⊗ =⊗<

eval
−−−→ =

where 68 = 6 ◦ ]8 for 8 = 1, . . . ,< and eval is just the evaluation map< × =< → = in FinSet. □

Corollary 26. Every graphon arises from a distributive Markov category via the random graph

model in (18).

Proof summary. Given a graphon, we consider the distributive Markov functor that corre-
sponds to it, Ψ : Fam(Gop) [a]N → FinSto�, by Theorem 25. Using the quotient construction of
Proposition 18, we get a distributive Markov category with a Bernoulli base. It is straightforward
to verify that the random graph model induced by (18) is the original graphon. □

4.3 Remark on Operational Semantics

The interpretation in this section suggests a general purpose operational semantics for closed
programs at ground type, ⊢ C : =, along the following lines:

(1) Calculate the interpretation JCK : 1→ = in Fam(Gop) [a]. There are no probabilistic choices
in this step, it is a symbolic manipulation, because the morphisms of the Markov category
Fam(Gop) [a] are built from tuples of �nite graph homomorphisms. In e�ect, this interpreta-
tion pulls all the new’s to the front of the term.

(2) Apply the Markov functor Ψ(JCK) to obtain a probability distribution on =, and sample from
this distribution to return a result.
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5 INTERPRETATION: BLACK-AND-WHITE GRAPHONS VIA MEASURE-THEORETIC
PROBABILITY

In Section 4, we gave a general syntactic construction for building an equational theory from a
graphon. Since that de�nition is based on free constructions and quotients, a priori, it does not
‘explain’ what the type vertex stands for. Like contextual equivalence of programs, a priori, it does
not give useful compositional reasoning methods. To prove two programs are equal, according to
the construction of Prop. 18, one needs to quantify over all / , ℎ, and : , in general.

In this section, we show that one class of graphons, black-and-white graphons (Def. 27), admits
a straightforward measure-theoretic semantics, and we can thus use the equational theory induced
by this semantics, rather than the method of Section 4. This measure-theoretic semantics is close
to previous measure-theoretic work on probabilistic programming languages (e.g. [Kozen 1981;
Staton 2017]).

After recapping measure-theoretic probability (§2.3.3), in Section 5.1, we show that every black-
and-white graphon arises from a measure-theoretic interpretation (Prop. 28). In Section 5.2, by
de�ning ‘measure-theoretic interpretation’ more generally, we show that, conversely, this measure-
theoretic approach can only cater for black-and-white graphons (Prop. 29).

5.1 Black-and-White Graphons from Equational Theories

Definition 27. [e.g. [Janson 2013]] A graphon, : [0, 1]2 → [0, 1] is black-and-white if there
exists � : [0, 1]2 → {0, 1} such that, (G,~) = � (G,~) for almost all G,~.

Recall that the Giry monad (Def. 11) gives rise to a Bernoulli-based distributive Markov category
(§2.3.3, Ex. 15). For any black-and-white graphon, , we de�ne an interpretation of the graph
interface for the probabilistic programming language using G, as follows.

• JvertexK, = [0, 1]; JboolK, = 2, the discrete two element space;
• Jnew()K, = Uniform(0, 1), the uniform distribution on [0, 1];
• JedgeK, (G,~) = [ (� (G,~)) .

Proposition 28. Let, be a black-and-white graphon. The equational theory induced by J−K,
induces the graphon, according to the construction in Section 3.2.

Proof. Suppose that, corresponds to the sequence of random graphs ?1, ?2, . . . as in Section 3.1.
Consider the term C= in (18), and directly calculate its interpretation. Then, we get JC=K, = ?= ,
via (16), as required.
The choice of � does not matter in the interpretation of these terms, because, = � almost

everywhere. □

5.2 All Measure-Theoretic Interpretations are Black-and-White

Although the model in Section 5.1 is fairly canonical, there are sometimes other enlightening
interpretations using the Giry monad. These also correspond to black-and-white graphons.
For example, consider the geometric-graph example from Figure 1. We interpret this using the

Giry monad, putting

• JvertexK = (2, the sphere; JboolK = 2;
• Jnew()K = Uniform((2), the uniform distribution on the sphere;
• JedgeK(G,~) = [ (3 (G,~) < \ ), i.e. an edge if their distance is less than \ .

This will again induce a graphon, via (18). We brie�y look at theories that arise in this more �exible
way:
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Proposition 29. Consider any interpretation of the graph interface in the Girymonad: a measurable

space JvertexK, a measurable set JedgeK ⊆ JvertexK2, and a probability measure Jnew()K on JvertexK.
The induced graphon is black-and-white.

Proof notes. If JvertexK is standard Borel, the randomization lemma [Kallenberg 2010, Lem. 3.22]
gives a function 5 : [0, 1] → JvertexK that pushes the uniform distribution on [0, 1] onto
the probability measure Jnew()K. We de�ne a black-and-white graphon , by , (G,~) = 1 if
(5 (G), 5 (~)) ∈ JedgeK, and, (G,~) = 0 otherwise. This graphon interpretation J−K, gives the
same sequence of graphs in (18), just by reparameterizing the integrals.
If JvertexK is not standard Borel, we note that there is an equivalent interpretation where it is,

because there exists a measure-preserving map JvertexK→ Ω to a standard Borel space Ω and a
measurable set � ⊆ Ω

2 that pulls back to JedgeK, giving rise to the same graphon (e.g. [Janson 2013,
Lemma 7.3]). □

Discussion. Proposition 29 demonstrates that this measure-theoretic interpretation has limitations.

Definition 30. For U ∈ (0, 1), the Erdős–Rényi graphon ,U : [0, 1]2 → [0, 1] is given by

,U (G,~) = U .

The Erdős-Rényi graphons cannot arise from measure-theoretic interpretations of the graph
interface, because they are not black-and-white. In Section 6, we give an alternative interpretation
for the Erdős–Rényi graphons.
The reader might be tempted to interpret an Erdős–Rényi graphon by de�ning

JedgeK,U
(G,~) = bernoulli(U).

However, this interpretation does not provide a model for the basic equations of the language,
because this JedgeK is not deterministic, and derivable equations such as (6) will fail. Intuitively, once
an edge has been sampled between two given nodes, its presence (or absence) remains unchanged
in the rest of the program, i.e. the edge is not resampled again, it is memoized (see also [Kaddar
and Staton 2023; Roy et al. 2008]).

Although not all graphons are black-and-white, these are still a widely studied and useful class.
They are often called ‘random-free’. For example, an alternative characterization is that the random
graph model of Prop. 21 has subquadratic entropy function [Janson 2013, §10.6].

6 INTERPRETATION: ERDŐS–RÉNYI GRAPHONS VIA RADO-NOMINAL SETS

In Section 4, we gave a general construction to show that every graphon arises from a Bernoulli-
based equational theory. In Section 5, we gave a more concrete interpretation, based on measure-
theory, for black-and-white graphons. We now consider the Erdős–Rényi graphons (Def. 30), which
are not black-and-white.
Our interpretation is based on Rado-nominal sets. These are also studied elsewhere, but for

di�erent purposes (e.g. [Bojańczyk et al. 2014; Bojańczyk and Place 2012; Klin et al. 2016], [Pitts
2013, §1.9]).
Rado-nominal sets (§6.1) are sets that are equipped with an action of the automorphisms of

the Rado graph, which is an in�nite graph that contains every �nite graph. There is a particular
Rado-nominal setV of the vertices of the Rado graph. The type vertexwill be interpreted asV; edge
is interpreted using the edge relation � on V. The equational theory induced by this interpretation
gives rise to the Erdős–Rényi graphons (Def. 30).

Since Rado-nominal sets form a model of ZFA set theory (Prop. 36), we revisit probability theory
internal to this setting. We consider internal probability measures on Rado-nominal sets (§6.3), and
we show that there are internal probability measures on V that give rise to Erdős–Rényi graphons
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(§6.3). The key starting point here is that, internal to Rado-nominal sets, the only functions V→ 2

are the sets of vertices that are de�nable in the language of graphs (§6.2).
We organize the probability measures (Def. 37) into a probability monad on Rado-nominal sets

(§6.4), analogous to the Giry monad. Fubini does not routinely hold in this setting (§6.4.4), but we
use a standard technique to cut down to a commutative a�ne monad (§6.4.5). This gives rise to a
Bernoulli-based equational theory, and in fact, this theory corresponds to Erdős–Rényi graphons
(via (18): Corollary 45).

6.1 Definition and First Examples

The Rado graph (V, �) ([Ackermann 1937; Rado 1964], also known as the ‘random graph’ [Erdős
and Rényi 1959]) is the unique graph, up to isomorphism, with a countably in�nite set of vertices
that has the extension property: if �, � are disjoint �nite subsets of V, then there is a vertex
0 ∈ V \ (� ∪ �) with an edge to all the vertices in � but none of the vertices in �.

The Rado graph embeds every �nite graph, which can be shown by using the extension property
inductively.

An automorphism of the Rado graph is a graph isomorphism V→ V. The automorphisms of the
Rado graph relate to isomorphisms between �nite graphs, as follows. First, if � is a �nite graph
regarded as a subset of V, then any automorphism f induces an isomorphism of �nite graphs
� � f [�]. Conversely, if 5 : � � � is an isomorphism of �nite graphs, and we regard � and � as
disjoint subsets of V, then there exists an automorphism f of V that restricts to 5 (i.e. 5 = f |�).

We writeAut(Rado) for the group of automorphisms of (V, �). (This has been extensively studied
in model theory and descriptive set theory, e.g. [Angel et al. 2014; Kechris et al. 2005].)

Definition 31. A Rado-nominal set is a set - equipped with an action • : Aut(Rado) × - → -

(i.e. id • G = G ; (f2 · f1) • G = f2 • f1 • G) such that every element has �nite support.

An element G ∈ - is de�ned to have �nite support if there is a �nite set � ⊆ V such that for all

automorphisms f , if f �xes � (i.e. f |� = id�), it also �xes G (i.e. f • G = G).

Equivariant functions between Rado-nominal sets are functions that preserve the group action
(i.e. 5 (f • G) = f • (5 (G))).

Proposition 32 ([Pitts 2013]). If �nite sets �, � ⊆ V both support G , so does � ∩ �. Hence every
element has a least support.

Example 33. (1) The set V of vertices is a Rado-nominal set, with f • 0 = f (0). The support of
vertex 0 is {0}.

(2) The setV×V of pairs of vertices is a Rado-nominal set, with f•(0, 1) = (f (0), f (1)). The support
of (0, 1) is {0, 1}. More generally, a �nite product of Rado-nominal sets has a coordinate-wise

group action.

(3) The edge relation � ⊆ V×V is a Rado-nominal subset (which is formally de�ned in §6.2) because

automorphisms preserve the edge relation.

(4) Any set - can be regarded with the discrete action, f • G = G , and then every element has

empty support. We regard these sets with the discrete action: 1 = {★}; 2 = {0, 1}; N; and the unit
interval [0, 1].

6.2 Powersets and Definable Sets

For any subset ( ⊆ - of a Rado-nominal set, we can de�ne f • ( = f [(] = {f • G | G ∈ (}. We let

2- = {( ⊆ - | ( has �nite support}. (20)

This is a Rado-nominal set.
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Example 34. We give some concrete examples of subsets.

(1) For vertices 1 and 2 in V with no edge between them, the set {0 ∈ V | � (0, 1) ∧ � (0, 2)} is the
set of ways of forming a horn. It has support {1, 2}.

(2) {(1, 2) ∈ V2 | � (0, 1) ∧ � (0, 2) ∧ ¬� (1, 2)} is the set of horns with apex 0; it has support {0}.
(3) {(0, 1, 2) ∈ V3 | � (0, 1) ∧� (0, 2) ∧¬� (1, 2)} is the set of all oriented horns; it has empty support.

(4) (Non-example) There is a countable totally disconnected subgraph of V; it does not have �nite

support as a subset of V.

In fact, the �nitely supported subsets correspond exactly to the de�nable sets in �rst-order logic
over the theory of graphs. The following results may be folklore.

Proposition 35. Let ( ⊆ V= , and � ⊆ V be �nite. The following are equivalent:

• ( = {(B1, . . . B=) | q (B1 . . . B=)}, for a �rst-order formula q over the theory of graphs, with

parameters in �;

• ( has support �.

Proof. (⇒) For all isomorphisms 5 : V→ V that �x �, and for all elements 01 . . . 0: ∈ � and
subsets ( = {(B1, . . . , B=) | q (B1 . . . B=, 01 . . . 0: )}, we have

q (5 (B1) . . . 5 (B=), 01 . . . 0: ) = q (5 (B1) . . . 5 (B=), 5 (01) . . . 5 (0: )).

Furthermore, q is invariant with respect to 5 . Thus, the image 5 (() ⊆ ( . By a similar argument, we
have 5 -1 (() ⊆ ( , so that ( ⊆ 5 ((). Thus, 5 (() = ( ([Marker 2002, Prop. 1.3.5]).
(⇐) This is a consequence of the Ryll-Nardzewski theorem for the theory of the Rado graph

(which can be shown to be l-categorical by a back-and-forth argument, using the extension
property of the Rado graph). But we give here a more direct proof, assuming = = 1 for simplicity.
Suppose � ⊆ V is a �nite support for ( . Then, for any E, E ′ ∈ V\�, if E and E ′ have the same
connectivity to �, then they are either both in or not in ( since, by the extension property, we can
�nd an automorphism �xing � and sending E to E ′. The set of vertices with the same connectivity
to � as E is de�nable, and there are only 2 |� | such sets. Hence, (\� is a union of �nitely many
de�nable sets, and as ( ∩� is de�nable (being �nite), so is ( = ((\�) ∪ (( ∩�). □

We note that 2- in (20) is a canonical notion of internal powerset, from a categorical perspective.

Proposition 36. RadoNom is a Boolean Grothendieck topos, with powerobject 2- in (20).

Proof notes. RadoNom can be regarded as continuous actions of Aut(Rado), regarded as a
topological group with the product topology, and then we invoke standard methods [Johnstone
2002, Ex. A2.1.6]. It is also equivalent to the category of sheaves over �nite graphs and embeddings
with the atomic topology. See [Caramello 2013, 2014] for general discussion. □

6.3 Probability Measures on Rado-Nominal Sets

The �nitely supported sets ( ⊆ V can be regarded as ‘events’ to which we would assign a probability.
For example, if we already have vertices 1 and 2 , we may want to know the chance of picking a
vertex that forms a horn, and this would be the probability of the set in Ex. 34(a).

Definition 37. A sequence (1, (2 · · · ⊆ - is said to be support-bounded if there is one �nite set

� ⊆ V that supports all the sets (8 .

A function ` : 2- → [0, 1] is (internally) countably additive if for any support-bounded sequence

(1, (2 · · · ⊆ - of disjoint sets,

` (
⊎∞

8=1 (8 ) =
∑∞

8=1 ` ((8 ).

A probability measure on a Rado-nominal set - is an equivariant function ` : 2- → [0, 1] that is
internally countably additive, such that ` (- ) = 1.
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We remark that there are two subtleties here. First, we restrict to support-bounded sequences.
These are the correctly internalized notion of sequence in Rado-nominal sets, since they correspond
precisely to �nitely-supported functions N→ 2- . Second, we consider a Rado-nominal set to be
equipped with its internal powerset 2- , rather than considering sub-f-algebras.

Measures on the space of vertices. We de�ne an internal probability measure (Def. 37) on the
space V of vertices, which, we will show, corresponds to the Erdős-Rényi graphon. Fix U ∈ [0, 1],
the chance of an edge.
We de�ne the measure aU of a de�nable set ( ∈ 2V as follows. Suppose that ( has support
{01, . . . , 0=}. We choose an enumeration of vertices (E1, . . . , E2= ) in V (disjoint from {01, . . . , 0=})
that covers all the 2= possible edge relationships that a vertex could have with the 08 ’s. (For example,
E1 has no edges to any 08 , and E2= has an edge to every 08 , and the other E 9 ’s have the other possible
edge relationships.) Let:

aU (() =

2=∑
9=1

[E 9 ∈ (]

=∏
8=1

(
U� (E 9 , 08 ) + (1 − U) (1 − � (E 9 , 08 ))

)
. (21)

Proposition 38. The assignment given in (21) is an internal probability measure (Def. 37) on V.

Proof. The function aU is well-de�ned: it does not depend on the choice of E 9 ’s (by Prop. 35), nor
on the choice of support (by direct calculation). It is equivariant, since for f •( , a valid enumeration
of vertices is given by f • E1, . . . f • E2= . Also, a (V) = 1, since V has empty support. Internal
countable additivity follows from the identity

[
E 9 ∈

⊎∞
8=1 (8

]
=
∑∞

8=1 [E 9 ∈ (8 ]. □

Remark. The de�nitions and results of this section appear to be novel. However, the general idea
of considering measures on formulas which are invariant to substitutions that permute the variables
goes back to work of Gaifman [Gaifman 1964]. The paper [Ackerman et al. 2016a] characterizes
those countably in�nite graphs that can arise with probability 1 in that framework; see [Ackerman
et al. 2017b] for a discussion of how Gaifman’s work connects to Prop. 21.

6.4 Nominal Probability Monads

Since RadoNom is a Boolean topos with natural numbers object (Prop. 36), we can interpret
measure-theoretic notions in the internal language of the topos, as long as they do not require the
axiom of choice. We now spell out the resulting development, without assuming familiarity with
topos theory. By doing this, we build new probability monads on RadoNom.

6.4.1 Finitely Supported Functions and Measures. Let - and . be Rado-nominal sets. The set of all
functions - → . has an action of Aut(Rado), given by (f • 5 ) (G) = f-1 • (5 (f • G)). The function
space [- ⇒ . ] comprises those functions that have �nite support under this action. Categorically,
this structure is uniquely determined by the ‘currying’ bijection, natural in / :

RadoNom(/ × -,. ) � RadoNom(/,- ⇒ . ).

(For example, the powerobject 2- (§6.2) can be regarded as [- ⇒ 2], if we regard a set as its
characteristic function.)
In Def. 37, we focused on equivariant probability measures. We generalize this to �nitely sup-

ported measures. For example, pick a vertex 0 ∈ V. Then, the Dirac measure on V (i.e. X0 (() = 1 if
0 ∈ ( , and X0 (() = 0 if 0 ∉ () has support {0}.

Definition 39. For a Rado-nominal set - , let P(- ) comprise the �nitely supported functions

` : 2- → [0, 1] that are internally countably additive, and satisfy ` (- ) = 1. This is a Rado-nominal set,

as a subset of [2- ⇒ [0, 1]]. Functions in P(- ) are called �nitely supported probability measures.
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6.4.2 Internal Integration. We revisit some basic integration theory in this nominal setting. In tradi-
tional measure theory, one can de�ne the Lebesgue integral of ameasurable function 5 : - → [0, 1]

by
∫
5 (G)` (dG) = sup

∑=
8=1 A8` (*8 )where the supremum ranges over simple functions

∑
8 A8 [− ∈ *8 ]

with *8 measurable in - and bounded above by 5 (§2.3.3). The same construction works in the
internal logic of RadoNom.

Note that the following does not mention 5 being measurable: since - is considered to have its
internal powerset f-algebra, �nite-supportedness implies ‘measurability’ here.

Proposition 40. Let ` ∈ P(- ) be a �nitely supported probability measure on - . For any �nitely

supported function 5 : - → [0, 1], the internally-constructed Lebesgue integral
∫
5 (G) ` (dG) ∈ [0, 1]

exists. Moreover, integration is an equivariant map∫
: P(- ) × [- ⇒ [0, 1]] → [0, 1]

which preserves suprema of internally countable monotone sequences in its second argument.

Proof. If *1, . . . ,*= ⊆ - are �nitely supported, A1, . . . , A= ∈ [0, 1], and
∑

8 A8 [− ∈ *8 ] ≤ 5 , then
by ordinary additivity of `, we have

∑
A8` (*8 ) ∈ [0, 1]. By ordinary real analysis, the supremum of

all such values exists and is in [0, 1]. For equivariance, recall that [0, 1] is equipped with the trivial
action of Aut(Rado). Use the fact that

∑
8 A8 [− ∈ *8 ] ≤ 5 if and only if

∑
8 A8 [− ∈ f •*8 ] ≤ f • 5 .

The last claim is the monotone convergence theorem internalized to RadoNom. □

6.4.3 Kernels and a Monad. We can regard a ‘probability kernel’ as a �nitely supported function
: : - → P(. ). Equivalently, : is a �nitely supported function : : - × 2. → [0, 1] that is countably
additive and has mass 1 in its second argument.

(In traditional measure theory, one would explicitly ask that : is measurable in its �rst argument,
but as we observed, �nite-supportedness already implies it.)
As usual, probability kernels compose, and this allows us to regard them as Kleisli morphisms

for a monad (Def. 6), de�ned as follows.

Definition 41. We de�ne the strong monad P on RadoNom as follows.

• For a Rado-nominal set- , letP(- ) comprise the �nitely supported probability measures (Def. 39).

• The unit of the monad [- : - → P(- ) is the Dirac measure, [- (G) (() = [G ∈ (].
• The bind (>>=) : P(- ) × (- ⇒ P(. )) → P(. ) is given by

(` >>= :) (() =

∫
-

: (G, () ` (dG).

We note that this is similar to the ‘expectations monad’ [Jacobs and Mandemaker 2012, Thm. 4].

6.4.4 Commuting Integrals (Fubini). For measures `1 ∈ P(- ) and `2 ∈ P(. ), the monad structure
allows us to de�ne a product measure

`1 ⊗ `2 =
(
`1 >>= (_G. `2 >>= _~. [ (G,~))

)
∫

5 (G,~) (`1 ⊗ `2) (d(G,~)) =

∫ ∫
5 (G,~) `2 (d~) `1 (dG).

(22)

Although this iterated integration is reminiscent of the traditional approach, in general we cannot
reorder integrals (‘Fubini does not hold’). For example, given two measures aU and aV for U ≠ V
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and 5 being the characteristic function of the set {(G,~) : � (G,~)} ⊆ V2, we have∫ ∫
[� (G,~)] aU (d~) aV (dG) =

∫
U aV (dG) = U

≠ V =

∫
V aU (d~) =

∫ ∫
[� (G,~)] aV (dG) aU (d~).

(23)

However, it does hold when we consider only copies of the same measure.

Proposition 42. For aU ∈ P(V) as in (21), aU commutes with aU . That is, for any �nitely supported

5 : V × V→ [0, 1],∫ ∫
5 (G,~) aU (d~) aU (dG) =

∫ ∫
5 (G,~) aU (dG) aU (d~).

Proof notes. By Prop. 35 and 40, it su�ces to check on the indicator functions of de�nable
subsets of V2. The indicators of sets {(G,~) | Φ(G,~)} where Φ(G,~) is a disjunction of G = ~, G = 0,
or ~ = 0 for some 0 ∈ V are seen to have integral 0 on both sides. The remaining possibilities can be
reduced to the case where Φ�,q,k,n (G,~) is (G,~ ∉ �) ∧ (G ≠ ~) ∧ (� (G,~) ↔ n) ∧

∧
0∈� (� (0, G) ↔

q0) ∧ (� (0,~) ↔ k0) where � ⊆ V is a �nite set, n ∈ {⊥,⊤}, and q,k ∈ {⊥,⊤}�. This formula
corresponds to choosing a two-vertex extension of the �nite graph spanned by � ⊆ V. Intuitively,
the two double integrals correspond to the two alternative two-step computations of the conditional
probability of extending the graph � to this extension according to which of the two vertices is
sampled �rst, and indeed both evaluate to U: (1−U)2 |� |+1−: where : = [n] +

∑
0∈� ( [q0] + [k0]). □

Remark. In traditional measure theory, iterated integrals are de�ned using product f-algebras.
Here we have not constructed product f-algebras, but rather always take the internal powerset as
the f-algebra. This allows us to view all the de�nable sets as measurable on V= (Prop. 35), which is
very useful. We remark that alternative product spaces also arise in non-standard approaches to
graphons (see [Tao 2013, §6] for an overview), and also in quasi-Borel spaces [Heunen et al. 2017]
for di�erent reasons.

6.4.5 A Commutative Monad. We now use Prop. 42 to build a commutative a�ne submonad PU of
the monad P, which we will use to model the graph interface for the probabilistic programming
language. With Prop. 36, we use the following general result.

Proposition 43. Let T be a strong monad on a Grothendieck topos. Consider a family of morphisms

{58 : -8 → T (.8 )}8∈� .

• There is a least strong submonad T5 ⊆ T through which all 58 factor.

• If the morphisms 58 all commute with each other, then T5 is a commutative monad (Def. 7).

Proof notes. Our argument is close to [Kammar and McDermott 2018, §2.3] and also [Kammar
2014, Thms. 7.5 & 12.8].
We let T5 be the least subfunctor of T that contains the images of the 58 ’s and [, and is closed

under the image of monadic bind (>>=). To show that this exists, we proceed as follows. First, �x a
regular cardinal _ > � such that.8 ’s are all _-presentable, such that the topos is locally _-presentable
(e.g. [Adámek and Rosický 1994]). Consider the poset Sub_ (T ) of _-accessible subfunctors of T .
The cardinality bound _ ensures it is small. Ordered by pointwise inclusion, this is a complete lattice:
the non-empty meets are immediate, and the empty meet requires us to consider the _-accessible
core�ection of T .
We de�ned T5 by a monotone property which we can regard as a monotone operator on this

complete lattice Sub_ (T ), and so the least _-accessible subfunctor exists. This is T5 . Concretely, it
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is a least upper bound of an ordinal indexed chain. The chain starts with the functor

�0 (/ ) =
⋃

8∈� ,6:.8→/ image(T (6) ◦ 58 ) ⊆ T (/ )

which is _-accessible because the .8 ’s are _-presentable. The chain iteratively closes under the
image of monadic bind, until we reach a subfunctor that is a submonad of T .
To see that T5 is commutative, we appeal to (trans�nite) induction. Say that a subfunctor � of T

is commutative if all morphisms that factor through � commute (Def. 7), and then note that the
property of being commutative is preserved along the ordinal indexed chain. □

With this in mind, �xing a measure aU as in (21), we form the least submonad PU of P induced
by the morphisms

aU : 1→ P(V) bernoulli : [0, 1] → P(2) (24)

where bernoulli(A ) = A · [ (0) + (1 − A ) · [ (1).

Corollary 44. The least submonad PU of the probability monad P induced by the morphisms in

(24) is a commutative a�ne monad (Def. 7).

Proof notes. It is easy to show that bernoulli commutes with every morphism - → P(. ).
Moreover, aU commutes with itself (Prop. 42). Finally, PU is a�ne since P is. □

6.5 Summary and Interpretation

Fix U ∈ [0, 1]. We induce an internal measure aU on the vertices of the Rado graph as explained in
(21); and build a commutative submonad PU of P. We can then interpret the graph probabilistic
programming language. We interpret types as Rado-nominal sets:

JboolK = 2 JvertexK = V JunitK = 1 J�1 ∗�2K = J�1K × J�2K. (25)

We interpret typed programs Γ ⊢ C : � as Kleisli morphisms

JΓK→ PU (J�K)

i.e. internal probability kernels JΓK× 2J�K → [0, 1]. Sequencing (let) is interpreted using the monad
structure, with JnewK : 1→ PU (V) and JedgeK : V × V→ PU (2) as

Jnew()K = aU JedgeK(E,F) = [ (� (E,F)) (26)

Corollary 45. Consider the interpretation in Rado-nominal sets ( (25)– (26)). If we form the

sequence of random graphs in (18), then these correspond to the Erdős-Rényi graphon.

Proof notes. The semantics interprets ground types as �nite sets with discrete Aut(Rado)
action – in which case internal probability kernels correspond to stochastic matrices, agreeing with
FinSto�. Thus, the theory is Bernoulli-based. To see that the graphon arises, consider for instance
when = = 2, we have:

JC2K(★) =

∫ (
[� (G1, G1)], [� (G1, G2)]
[� (G2, G1)], [� (G2, G2)]

)
(aU ⊗ aU ) (d(G1, G2))

for C2 as in (18), and therefore

JC2K =

(
X0, bernoulli(U)

bernoulli(U), X0

)
: P(24)

For general =, this corresponds to the random graph model ?,U ,= for the Erdős-Rényi graphon,U .
□
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7 CONCLUSION

Summary. We have shown that equational theories for the graph interface to the probabilistic
programming language (Ex. 1) give rise to graphons (Theorem 23). Conversely, every graphon
arises in this way. We showed this generally using an abstract construction based on Markov
categories (Corollary 26) and methods from category theory [Hermida and Tennent 2012; Hu and
Tholen 1995]. Since this is an abstract method, we also considered two concrete styles of semantic
interpretation that give rise to classes of graphons: traditional measure-theoretic interpretations
give rise to black-and-white graphons (Prop. 28), and an interpretation using the internal probability
theory of Rado-nominal sets gives rise to Erdős–Rényi graphons (Corollary 45).

Further context, and future work. The idea of studying exchangeable structures through program
equations is perhaps �rst discussed in the abstract [Staton et al. 2017], whose §3.2 ends with
an open question about semantics of languages with graphs that the present paper addresses.
Subsequent work addressed the simpler setting of exchangeable sequences and beta-bernoulli
conjugacy through program equations [Staton et al. 2018], and stochastic memoization [Kaddar and
Staton 2023]; the latter uses a category similar toRadoNom, although themonad is di�erent. Beyond
sequences [Staton et al. 2018] and graphs (this paper), a natural question is how to generalize to
arbitrary exchangeable interfaces (see e.g. [Orbanz and Roy 2015]). For example, we could consider
exchangeable random boolean arrays via the interface

new-row : unit→ row, new-column() : unit→ column, entry : row ∗ column→ bool

and random hypergraphs with the interface

new : unit→ vertex, hyperedge= : vertex= → bool.

We could also consider interfaces for hierarchical structures, such as arrays where every entry
contains a graph. Diverse exchangeable random structures have been considered from the model-
theoretic viewpoint [Ackerman 2015; Crane and Towsner 2018] and from the perspective of
probability theory (e.g. [Campbell et al. 2023; Jung et al. 2021; Kallenberg 2010]), but it remains to
be seen whether the programming perspective here can provide a unifying view. Another point is
that graphons correspond to dense graphs, and so a question is how to accommodate sparse graphs
from a programming perspective (e.g. [Caron and Fox 2017; Veitch and Roy 2019]).
This paper has focused on a very simple programming language (§2.1). As mentioned in Sec-

tion 1.5, several implementations of probabilistic programming languages do support various
Bayesian nonparametric primitives based on exchangeable sequences, partitions, and relations
(e.g. [Dash et al. 2023; Goodman et al. 2008; Kiselyov and Shan 2010; Mansinghka et al. 2014; Roy
et al. 2008; Wood et al. 2014]). In particular, the ‘exchangeable random primitive’ (XRP) interface
[Ackerman et al. 2016b; Wu 2013] provides a built-in abstract data type for representing exchange-
able sequences. This aids model design by its abstraction, but also aids inference performance by
clarifying the independence relationships.
Aside from practical inference performance, we can ask whether representation and inference

are computable. For the simpler setting of exchangeable sequences, this is dealt with positively by
[Freer and Roy 2010, 2012]. The question of computability for graphons and exchangeable graphs
is considerably subtler, and some standard representations are noncomputable [Ackerman et al.
2019] (see also [Ackerman et al. 2017a]). This suggests several natural questions about whether
certain natural classes of computable exchangeable graphs can be identi�ed by program analyses
in the present context.
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