UNIVERSITYOF BIRMINGHAM # University of Birmingham Research at Birmingham ### A systematic review of brief dietary questionnaires suitable for clinical use in the prevention and management of obesity, cardiovascular disease and type 2 diabetes England, CY; Andrews, RC; Jago, R; Thompson, JL DOI: 10.1038/ejcn.2015.6 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): England, CY, Andrews, RC, Jago, R & Thompson, JL 2015, 'A systematic review of brief dietary questionnaires suitable for clinical use in the prevention and management of obesity, cardiovascular disease and type 2 diabetes', European Journal of Clinical Nutrition, vol. 69, pp. 977-1003. https://doi.org/10.1038/ejcn.2015.6 Link to publication on Research at Birmingham portal **Publisher Rights Statement:** Eligibility for repository: Checked on 22/12/2015 **General rights** Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes •Users may freely distribute the URL that is used to identify this publication. - •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. - •User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive. If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate. Download date: 21. Mar. 2025 #### Title page A systematic review of brief dietary questionnaires suitable for clinical use in the prevention and management of obesity, cardiovascular disease and type 2 diabetes Running title: A systematic review of brief dietary questionnaires Authors: Clare Y England¹, Rob C Andrews², Russell Jago¹, Janice L Thompson³ The study was carried out at The University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH Corresponding author: Clare England. Tel, +44 (0)117 331 1096. Fax +44(0)117 954 6756. e-mail: clare.england@bristol.ac.uk. - 1. Centre for Exercise Nutrition and Health Sciences, School for Policy Studies, 8 Priory Road, University of Bristol, Bristol, BS8 1TZ - 2. School of Clinical Sciences, University of Bristol, Learning and Research, Southmead Hospital, Bristol BS10 5NB - 3. University of Birmingham, School of Sport, Exercise & Rehabilitation Sciences, Edgbaston, Birmingham, B15 2TT Abstract word count: 242 Word count: 5019 Keywords: systematic review; dietary assessment; validation; reliability #### Declaration This submission represents original work that has not been published previously and it is not being considered for publication elsewhere. The authors declare no conflicts of interest. #### Acknowledgements We thank the developers of brief questionnaires who provided access to their questionnaires for evaluation, their scoring algorithms and supplemental information on usage and copyright. We thank Amir Emadian for independent data extraction on 25% of the included papers. Clare England is supported by NIHR Clinical Doctoral Research Fellowship 10-017. Authors' contributions: The work contained in this article is part of the PhD of Clare England which is supervised by Drs' Andrews, Jago and Thompson. All authors assisted in the design of the data extraction form and development of the search strategy. Ms England screened all titles and abstracts and extracted the data with advice on clinical application from Dr Andrews and final inclusion from Professor Thompson. Professor Jago provided analytical guidance. The first draft of the manuscript was prepared by Ms England with critical input and revisions by all other authors. All authors approved the final manuscript. - 1 A systematic review of brief dietary questionnaires suitable for clinical use in the prevention - 2 and management of obesity, cardiovascular disease and type 2 diabetes - 3 Abstract - 4 The aim of this systematic review was to identify and describe brief dietary assessment tools - 5 suitable for use in clinical practice in the management of obesity, cardiovascular disease and - 6 Type 2 diabetes. Papers describing development of brief (<35 items) dietary assessment - 7 questionnaires, that were accessible, simple to score and assessed aspects of the diet of - 8 relevance to the conditions of interest were identified from electronic databases. The - 9 development of 35 tools was described in 47 papers. Ten tools assessed healthy eating or - healthy dietary patterns, 2 assessed adherence to the Mediterranean diet, 18 assessed dietary - 11 fat intake and 5 assessed vegetable and/or fruit intake. Twenty tools were developed in North - 12 America. Test-retest reliability was conducted on 18 tools; correlation coefficients for total - scores ranged from 0.59 to 0.95. Relative validation was conducted on 34 tools. The most - common reference variable was percentage energy from fat (15 tools) and correlation - 15 coefficients ranged from 0.24, p<0.001 to 0.79, p<0.002. Tools that have been evaluated for - reliability and/or relative validity are suitable for guiding clinicians when providing dietary - 17 advice. Variation in study design, settings and populations makes it difficult to recommend - one tool over another, although future developers can enhance the understanding and use of - tools by giving clear guidance as to the strengths and limitations of the study design. When - selecting a tool, clinicians should consider whether their patient population is similar in - 21 characteristics to the evaluation sample. 18 #### Introduction 23 The World Health Organisation estimates that in 2008, 18.3 million deaths worldwide were 24 due to cardiovascular disease and type 2 diabetes. In 2010, unhealthy dietary habits, 25 26 including low fruit and vegetable consumption, high salt intake and low wholegrain and fish 27 consumption, combined with physical inactivity, are estimated to account for 10% of the 28 global burden of disease. Assisting people with dietary modification is, therefore, a key 29 challenge for health professionals. In clinical care, dietary assessment is important for providing individualised dietary advice² 30 and is essential for evaluating the success of interventions aimed at improving dietary habits, 31 such as cardiac rehabilitation programs.³ Dietitians typically use food diaries and take diet 32 33 histories to obtain an overview of a patient's usual diet, with dietary advice then given based 34 on this assessment. This process is time-consuming and interpretation requires specialist skills.2 However, a highly detailed assessment of nutrient intake is not always necessary in a 35 36 clinical setting. It is often enough to review an individual's dietary habits to determine the potential benefit of changing specific dietary behaviours and foods/food groups.⁴ 37 38 Brief dietary screening tools have been developed to assist with dietary assessment in clinical practice. These tools take the form of a brief questionnaire that can be self-completed prior 39 40 to, or administered during, a consultation. The answers allow health professionals and 41 patients to quickly identify whether a diet is appropriate or if there are areas of concern. 42 Dietary changes, based upon the patient's current dietary habits, can be discussed and foodbased dietary goals set.⁵ For dietary tools to be useful in clinical practice they need to be 43 44 interpretable with minimal nutrition knowledge, quick to complete and easy to score. They must provide immediate guidance on healthy dietary changes or allow clinicians to quickly 45 46 identify patients who may benefit from more intensive dietary counselling. Dietary screening tools have been designed to assess specific foods or nutrients^{3, 6, 7}, dietary behaviours 47 associated with obesity⁸ or cardiovascular disease,⁹⁻¹¹ adherence to specific diets^{12, 13} or as specific aids in dietary counselling with a prompt sheet provided to guide discussion. 14, 15 They take the form of short food frequency questionnaires (FFQs), with or without portion estimates, behavioural questionnaires¹⁸ or a combination of FFQ and behavioural questions.⁷ They are unable to give estimates of absolute intake but can classify individuals as high, medium or low consumers of nutrients or foods of interest, allowing dietary advice to be targeted to an individual. Questionnaires have also been developed to rapidly evaluate the success of dietary interventions, for example to measure the effect of advice to increase fruit and vegetable intake¹⁹ or follow a lipid lowering diet.²⁰ These are responsive to change and can provide outcome data to determine whether an intervention has succeeded in improving dietary habits. Brief questionnaires are of interest to dietary researchers, ²¹ but the current review focuses on instruments that might be applicable in a clinical setting to obtain a picture of an individual's diet. A review of brief dietary assessment tools for potential clinical use was published in 2000,²² but many additional tools have been developed since then and there is a need for an update. More recently the US National Cancer Institute (NCI) published an on-line registry of validated brief dietary assessment instruments.²³ Although the registry provides an overview of the tools, it does not facilitate comparisons and provides no summarised information about applicability to clinical practice. Our aims were to: 1) identify and describe available brief dietary screening tools that can be used in clinical practice for the prevention and management of obesity, cardiovascular disease and type 2 diabetes in adults; 2) examine the acceptability, reliability and/or relative validity of the tools; and 3) summarise the data so that clinicians can quickly assess which tool is most suitable for use with their patient group. Details are also provided about the availability of the tools and whether there are costs associated with their use. 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 - 73 <u>Methods</u> - 74 Search strategy - 75 Electronic databases MEDLINE, EMBASE, PsycINFO, AMED (Ovid versions) and - 76 CINAHL (EBSCOhost version) to June 2013 (week 26) were searched using MeSH terms - and text words. Search terms were based around general terms for nutritional and dietary - assessment and were designed to identify brief questionnaires. Terms included nutrition - assessment, diet screen, food questionnaire, nutrient questionnaire and short, brief, rapid and - adult. The full list of search terms is included in the supplementary information (appendix 1). - 81 One author (CE) screened all titles and abstracts. Full text articles were retrieved if abstracts - 82 appeared to meet the inclusion criteria. Additional studies were identified from reference lists - and screened similarly. Studies were initially assessed for inclusion by one author (CE). - Where it was unclear whether a study or questionnaire met the inclusion criteria a second - author (JT) screened the reports. - 86 Inclusion and exclusion criteria - 87 Dietary habits or foods relevant to adults at risk for cardiovascular disease, overweight, - obesity or type 2 diabetes were derived from national and international guidelines. ²⁴⁻²⁶ Risk - 89 increases with high consumption of energy-dense foods, trans-fats, saturated fats, sodium and - alcohol and decreases with high consumption of high fibre foods, fruit and vegetables, fish - and low glycaemic index foods. Dietary patterns emphasising high fibre foods, low fat dairy, - 92 poultry, fish, non-tropical vegetable oils and nuts, whilst limiting red and processed meats - and high fat or sugar foods and drinks, are advised. Questionnaires assessing components of - 94 the diet that increase or decrease risk were identified. - Tools were included if they had been evaluated for reliability or relative validity against a - biomarker or against another self-reported measure of dietary intake (dietary reference). In - 97 common with the previous review²², sample size was not considered. Based on the clinical expertise of two authors (CE, RA) tools were deemed to be practical for clinical settings if they were brief, available in paper format or freely accessible on the Internet, could be scored at administration without specialist computer software and were capable of providing immediate feedback to patients and practitioners on an individual level. Questionnaires were defined as 'brief' if they were estimated to take no more than 15 minutes to complete. Mean allocated appointment times for new patients in primary care have been reported as being between 16-32 minutes and complete physicals as 12-36 minutes.²⁷ Consequently, questionnaires taking more than 15 minutes to complete were judged as not feasible for use in clinical practice. However, most studies did not estimate completion time. Preliminary work, prior to conducting the full review, identified mean completion times of 15 minutes for a 25 item questionnaire, ²⁸ 10 minutes for 31-item, ²⁹ 20 item⁹ and 16 item¹⁰ questionnaires and 5-10 minutes for a 29 item questionnaire. Taking these measures into account it was estimated that questionnaires of up to 35 items could feasibly be completed in 15 minutes. Tools designed to be administered by a practitioner or completed independently by the patient were both included. Tools that assessed micronutrient intakes, protein intake, malnutrition screening tools or those aimed at identifying hazardous drinking were excluded. Questionnaires for single food groups, such as oily fish and pulses and fruit and vegetable questionnaires containing over 10 items, were considered to be of limited use in clinical practice and were excluded. Studies were excluded if they only reported the use of a questionnaire during an intervention or observational study, or described tools that were not tested for either reliability or relative validity. Due to the limitations of time and cost, studies not published in English were excluded. It was not possible to obtain copies of 2 tools, despite contacting the institutions where they were developed, so these tools were excluded from the review.^{30, 31} A full list of inclusion and exclusion criteria is available in the supplementary information (appendix 1). 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 123 Data extraction 124 The data extraction form was developed by all authors and piloted with four studies. One author (CE) extracted data from all studies. Data from 25% of studies were also extracted by 125 126 an independent reviewer for cross-checking. 127 Study characteristics 128 The following data were extracted: study design, study setting, sample size, population and country. Age, gender, socio-economic status (SES), education, disease state and ethnicity 129 may all impact on the results of a relative validation study.³² As such the sample profiles 130 131 were categorised. 132 Questionnaire characteristics 133 Data were collected on the number of items, type of questions, scoring system and the 134 language of the tool, the method of administration and whether the tool was designed for a specific population or for use in a particular setting. 135 136 Questionnaire items 137 Data were extracted on item generation as it is important to know whether a questionnaire has been tailored to the population of interest.⁴ Data were extracted on whether a questionnaire 138 had been tested for acceptability (face validity, ease of use or an assessment of usefulness) 139 140 and readability. Reliability and relative validity 141 142 Results were extracted from test-retest reliability studies determining whether tools were consistent over two or more administrations, ³³ and from internal reliability studies 143 144 determining whether items measuring the same dietary characteristic were consistent within a tool.³⁴ Data from relative validity studies were extracted. In true validation studies a new 145 measure is compared with an accurate measurement of the truth, but this is very difficult for 146 habitual diet.³⁵ The gold standard for dietary intake is a recovery biomarker such as doubly 147 labelled water, for energy intake, or urinary nitrogen for protein.³⁶ These are expensive to administer, only available for a limited number of nutrients and inappropriate for brief questionnaires that do not measure the whole diet. Even direct observation is unsuitable as a true measure of habitual diet in free living individuals due to the need for 24 hour, possibly covert, surveillance. Consequently, short dietary assessment tools are evaluated against imperfect reference measures. These include self-reported dietary measures, for example food diaries, a longer FFQ or 24 hour recalls; a concentration biomarker such as plasma vitamin levels,³⁷ or biomarkers of pre-clinical disease³⁸ such as blood lipids or anthropometric measures. None of these are true measures of habitual intake. Dietary measures are subject to measurement error, which vary depending upon the method. For example, those reliant on memory, such as FFQs, are subject to recall bias whereas food records can change dietary behaviour. The use of food tables for nutrient analysis further introduces error in both selfreport and direct observation of diet.³⁵ Furthermore, if errors in the reference measure correlate with errors in the new measure, for example if both methods are subject to recall bias, relative validity of the new measure could be overestimated.³⁵ Concentration biomarkers and biomarkers of pre-clinical disease are affected by metabolic and lifestyle factors. For example, levels of plasma β-carotene are determined by dietary intake but also by fat intake, BMI, low density lipoprotein levels and smoking.³⁷ However, these biomarkers can provide additional evidence of accuracy of a questionnaire when used in conjunction with other reference measures. Internal reliability is typically tested using Crohnbach's α which assesses how closely items correlate with each other. ³⁴ Values of >0.70 indicate high internal reliability, although strong correlation between items in a dietary questionnaire may not be required if each item is designed to assess different aspects of the diet.³⁹ Test-retest reliability and relative validity are commonly tested at the individual level using correlation statistics.³⁵ The use of mean 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 values alone can only assess these at the group level. 40 Correlation coefficients of ≥ 0.4 for the nutrient of interest are considered to be adequate for food frequency questionnaires when compared with another dietary reference measure. 4 Correlations of ≤ 0.4 are more usual when FFQs are compared with a biomarker.³⁷ Studies calibrating long FFQs against other dietary assessment methods such as food diaries have reported coefficients between -0.16 to 0.86 for total fat in grams (mean 0.51), -0.01 to 0.71 for fruit and 0.16 to 0.72 for vegetables. 41 Testretest reliability studies for long FFQs quote coefficients of 0.50 to 0.70 for energy, fat and selected micronutrients.⁴¹ The practice of only examining the correlations between scores to determine test-retest reliability or validity has been criticised and it has been recommended that the Bland Altman method is used in conjunction.³³ Details of the statistical tests used were summarised. Results A total of 1802 separate records were identified, 1795 via the electronic databases and a further 7 from hand searching references. One hundred and twenty two full text papers were screened and 47 met the inclusion criteria (figure 1). The development and testing of 35 tools were described in these papers, although 2, the Block Fat, Fruit and Vegetable Screeners (B-F&FV)⁶ and the Hispanic Fat, Fruit and Vegetable Screeners (H-F&FV),⁴² can be split into 2 distinct sets of questions which provide scores for different aspects of the diet. In addition 2 different versions of 2 tools, the Rapid Eating Assessment for Patients (REAP²⁹ and REAP-S¹⁴) and the Food Behaviour Checklist (FBC-T¹⁰ and FBC-V⁴³), are currently available and the FBC-V has been translated into Spanish (FBC-SV) and evaluated^{32, 44} One, the Fat Related Diet Habits Questionnaire (FRDHQ), appears to have been used in several different versions. Papers describing relative validity testing of the 20-item and 24-item questionnaires are detailed here ^{21, 45-47} although 21- ⁴⁸ and 23- ⁴⁹ item versions have been used in interventions. The current version, available on-line, contains 25 distinct items 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 198 (http://sharedresources.fhcrc.org/documents/fat-related-questionnaire). For the purposes of this review B-F&FV and H-F&FV were regarded as single tools, REAP and REAP-S and 199 FBC-T and FBC-V were regarded as distinct tools, with FBC-SV as a subsidiary to FBC-V. 200 201 All the versions of FRDHQ were regarded as one tool. 202 Table 1 summarises the study and tool characteristics. Over half (n=20) were developed and 203 tested in the USA or Canada with the remainder in European countries (n=10) and Australia 204 or New Zealand (n=5). 205 Dietary assessment Fifteen papers described 10 tools assessing healthy eating or healthy dietary patterns 8, 10, 13, 14, 206 ^{28, 29, 32, 43, 44, 50-55} and 2 assessing adherence to the Mediterranean diet. ^{13, 56} Twenty-four 207 208 papers described 18 tools providing information on the intake of dietary fats or dietary behaviours associated with fat intake. Of these, 11 were specific for dietary fats alone, 3, 12, 15, 209 $^{20,\,21,\,39,\,45\text{-}47,\,57\text{-}64}$ 1 assessed dietary fat and free sugars, 65 4 assessed dietary fat and fibre 210 intakes^{5, 7, 9, 18} and 2 assessed dietary fat and fruit and vegetable intake (although these can be 211 used separately as one screener for fat and one for fruit and vegetables). 6, 42 Four tools 212 assessed fruit and vegetable intake 16, 17, 19, 66, 67 and 1 assessed fruit intake alone. 68 With the 213 214 exception of questionnaires specific for fruit and vegetable intake, no tool was designed to 215 characterise diets by food groups, although 3 broader tools also provided a fruit and vegetable sub-score. 10, 43, 50 216 217 Fifteen tools were short FFQs and asked questions on the frequency of consumption of specific foods. ^{3, 5, 6, 12, 13, 42, 58, 60, 69} All of the fruit and vegetable questionnaires were in this 218 form. 16, 17, 19, 66, 68 Four exclusively asked about food behaviours, for example, "In the past 219 month how often did you eat fish or chicken instead of red meat?" or, "In an average week, 220 how often do you skip breakfast?" ^{14, 18, 29, 45} The remaining 16 contained a mixture of FFQ 221 and behavioural questions. $^{7-10, 15, 20, 28, 39, 44, 50, 54-57, 59, 61}$ 222 All except $6^{8, 10, 14, 29, 44, 52, 55}$ were scored numerically, with a total score or subscales for separate nutrients or fruit and vegetable intakes. The 6 that were not scored in this manner give individual guidance for each item, and $2^{14, 29}$ also provide a prompt sheet to aid advice. - 227 *Item generation* - 228 Item generation was described for 27 tools, with 8 employing more than one method. - Fourteen were adapted from longer FFQs and other questionnaires, 3, 7, 12, 14, 15, 18, 20, 39, 43, 50, 54, - 230 ^{56, 59, 69} of which 6 were initially based upon other tools included in this review. ^{14, 15, 18, 20, 43, 54} - 231 Six used national databases to identify foods most commonly consumed from a particular - category, or foods that contributed most to the nutrient of interest in the population of - interest. 5, 42, 54, 57, 68, 69 Seven used recommendations or clinical guidelines 5, 10, 29, 53, 55, 56, 58 and - 4 were developed using an expert panel. 9, 10, 45, 53 Five were developed from data collected - from participants, either quantitative in the form of dietary patterns ⁵¹ or through qualitative - 236 work. 10, 18, 42, 54 - Fourteen reported being evaluated in some way for acceptability to check that wording was - clear, questions were relevant and the general lay-out of the tool was appropriate. Four - employed cognitive interviewing, ^{29, 32, 43, 51, 68} 3 used survey methods, ^{7, 50, 55} 5 used - unspecified qualitative interviews ^{10, 18, 42, 53, 58} and 2 used unspecified pilot testing. ^{20, 59} Only - 241 the FBC-T and the visual versions derived from it were evaluated for reading - 242 comprehension. ^{32, 43, 52} The FBC-T and FBC-SV were of low reading difficulty and the colour - version of the FBC-SV was "very easy". - 244 Reliability and relative validity - Table 2 summarises the results of reliability and relative validity studies. Just over half the - 246 tools (n=18) were tested for test-retest reliability, 7, 9, 18-20, 29, 39, 42, 44, 52, 55, 57-61, 69 with 1 being - tested in 3 different samples. 21, 45, 47 Test-retest time varied from several hours to 1 year 18, 19, - 248 ⁵⁷ and different studies employed different statistical tests, although correlations were most - often used (14 tools). 7, 9, 18-20, 29, 39, 42, 44, 45, 52, 55, 57, 59 Test-retest correlation coefficients for - 250 total scores ranged from 0.59 ²¹ to 0.95. ⁷ Four studies did not calculate a total score but used - individual items, group classifications or derived nutrient intakes from the screener as test- retest variables. 52, 55, 58, 60 One study 61 was evaluated exclusively at the group level. Internal reliability was tested in 9 tools ^{3, 8, 39, 44, 54, 58, 69} with 2 employing more than 1 sample. ^{10, 45-47}, 52 Values for Cronbach's α were reported from 0.47 54 to 0.83. 47 All tools were examined for relative validity at the individual level against a reference measure except 1.42 A number of different reference measures, with a range of different times between tests, different test variables and different statistical tests were used to determine relative validity. No study employed a recovery biomarker. Nine tools were compared with an FFQ that had previously reported relative validity against food diaries or dietary recalls^{6, 9, 14, 15, 18, 55, 59, 60, 66} and 13 were compared with food diaries^{5, 16, 50, 57, 61}, recalls^{13, 17, 44, 54, 67} or a diet history.^{58, 68} One was compared with a different brief questionnaire that had been previously tested for relative validity against 24 hour recalls.³⁹ Nine tools were compared with more than one reference measure; 8, 10, 12, 20, 21, 28, 29, 45-47, 52, 53, 56, 62-64, 69 and 3 were compared with more than one dietary reference. 12, 21, 29, 45-47, 62-64 Alongside a dietary reference, 4^{10, 28, 56, 58} were compared with biomarkers of preclinical disease, 4^{28, 53, 56, 69} with anthropometric measures, and 2^{10, 28} with concentration biomarkers. Two did not use a dietary reference measure but compared change in total score with change in BMI³ and change in total score with change in plasma carotenoids and plasma vitamin C. 19 The variation in study designs makes direct comparisons between tools problematic, but total score (or fat score) from 11 tools^{5, 9, 12, 15, 18, 20, 21, 29, 45-47,} ^{54, 59, 62-65} were reported to have been compared with % energy from total fat from food diaries or FFQs. Correlation coefficients ranged from 0.24⁴⁶ to 0.79.¹² Total scores from 2 of these tools were compared with % energy from total fat from a dietary reference in more than one population: the FRDHQ reported correlation coefficients ranging from 0.24^{46} to 0.60^{45} and MEDFICTS from 0.30⁶³ to 0.79.¹² Table 3 gives an 'at a glance' summary of the characteristics of each tool, the evaluation studies and provides information on access. 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 #### **Discussion** 278 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 279 Main findings This systematic review identified 35 tools with potential application to dietary assessment in clinical settings. Around half assess dietary fat intake, with or without other nutrients, a third assess the overall diet for healthy eating or adherence to the Mediterranean diet, and the remainder assess fruit and vegetable intake. More tools have been developed and evaluated in the USA than in any other country. Fewer than half the tools reported evaluations for clarity of language and acceptability with users. Due to the variation in methodology, it is not possible to determine if tools that were evaluated for acceptability show greater reliability or relative validity than those that were not. However, best practice in food frequency questionnaire design involves pre-testing.⁴¹ All tools, except 1, were tested for relative validity against one or more reference measures, although there was a wide variation in the design of studies, the variables used and the statistical tests employed. Three quarters were tested against a different dietary reference measure, with over a quarter using a FFQ or a different brief questionnaire. Since the majority of brief questionnaires were themselves FFQs, or included many food frequency questions, errors between the tools and the FFQs may have been correlated and the relative validity of these questionnaires overestimated. Around half were evaluated for test-retest reliability with similar variation in study design. This variation makes direct comparison between tools difficult and as a consequence it is not possible to state that one tool is superior for a particular nutrient or population. However, correlation coefficients for relative validity against food diaries and biomarkers and those for reliability studies are similar to those obtained in studies which evaluate longer FFQs against food diaries. This indicates that these brief dietary screening tools can be expected to produce a fair approximation of dietary habits and consequently could be of use in clinical practice for the dietary management of cardiovascular disease, obesity and Type 2 diabetes. It is worth noting however, that few tools reported sensitivity, specificity or predictive values²⁸ 55, 62-64, 66, 68 and only 6 (17%) have assessed sensitivity to change over time;^{3, 18-20, 39, 54} therefore their utility in an intervention setting is unclear. Strengths and limitations of the review 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 The strengths of this review are the application of a systematic search strategy and systematic data extraction techniques. Dietary assessment tools developed since Calfas et al's review in 2000²² and validated tools that are not listed in the NIC registry have been identified and described. Tools that were not included in study reports were obtained on-line or from the original authors to ensure they met the inclusion criteria. The results are presented so that clinicians and researchers can select available tools that are most suitable for their purposes. The review has some important limitations. The piloting and use of dietary screening tools in practice has not been examined, which means it is not possible to determine whether use of a tool has a positive effect on patient behaviour. The inclusion and exclusion criteria were developed for this review and assessment of whether a tool would be useful in clinical practice was derived from the expert opinion of only 2 clinicians. Other reviewers or clinicians may disagree with the criteria and may have included or excluded different brief tools. Calfas et al²² judged that tools suitable for use in primary care would take 15 minutes to complete or be around 50 items long but provided no justification for this. The current review based an estimate of completion time on preliminary data obtained from brief dietary questionnaires. We excluded tools assessing single food groups since there is limited clinical benefit in a detailed assessment of one food group, with the exception of fruit and vegetable intake. However, fruit and vegetable questionnaires of greater than 10 items were excluded because increased patient burden reduces feasibility in clinical practice. Only peer-reviewed studies published in English were included. There may be evaluated tools that are used in clinical practice in other countries, or that have not been peer-reviewed that have not been identified here. However, due to the heterogeneity of studies, this would be unlikely to change the broader conclusions of this review. Comparison with other studies Calfas et al's review ²² used wider inclusion criteria than this current review and did not consider whether a tool could be easily scored in practice. They identified 14 dietary assessment tools, of which 7 are included in the present review. 5, 6, 11, 12, 15, 20, 55 All measured dietary fat, making comparisons between tools more straightforward. Four were evaluated for test-retest reliability, with correlation coefficients ranging from 0.67 to 0.91. The 11 validated tools were either validated against a food diary or a longer FFQ, and correlation coefficients for % energy from fat ranged from 0.30 to 0.80. These ranges are similar to coefficients reported in the current review. In 2003, Kim et al reviewed tools reported as validated, containing up to 16 items, and designed to assess fruit and vegetable intake. 70 They identified 10 instruments, of which 1 is included in the current review. 17 The remainder were excluded in the current review for reasons of length or because the scoring algorithms were complex and unlikely to be used in clinical practice. Tools were reported as validated against longer FFQs, food diaries or 24hour recalls. Correlation coefficients for total fruit and vegetable intakes ranged from 0.29 to 0.80. Since the tools measured the same aspect of the diet, comparisons were possible and this review concluded that more detailed tools that asked about portion sizes and the consumption of mixed vegetable dishes showed greater relative validity. Cade et al⁴¹ also comment that FFQs asking people to estimate their own portion sizes are more reliable. Only one tool included in the current review asks people to estimate their portion sizes by providing a multiple choice list of three different sizes.¹² 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 All the studies previously reviewed used correlations alone to assess reliability and relative validity. This remains the most common method and only 5 studies in the present review made use of the Bland-Altman method. Correlation coefficients are not measures of absolute agreement but are instead measures of relative agreement, assessing whether an individual has maintained their ranking relative to other participants. The intra-class correlation coefficient (ICC) was used to evaluate 4 tools, but this measure has also been criticised and data simulations have shown that high correlations can be achieved with low absolute agreement. The Bland Altman method assesses limits of agreement (LOA) which define the range that 95% of the differences between the measures lie within, and may include graphical presentation of the data. Clinical knowledge must be used to decide if the LOA are acceptable. 72 Of the studies that used the Bland Altman method, one was published in 2002 7 and the remainder after 2010, with 3 studies conducted by the same team. 13, 56, 68 Clinical implications It is important that clinicians are clear about their purpose when selecting a tool for use. In clinical practice, dietary assessment is required to assist in the provision of dietary advice or to measure the impact of dietary intervention. ⁴ Brief dietary questionnaires used for the former purpose are those that give clear guidance on moving to healthier dietary habits rather than obtaining a detailed, quantitative assessment of an individual's diet. Assessment may be focussed on certain nutrients to be disease specific or may be concerned with overall diet quality. Typical questions from tools included in the current review include asking about the frequency of consumption of sweet foods or savoury snacks, with responses ranging from less than once a week to more than 3 times a day. The answers can be used to target dietary advice to the individual. Tools suitable for measuring the impact of a dietary intervention must also be able to measure change. 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 This review provides evidence that tools developed and tested in one population may not have the same relative validity in a different population. Equally tools developed in different countries will include different food items, also affecting relative validity. It should be noted that English translations of tools developed in Spanish, French, Norwegian or Dutch have not been validated and that older tools may no longer be appropriate due to shifts in food habits and processing.⁷³ In common with previous reviews^{22,70} studies with small sample sizes were not excluded. Cade et al⁴¹ report a wide range of sample sizes for relative validation studies of long FFQs and found no difference in reported correlation coefficients between studies with large sample sizes compared to small sample sizes. However, with small sample sizes, confidence intervals are likely to be wide and consequently sample sizes of around 100 to 200 are advised. 40 Clinicians should consider the sample sizes of test-retest and relative validation studies if tools are to be used 'off the shelf'. Developers of future tools can enhance understanding of the development, relative validity and reliability of tools by clearly describing: 1) how items were derived; 2) the population of interest; 3) the characteristics of the sample for reliability and relative validation studies; 4) the results of these studies; and 5) whether stratification by age, gender, ethnicity and socioeconomic status affected results. Tools that are most helpful for clinical use need to have a clearly described and simple scoring system, and ideally a copy presented in the paper or in an on-line appendix for evaluation with clear information about copyright. Table 4 provides a checklist to assist practitioners when choosing a brief dietary questionnaire for clinical use. Conclusion 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 This review identified and summarised 35 short dietary assessment tools of potential use in clinical practice for the dietary management of cardiovascular disease, obesity and Type 2 diabetes. In general, tools demonstrated adequate reliability and/or relative validity, although - around half have been developed and evaluated exclusively in US populations. It is not possible to determine if any one tool is clearly better than another for a given population or purpose due to differences in the design of reliability and relative validity studies. If tools are to be used in different countries or populations, they need to be adapted and evaluated locally to ensure they are reliable and have acceptable levels of relative validity. - Supplementary information is available on the European Journal of Clinical Nutrition's website #### References - Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 2012; 380(9859): 2224-2260. - 2. Thomas B, Bishop J. *Manual of Dietitic Practice*, 4th Edition edn John Wiley and Sons Ltd: Chicester, 2007. - 3. Anderson CAM, Kumanyika SK, Shults J, Kallan MJ, Gans KM, Risica PM. Assessing change in dietary-fat behaviors in a weight-loss program for African Americans: a potential short method. *J. Am. Diet. Assoc.* 2007; **107**(5): 838-842. - 4. Thompson FE, Byers T. Dietary Assessment Resource Manual. *J. Nutr.* 1994; **124**(11 Suppl): 2245s-2317s. - 5. Roe L, Strong C, Whiteside C, Neil A, Mant D. Dietary intervention in primary care: Validity of the DINE method for diet assessment. *Fam. Pract.* 1994; **11**(4): 375-381. - 6. Block G, Gillespie C, Rosenbaum EH, Jenson C. A rapid food screener to assess fat and fruit and vegetable intake. *Am. J. Prev. Med.* 2000; **18**(4): 284-288. - 7. Svilaas A, Strom EC, Svilaas T, Borgejordet A, Thoresen M, Ose L. Reproducibility and validity of a short food questionnaire for the assessment of dietary habits. Nutrition Metabolism & Cardiovascular Diseases 2002; 12(2): 60-70. - 8. Greenwood JLJ, Lin J, Arguello D, Ball T, Shaw JM. Healthy Eating Vital Sign: A New Assessment Tool for Eating Behaviors. *ISRN Obesity* 2012; **2012:** 7. - 9. Wright JL, Scott JA. The Fat and Fibre Barometer, a short food behaviour questionnaire: reliability, relative validity and utility. *Australian Journal of Nutrition & Dietetics* 2000; **57**(1): 33-39. - 10. Murphy SP, Kaiser LL, Townsend MS, Allen LH. Evaluation of Validity of Items for a Food Behavior Checklist. *J. Am. Diet. Assoc.* 2001; **101**(7): 751-761. - 11. Kristal AR, Shattuck AL, Henry HJ. Patterns of dietary behavior associated with selecting diets low in fat: reliability and validity of a behavioral approach to dietary assessment. *J. Am. Diet. Assoc.* 1990; **90**(2): 214-220. - 12. Kris-Etherton P, Eissenstat B, Jaax S, Srinath UMA, Scott L, Rader J *et al.* Validation for MEDFICTS, a Dietary Assessment Instrument for Evaluating Adherence to Total and Saturated Fat Recommendations of the National Cholesterol Education Program Step 1 and Step 2 Diets. *J. Am. Diet. Assoc.* 2001; **101**(1): 81-86. - 13. Schroder H, Benitez Arciniega A, Soler C, Covas M-I, Baena-Diez JM, Marrugat J. Validity of two short screeners for diet quality in time-limited settings. *Public Health Nutr.* 2012; **15**(4): 618-626. - 14. Segal-Isaacson CJ, Wylie-Rosett J, Gans KM. Nutrition update. Validation of a short dietary assessment questionnaire: the Rapid Eating and Activity Assessment for Participants Short Version (REAP-S). *Diabetes Educ.* 2004; **30**(5): 774. - 15. Gans KM, Sundaram SG, McPhillips JB, Hixson ML, Linnan L, Carleton RA. Rate your plate: An eating pattern assessment and educational tool used at cholesterol screening and education programs. *Journal of Nutrition Education* 1993; **25**(1): 29-36. - 16. Van Assema P, Brug J, Ronda G, Steenhuis I, Oenema A. A short dutch questionnaire to measure fruit and vegetable intake: relative validity among adults and adolescents. Nutr. Health 2002; 16(2): 85-106. - 17. Thompson FE, Kipnis V, Subar AF, Krebs-Smith SM, Kahle LL, Midthune D *et al.*Evaluation of 2 brief instruments and a food-frequency questionnaire to estimate daily number of servings of fruit and vegetables. *Am. J. Clin. Nutr.* 2000; **71**(6): 1503-1510. - 18. Shannon J, Kristal AR, Curry SJ, Beresford SA. Application of a behavioral approach to measuring dietary change: the fat- and fiber-related diet behavior questionnaire. *Cancer Epidemiology Biomarkers & Prevention 1997; 6(5): 355-361. - 19. Bogers RP, Van Assema P, Kester ADM, Westerterp KR, Dagnelie PC. Reproducibility, validity, and responsiveness to change of a short questionnaire for measuring fruit and vegetable intake. *Am. J. Epidemiol.* 2004; **159**(9): 900-909. - 20. Retzlaff BM, Dowdy AA, Walden CE, Bovbjerg VE, Knopp RH. The Northwest Lipid Research Clinic Fat Intake Scale: validation and utility. *Am. J. Public Health* 1997; **87**(2): 181-185. - 21. Glasgow RE, Perry JD, Toobert DJ, Hollis JF. Brief assessments of dietary behavior in field settings. *Addict. Behav.* 1996; **21**(2): 239-247. - 22. Calfas KJ, Zabinski MF, Rupp J. Practical nutrition assessment in primary care settings: a review. *Am. J. Prev. Med.* 2000; **18**(4): 289-299. - National Cancer Institute. Register of validated short dietary assessment instruments.In: National Institutes of Health, 2013. - 24. Eckel RH, Jakicic JM, Ard JD, Miller NH, Hubbard VS, Nonas CA et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular RiskA Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013. - 25. Dyson PA, Kelly T, Deakin T, Duncan A, Frost G, Harrison Z *et al.* Evidence-based nutrition guidelines for the prevention and management of diabetes: May 2011. In: UK D, (ed), 2011. - WHO/FAO. Diet, nutrition and the prevention of chronic diseases. In. Geneva: World Health Organisation, 2002. - 27. Konrad TR, Link CL, Shackelton RJ, Marceau LD, von dem Knesebeck O, Siegrist J et al. It's About Time: Physicians' Perceptions of Time Constraints in Primary Care Medical Practice in Three National Healthcare Systems. Med. Care 2010; 48(2): 95-100 - 28. Bailey RL, Miller PE, Mitchell DC, Hartman TJ, Lawrence FR, Sempos CT *et al.*Dietary screening tool identifies nutritional risk in older adults. *Am. J. Clin. Nutr.*2009; **90**(1): 177-183. - 29. Gans KM, Risica PM, Wylie-Rosett J, Ross EM, Strolla LO, McMurray J *et al*. Development and Evaluation of the Nutrition Component of the Rapid Eating and Activity Assessment for Patients (REAP): A New Tool for Primary Care Providers. *J. Nutr. Educ. Behav.* 2006; **38**(5): 286-292. - 30. Ling AM, Horwath C, Parnell W. Validation of a short food frequency questionnaire to assess consumption of cereal foods, fruit and vegetables in Chinese Singaporeans. *Eur. J. Clin. Nutr.* 1998; **52**(8): 557-564. - 31. Peters JR, Quiter ES, Brekke ML, Admire J, Brekke MJ, Mullis RM *et al.* The eating pattern assessment tool: A simple instrument for assessing dietary fat and cholesterol intake. *J. Am. Diet. Assoc.* 1994; **94**(9): 1008-1013. - 32. Banna JC, Vera Becerra LE, Kaiser LL, Townsend MS. Using Qualitative Methods to Improve Questionnaires for Spanish Speakers: Assessing Face Validity of a Food Behavior Checklist. *J. Am. Diet. Assoc.* 2010; **110**(1): 80-90. - 33. Cade J, Thompson R, Burley V, Warm D. Development, validation and utilisation of food-frequency questionnaires a review. *Public Health Nutr.* 2002; **5**(04): 567-587. - 34. Gleason PM, Harris J, Sheean PM, Boushey CJ, Bruemmer B. Publishing Nutrition Research: Validity, Reliability, and Diagnostic Test Assessment in Nutrition-Related Research. *J. Am. Diet. Assoc.* 2010; **110**(3): 409-419. - 35. Block G, Hartman AM. Issues in reproducibility and validity of dietary studies. *The American Journal of Clinical Nutrition* 1989; **50**(5): 1133-1138. - 36. Freedman LS, Commins JM, Moler JE, Arab L, Baer DJ, Kipnis V et al. Pooled Results From 5 Validation Studies of Dietary Self-Report Instruments Using Recovery Biomarkers for Energy and Protein Intake. Am. J. Epidemiol. 2014; 180(2): 172-188. - 37. Kaaks RJ. Biochemical markers as additional measurements in studies of the accuracy of dietary questionnaire measurements: conceptual issues. *The American Journal of Clinical Nutrition* 1997; **65**(4): 1232S-1239S. - 38. Arab L, Akbar J. Biomarkers and the measurement of fatty acids. *Public Health Nutr*. 2002; **5**(6a): 865-871. - 39. Paxton AE, Strycker LA, Toobert DJ, Ammerman AS, Glasgow RE. Starting The Conversation: Performance of a Brief Dietary Assessment and Intervention Tool for Health Professionals. *Am. J. Prev. Med.* 2011; **40**(1): 67-71. - 40. Willett WC (ed) *Nutritional Epidemiology 2nd edition*. Oxford University Press Inc.: New York, 1998. - 41. Cade JE, Burley VJ, Warm DL, Thompson RL, Margetts BM. Food-frequency questionnaires: a review of their design, validation and utilisation. *Nutrition Research Reviews* 2004; **17**(01): 5-22. - 42. Wakimoto P, Block G, Mandel S, Medina N. Development and reliability of brief dietary assessment tools for Hispanics. *Prev. Chronic. Dis.* 2006; **3**(3): A95. - 43. Townsend MS, Sylva K, Martin A, Metz D, Wooten-Swanson P. Improving Readability of an Evaluation Tool for Low-income Clients Using Visual Information Processing Theories. *J. Nutr. Educ. Behav.* 2008; **40**(3): 181-186. - 44. Banna JC, Townsend MS. Assessing factorial and convergent validity and reliability of a food behaviour checklist for Spanish-speaking participants in US Department of Agriculture nutrition education programmes. *Public Health Nutr.* 2011; **14**(7): 1165-1176. - 45. Kristal AR, Abrams BF, Thornquist MD, Disogra L, Croyle RT, Shattuck AL *et al.*Development and validation of a food use checklist for evaluation of community nutrition interventions. *Am. J. Public Health* 1990; **80**(11): 1318-1322. - 46. Birkett NJ, Boulet J. Validation of a Food Habits Questionnaire: Poor Performance in Male Manual Laborers. *J. Am. Diet. Assoc.* 1995; **95**(5): 558-563. - 47. Spoon MP, Devereux PG, Benedict JA, Leontos C, Constantino N, Christy D *et al.*Usefulness of the Food Habits Questionnaire in a Worksite Setting. *J. Nutr. Educ. Behav.* 2002; **34**(5): 268-272. - 48. Kristal AR, Curry SJ, Shattuck AL, Feng Z, Li S. A Randomized Trial of a Tailored, Self-Help Dietary Intervention: The Puget Sound Eating Patterns Study. *Prev. Med.* 2000; **31**(4): 380-389. - 49. Kristal AR, Shattuck AL, Patterson RE. Differences in fat-related dietary patterns between black, Hispanic and white women: results from the Women's Health Trial Feasibility Study in Minority Populations. *Public Health Nutr.* 1999; **2**(03): 253-262. - 50. O'Reilly SL, McCann LR. Development and validation of the Diet Quality Tool for use in cardiovascular disease prevention settings. *Aust. J. Prim. Health* 2012; **18**(2): 138-147. - 51. Bailey RL, Mitchell DC, Miller CK, Still CD, Jensen GL, Tucker KL *et al.* A dietary screening questionnaire identifies dietary patterns in older adults. *J. Nutr.* 2007; **137**(2): 421-426. - 52. Townsend MS, Kaiser LL, Allen LH, Joy AB, Murphy SP. Selecting items for a food behavior checklist for a limited-resource audience. *J. Nutr. Educ. Behav.* 2003; **35**(2): 69-77. - 53. Greenwood JLJ, Murtaugh MA, Omura EM, Alder SC, Stanford JB. Creating a Clinical Screening Questionnaire for Eating Behaviors Associated with Overweight and Obesity. *The Journal of the American Board of Family Medicine* 2008; **21**(6): 539-548. - 54. Fernandez S, Olendzki B, Rosal MC. A Dietary Behaviors Measure for Use with Low-Income, Spanish-Speaking Caribbean Latinos with Type 2 Diabetes: The Latino Dietary Behaviors Questionnaire. *J. Am. Diet. Assoc.* 2011; **111**(4): 589-599. - 55. Rifas-Shiman SL, Willett WC, Lobb R, Kotch J, Dart C, Gillman MW. PrimeScreen, a brief dietary screening tool: reproducibility and comparability with both a longer food frequency questionnaire and biomarkers. *Public Health Nutr.* 2001; **4**(2): 249-254. - 56. Schroder H, Fito M, Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J *et al.* A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. *J. Nutr.* 2011; **141**(6): 1140-1145. - 57. Van Assema P, Brug J, Kok G, Brants H. The reliability and validity of a Dutch questionnaire on fat consumption as a means to rank subjects according to individual fat intake. *Eur. J. Cancer Prev.* 1992; **1**(5): 375-380. - 58. Beliard S, Coudert M, Valero R, Charbonnier L, Duchene E, Allaert FA *et al*. Validation of a short food frequency questionnaire to evaluate nutritional lifestyles in hypercholesterolemic patients. *Ann. Endocrinol. (Paris)* 2012; **73**(6): 523-529. - 59. Dobson AJ, Blijlevens R, Alexander HM, Croce N, Heller RF, Higginbotham N *et al.*Short fat questionnaire: a self-administered measure of fat-intake behaviour. *Aust. J. Public Health* 1993; **17**(2): 144-149. - 60. Kraschnewski JL, Gold AD, Gizlice Z, Johnston LF, Garcia BA, Samuel-Hodge CD et al. Development and Evaluation of a Brief Questionnaire to Assess Dietary Fat Quality in Low-income Overweight Women in the Southern United States. *J. Nutr. Educ. Behav.*; (0). - 61. Heller RF, Tunstall Pedoe HD, Rose G. A simple method of assessing the effect of dietary advice to reduce plasma cholesterol. *Prev. Med.* 1981; **10**(3): 364-370. - 62. Taylor A, Wong H, Wish K, Carrow J, Bell D, Bindeman J *et al.* Validation of the MEDFICTS dietary questionnaire: A clinical tool to assess adherence to American Heart Association dietary fat intake guidelines. *Nutr. J.* 2003; **2**(1): 4. - 63. Teal CR, Baham DL, Gor BJ, Jones LA. Is the MEDFICTS rapid dietary fat screener valid for premenopausal African-American women? *J. Am. Diet. Assoc.* 2007; **107**(5): 773-781. - 64. Mochari H, Gao Q, Mosca L. Validation of the MEDFICTS dietary assessment questionnaire in a diverse population. *J. Am. Diet. Assoc.* 2008; **108**(5): 817-822. - 65. Francis H, Stevenson R. Validity and test–retest reliability of a short dietary questionnaire to assess intake of saturated fat and free sugars: a preliminary study. *J. Hum. Nutr. Diet.* 2013; **26**(3): 234-242. - 66. Godin G, Belanger-Gravel A, Paradis A-m, Vohl M-C, Perusse L. A simple method to assess fruit and vegetable intake among obese and non-obese individuals. *Canadian Journal of Public Health. Revue Canadienne de Sante Publique* 2008; **99**(6): 494-498. - 67. Kristal AR, Vizenor NC, Patterson RE, Neuhouser ML, Shattuck AL, McLerran D. Precision and Bias of Food Frequency-based Measures of Fruit and Vegetable Intakes. *Cancer Epidemiology Biomarkers & Prevention* 2000; **9**(9): 939-944. - 68. Mainvil LA, Horwath CC, McKenzie JE, Lawson R. Validation of brief instruments to measure adult fruit and vegetable consumption. *Appetite* 2011; **56**(1): 111-117. - 69. Francis H, Stevenson R. Validity and test–retest reliability of a short dietary questionnaire to assess intake of saturated fat and free sugars: a preliminary study. *J. Hum. Nutr. Diet.* 2012: n/a-n/a. - 70. Kim DJ, Holowaty EJ. Brief, validated survey instruments for the measurement of fruit and vegetable intakes in adults: a review. *Prev. Med.* 2003; **36**(4): 440-447. - 71. Atkinson G, Nevill A. Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. *Sports Med.* 1998; **26**(4): 217-238. - 72. Bland JM, Altman DG. Measuring agreement in method comparison studies. *Stat. Methods Med. Res.* 1999; **8**(2): 135-160. - 73. Whitton C, Nicholson SK, Roberts C, Prynne CJ, Pot GK, Olson A *et al.* National Diet and Nutrition Survey: UK food consumption and nutrient intakes from the first year of the rolling programme and comparisons with previous surveys. *Br. J. Nutr.* 2011; **106**(12): 1899-1914. #### Figure Legend Figure 1: Prisma diagram. Brief dietary questionnaires