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Abstract
Understanding how laser light scatters from realistic mirror surfaces is crucial for the design,
commissioning and operation of precision interferometers, such as the current and next
generation of gravitational-wave detectors. Numerical simulations are indispensable tools for this
task but their utility can in practice be limited by the computational cost of describing the
scattering process. In this paper we present an efficient method to significantly reduce the
computational cost of optical simulations that incorporate scattering. This is accomplished by
constructing a near optimal representation of the complex, multi-parameter 2D overlap integrals
that describe the scattering process (referred to as a reduced order quadrature). We demonstrate
our technique by simulating a near-unstable Fabry–Perot cavity and its control signals using
similar optics to those installed in one of the LIGO gravitational-wave detectors. We show that
using reduced order quadrature reduces the computational time of the numerical simulation from
days to minutes (a speed-up of 2750» )́ while incurring negligible errors. This significantly
increases the feasibility of modelling interferometers with realistic imperfections to overcome
current limits in state-of-the-art optical systems. While we focus on the Hermite–Gaussian basis
for describing the scattering of the optical fields, our method is generic and could be applied with
any suitable basis. An implementation of this reduced order quadrature method is provided in the
open source interferometer simulation software FINESSE.

Keywords: simulation, scattering, gaussian beams, reduced order quadrature

(Some figures may appear in colour only in the online journal)

1. Introduction

Laser interferometers have long been an exceptional tool for
enabling high-precision measurements. With ever increasing
demands on their performance, new techniques and tools have
been developed to design and build the next-generation of
instruments. This has especially been true in the development
of gravitational-wave detectors over the last several decades
[1–4]. Such ground-based gravitational-wave detectors are
based on a Michelson interferometer and are enhanced with
Fabry–Perot cavities. Detecting gravitational waves is still

one of the major challenges in experimental physics and the
interferometers used include numerous new optical technol-
ogies to reach unprecedented displacement sensitivities
beyond 10 m Hz19- . At the same time these instruments
are exploring a new regime of coupling between light and
macroscopic objects at the quantum level [5].

Some of these detectors are currently being upgraded to
have a ten-fold increase in sensitivity using a much higher
circulating power [6, 7]. To achieve their target performance
the detectors undergo several years of commissioning, during
which the interferometers are carefully tested and improved
towards their designed operational state. Numerical simula-
tions are important tools to diagnose causes of any unex-
pected behavior seen during commissioning; to suggest
solutions to potential problems and for advising the design of
detector upgrades. Hence, there is a long history of
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developing and using dedicated optical simulation tools for
the commissioning and design of gravitational-wave detec-
tors [8, 9, 11].

One of the key aspects for the current instruments is the
high circulating laser power, up to hundreds of kiloWatts,
required for a broadband reduction of shot-noise. It has been
recognized for some time that the thermal deformations of the
optics due to spurious absorption can degrade the perfor-
mance of the interferometers [12]. Numerical models have
been used extensively in the investigation of such problems
and in the development of mitigating solutions (for example
[13, 14]). Thermally induced distortions and other effects
related to the laser beam shape are still limiting factors of the
instruments today and are concerns for the design of future
detectors [15]. Furthermore, similar effects can limit the
performance of other optical precision measurements such as
optical clocks [16] or the optical readout of atomic systems
[17]. Mitigation strategies for beam shape distortions in
complex interferometers are actively being developed and
require accurate numerical models for their design and
development.

Initially, the simulation tools for investigating distorted
beams used a grid-based field description. Beam distortions
can also be modeled effectively using an expansion into
spatial cavity eigenmodes [18], such as Hermite–Gauss
modes. The interaction of the beam shape with a distorted
optical surface often requires the computation of a scattering
matrix based on measured or simulated profiles of the dis-
torted surface. This is always true for mode-based simulation
programs but is also required for grid-based codes when
specific shapes of the beam are important, for example, for the
investigations of parametric instabilities [19, 20]. If this
matrix has to be re-generated, for example when the effects of
a change of a surface shape is being investigated, this element
of the computation can dominate the total time required for
the entire simulation. A prominent example is that when the
circulating laser power within the LIGO interferometers
thermally warps the mirror surfaces changing the shape of the
laser beams and requiring a re-calculation of many scattering
matrices. Including this effect can increase the computation
time from minutes to days.

Some of us are providing numerical simulation support
for the commissioning of the LIGO interferometers [21]. We
use our own simulation tool FINESSE [22] and are maintaining
parameter files for the detectors [23]. Commissioning tackles
the unexpected behavior of the interferometers and must take
into account the sometimes rapid progress of the experimental
setup. Therefore support provided with numerical models
must fulfil two criteria: (a) we must be able to accurately
model the current experimental setup in the presence of dis-
tortions and deviations from the design and (b) we must be
able to provide a quick response to new questions to inform
the management of the activities on site in real time. FINESSE is
a frequency-domain tool, using Hermite–Gauss modes to
describe beam distortions and is thus ideally suited as a rapid
and accurate tool.

Our investigations with numerical tools typically consist
of a sequence of different subtasks, sometimes using different

tools, alternating with an expert review of intermediate or
preliminary results. This is a very different pattern of tasks to
those that benefit from a computer cluster or super computer.
Instead, our work requires lightweight and flexible tools with
computing times up to minutes or hours. Because of this,
strategies to ameliorate the run time of simulations are of high
importance to provide fast diagnosis of unexpected behavior;
to allow the parameter space of the simulations to be probed
exhaustively; to improve the resolution of simulations at a
fixed run-time, and to allow simulations to be run on less
powerful and cheaper hardware.

In this paper we present a new approach that reduces the
computational time of simulations based on modal models by
several orders of magnitude. We specifically target the com-
putational cost of computing scattering matrices for optical
simulations. Our approach is based on a near-optimal for-
mulation of the integrals required to compute the scattering
matrices, known as a reduced order quadrature (ROQ) [24].
The ROQ has already been applied in the context of astro-
nomical data analysis with LIGO [25] where the repeated
computation of quantities similar to the scattering matrix
dominate the run time of the analysis codes. Crucially, the
ROQ is designed to provide huge improvements to compu-
tational efficiency while maintaining computational precision.

The ROQ can be regarded as a type of near-optimal,
application specific, downsampling of the integrands needed
to compute the integrals for the scattering matrices [24]. It is
analogous to Gaussian quadrature, but whereas Gaussian
quadrature is designed to provide exact results for poly-
nomials of a certain degree, the ROQ produces nearly-exact
results for arbitrary parametric functions. Importantly, we are
able to place tight error bounds on the accuracy of the ROQ
for a particular application [24] making it an ideal technique
to speed up costly integrals. It exploits an offline/online
methodology in which we recast the expensive integrals used
to compute scattering matrices into a more computationally
efficient form in the ‘offline’ stage. This is then used for the
rapid ‘online’ evaluation of the scattering matrices. The off-
line stage can itself be computationally expensive, however it
need only be performed once and is easily parallelized. The
data computed in the offline stage—that is needed by the
ROQ—can be stored and shared for particular use cases in the
online stage so that the offline cost does not need to be fac-
tored in at run time.

We describe the algorithm in a general form and report
on the implementation and performance of this method in an
example task for the LIGO interferometers. The imple-
mentation of the method described in this article is available
as open source as part of the FINESSE source code and the
Python based package PYKAT [26], which will also contain the
offline computed data to enable others to model Advanced
LIGO like arm cavities. Our particular implementation here is
used to provide a simple, real-word example. However, the
algorithm can be easily implemented in other types of simu-
lation tools, for example, time domain simulations or grid
based tools (also known as FFT simulations) that compare
beam shapes. In all cases our algorithm can significantly
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reduce the computation time for evaluating overlap integrals
of Gaussian modes with numerical data.

The paper is outlined as follows: in section 2 we give an
overview of the paraxial description of the optical eigen-
modes and scattering into higher order modes. In section 3 we
provide the mathematical background and algorithm for
producing the ROQ. Section 3 heavily relies on an additional
mathematical technique known as the ‘empirical interpolation
(EI) method’ [27]. We assume no prior knowledge of this and
provide the main details and results necessary for the ROQ.
Section 4 then highlights an exemplary case to demonstrate
our method for modeling near-unstable optical cavities.
Finally in section 5 the computational performance of our
method is analysed.

2. Higher-order optical modes

Gravitational wave detectors are constructed of multiple
optical cavities based on a Michelson interferometer. The
circulating laser beams in such an optical setup is well
described by the the paraxial Gaussian eigenmodes of a
spherical cavity in the Hermite–Gaussian (HG) basis; an
efficient basis for describing the spatial properties of a laser
beam in the transverse plane to the propagation axis and any
perturbations to it [28]. The complex transverse spatial
amplitude of these HG modes is given by:
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Here n defines the order of the Hermite polynomials Hn in the
x axis and m for the y, wx and wy are the beam spot sizes in the
x and y directions, k is the wavenumber of the laser light,

q qq ,x y{ }= are the complex beam parameters in the x and y
directions, and q q z 00 ( )= = the beam parameter at the

beam waist. The shape of the Gaussian mode is fully defined
by the wavelength of the light λ and the beam parameter
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where zx is the distance from the waist, z xR, is the Rayleigh
range, w x0, is the size of the waist and 1064 nml = is the
wavelength of the Nd:YAG laser used in current GW
detectors. The same set of parameters exists for qy. The order
of the optical mode is n m = + and individual modes are
typically referred to as TEMnm. Up to an order  there are

N
1

2
1 2 4HOM ( ) ( )( ) ( )  = + +

higher order optical modes. A laser field with a single optical
frequency component ω can be expanded into a beam basis
whose shape is described by q as:

E x y t a u x yq q, , ; , ; e 5
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where anm is a complex value describing the amplitude and
phase of a mode TEMnm and max is the maximum order of
modes included in the expansion.

2.1. Scattering into higher-order modes

When a field interacts with an optical component its mode
content is typically changed. Here we define scattering as the
relationship between the mode content of the outgoing beams
ā with a beam shape q, and the mode content of the incoming
beam ā¢ described with q¢. Mathematically this is simply
a ka¯ ˆ ¯= ¢ where k̂ is known as the scattering matrix. Now
consider the spatial profile of a beam reflected from on an
imperfect optic E x y A x y E x yq q, ; , , ;in( ) ( ) ( )¢ ¢ = ¢ , where Ein

is the incident beam and A x y,( ) is complex function
describing the perturbation it has undergone. For example, on
reflection a beam will be clipped by the finite size of the
mirror x y,( )a and reflected from a surface with height var-
iations z x y,( ). Thus, both the amplitude and phase of the
beam will be affected and A x y x y, , e k z x yi2 ,( ) ( ) ( )a= . An
example of the measured surface height variations present on

Figure 1. Measured surface distortions for the mirrors currently installed in the Livingston LIGO site (shown here are the distortions of the
test masses before they were coated). ETM09 and ITM08 are installed in the x-arm and ETM07 and ITM04 in the y-arm [29]. These
measurements have been processed to remove the overall mirror curvatures, offset and tilts [30].
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LIGO test mass mirrors can be seen in figure 1 [29]. The
mode content of the outgoing beam E x y q, ;( ) is computed
by projecting E¢ into the outgoing beam basis q. For any
incoming HOM un m¢ ¢ the amount of outgoing unm can be
computed via an overlap integral, this complex value is
known as a coupling coefficient:

k q q q q A

x A x y y x y

, , , ;

; , ; d d , 6

nm n m x x y y

x y

, ( )
( )( )∬ ( ) ( ) l l
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¥

where the integral kernels x;x( ) l and y;y( ) l are
given by:

x u x q u x q; , , , 7x n x n x( )( ) ( ) ( )* l = ¢¢

y u y q u y q; , , , 8y m y m y( )( ) ( ) ( )* l = ¢¢

and the parameter vectors are given by n n q q, , ,x x x( )l = ¢ ¢
and m m q q, , ,y y y( )l = ¢ ¢ . There are two general cases when

computing (6): q q¹ ¢ which we refer to as mode-mismatched
and q q= ¢ as mode-matched.

Computing the scattering matrix k̂ requires evaluating the
integral(6) for each of its elements. This matrix is of size
N NHOM HOM´ . If the couplings between the modes up to and
including order are considered then the number of elements
in the scattering matrix k̂ is:
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and the computational cost of evaluating this many integrals
can be very expensive. In our experience [21, 30] a typical
LIGO simulation task involving HOMs can be performed
with 6 to 10 = . While some cases, such as those that
include strong thermal distortions or clipping, require a higher
maximum order to converge on a result

In simple cases where A x y, 1( ) = or A x y,( ) represents
a tilted surface, analytical results are available for both mode
matched and mismatched cases [31, 32]. In general however
A x y,( ) is of no particular form and the integral in (6) must be
evaluated numerically. It is possible to split multiple distor-
tions into separate scattering matrices
A x y A x y B x y, , ,( ) ( ) ( ) and the coupling coefficients
become a product of two separate matrices:

k A B
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where q̃ is an expansion beam parameter which we are free to
choose. Thus our scattering matrix becomes
k k kq q q q q q, , ,A B
ˆ ( ) ˆ ( ˜ ) ˆ ( ˜ )¢ = ¢ . By choosing q q˜ = or q¢ we
can set the mode-mismatching to be in either one matrix or
the other. This is ideal, as a mode-matched k̂ is a Hermitian
matrix whose symmetry can be exploited to only compute one
half of the matrix. By ensuring that this matrix also contains
any distortions that require numerical integration the
computational cost can be nearly halved. It is then possible

to benefit from the fast analytic solutions of (6) [31, 32] to
account for mode-mismatching in the other matrix.

3. Efficiently computing scattering matrices:
integration by interpolation

For a discretely sampled mirror map with L sample points in
both the x and y directions, the coupling coefficient (6) can be
approximated using a composite Newton–Cotes quadrature
rule

k q q q q A
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where W is an L×L matrix describing the 2D composite
Newton–Cotes quadrature weights over the area of the map.
This weight matrix is found by taking the outer product of the
1D composite Newton–Cotes quadrature weights [33] in both
x and y directions.

When L2 is large, as in the cases of interest for this paper,
there are two major bottlenecks: (i) evaluation of the kernel at
each discrete x y,k k and, (ii) evaluation of the double sum.
With a set of M L basis elements that accurately spans the
kernel space, it is possible to replace the double sum (11) with
a ROQ rule (20) containing only M2 terms, reducing the
overall cost of the by a factor of L M2 2~ , provided the kernel
can be directly evaluated.

The ROQ scheme is implemented in three steps. The first
two are carried out offline, while the final, mirror-map-
dependent step is performed in preparation for the simula-
tions; once per map. The steps are as follows: Step 1—con-
struct a reduced basis (offline); a set of M basis elements
whose span describes the kernel space. Step 2—Construct an
interpolant using the basis (offline) by requiring it to exactly
match any kernel at M carefully chosen spatial subsamples
Xk k

M
1{ } = [34] (and similarly for y). Step 3—Use the interpolant

to replace the inner product evaluations in (11) with the
ROQ(20) (online).

3.1. The EI method

The EI method is an efficient technique performing this off-
line/online procedure and has been demonstrated in the
context of astronomical data analysis with LIGO [25]. Pro-
vided the kernels vary smoothly with xl over x and yl over y
then there exists a set of kernels at judiciously chosen para-
meter values that represent any kernel—and hence any int-
egral (6)—for an arbitrary parameter value. This set of kernels
constitutes the reduced basis: given any parameter value xl or

yl we can find the best approximation to the kernel at xl or
yl as linear combination of the reduced basis.

The ability to exploit the reduced basis to quickly eval-
uate (6) depends on being able to find an affine para-
meterization of the integral kernels. In general, the kernels do
not admit such a parameterization. However, the EI method
finds a near-optimal affine approximation whose accuracy is
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bounded by the accuracy of the reduced basis [24]. This affine
approximation is called the empirical interpolant. The spatial
integrals over x yd d in (6) will only depend on the reduced
basis (and hence only have to be computed once for a given
mirror map) and the parameter variation is handled by the
empirical interpolant at a reduced computational cost.

The EI method exploits the offline/online computational
concept where we decompose the problem into a (possibly
very) expensive offline part which affords a cheap online part.
In this case, the expensive offline part is in finding the
reduced basis and constructing the empirical interpolant.
Once the empirical interpolant is found then we use it for the
fast online evaluation of (6). One of the main reasons why the
empirical interpolant is used for fast online evaluation of (6)
is due to its desirable error properties that makes it superior to
other interpolation methods, such as polynomial interpolation.
In addition, the empirical interpolant avoids many of the
pitfalls of high-dimensional interpolation that we would
otherwise encounter (see, e.g. [35]).

3.2. Affine parameterization

We would like the kernel to be separable in the mode para-
meters ,x y( )l l and spatial position (x,y). For these reasons
we will look for a representation of the kernel that has the
following form:
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The functions a and f are the same irrespective of whether the
kernel is a function of x or y due to the symmetries of the
Hermite–Gauss modes. Using the affine parameterization, the
coupling coefficient (6) is:
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This affine parameterization thus allows us to compute all
the parameter-dependent pieces efficiently in the online pro-
cedure as all the x−y integrals are performed only once for a
given mirror map. In general the kernel will not admit an
exact affine decomposition as in (12). Using the EI method,
the approximation to the kernels will have the form:
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The sum is over the reduced basis elements ei and coefficients
ci that contain the parameter dependence.

Given a basis ei(x), the ci x( )l in (14) are the solutions to
the M-point interpolation problem whereby we require the
interpolant to be exactly equal to the kernel at any parameter
value xl at a set of interpolation nodes X i
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Substituting (17) into (14), the empirical interpolant is:

x X B x; ; , 18M x
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and is independent of xl . The special spatial points Xk k
M

1{ } = ,
selected from a discrete set of points along x, as well as the
basis can be found using algorithm 1 which is described in the
next section.

We note that the kernels x;x( ) l appear explicitly on
the right-hand side of (18). Because of this, we have to be
able to directly evaluate the kernel at the EI nodes Xk k

M
1{ } = .

Fortunately this is possible in this case as we have closed
form expressions for the kernels. If the kernels were solutions
to ordinary or partial differential equations that needed to be
evaluated numerically then using the empirical interpolant
becomes more challenging, however this is not required here
(see, e.g., [34, 36–39] for applications of the EI method to
ordinary and partial differential equation solvers).

3.3. The EI method algorithm (offline)

The EI method algorithm solves (18) for arbitrary xl . While it
would be possible in principle to use arbitrary basis functions,
such as Lagrange polynomials which are common in inter-
polation problems [40, 41], we take a different approach that
uses only the information contained in the kernels themselves.
We will take as our basis a set of M judiciously chosen
kernels sampled at points on the parameter space x

i
i
M

1{ }l = ,
where M is equal to the number of basis elements in (18).
Because the kernels vary smoothly with xl a linear combi-
nation of the basis elements will give a good approximation to

x;x( ) l for any parameter value [34]. We can then build an
interpolant using this basis by matching x;x( ) l to the span
of the basis at a set of M interpolation nodes Xk k

M
1{ } = . The EI

method algorithm, shown in algorithm 1, provides both the
basis and the nodes.

The EI method algorithm uses a greedy procedure to
select the reduced basis elements and interpolation nodes.
With the greedy algorithm, the basis and interpolant are
constructed iterative whereby the interpolant on each iteration
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is optimized according to an appropriate error measure. This
guarantees that the error of the interpolant is on average
decreasing and—as we show in appendix B—that the inter-
polation error decreases exponentially quickly. We follow
algorithm 3.1 of [42], which is outlined in appendix A.

3.4. Reduced order quadrature (online)

Substituting the empirical interpolant (18) into (11) gives the
ROQ,

k q q q q A

X Y

, , , ;

; ; , 20

nm n m x x y y

k

M

l

M

kl x k y l

,

1 1

( )
( )( ) ( ) å å l lw

¢ ¢

=

¢ ¢

= =

with the ROQ weights klw given by:

W A x y B x B y, . 21kl
i

L

j

L

ij i j k i l j
1 1

( ) ( ) ( ) ( )ååw =
= =

The ROQ form of the coupling coefficient enables fast online
evaluations of the coupling coefficients. Note that because
only M2 operations are required to perform the double sum
(20) we expect that the ROQ is faster than the traditional L2-
term Newton–Cotes integration by a factor of L M2 2

provided that M L< . We expect in practice that M L
due to the exponential convergence of the EI method.

The number of operations in (20) can be compressed
further still due to the separability of the empirical interpolant
(18) into beam parameters xl and spatial position x that
allows us to exploit the spatial symmetry in the HG modes.
The HG modes exhibit spatial symmetry/antisymmetry under
reflection about the origin. Hence it is useful to split the x and
y dimensions into four equally sized quadrants and perform
the ROQ in each quadrant separately. For example, when a
HG mode is symmetric between two or four of the quadrants
then only two or one set(s) of coefficients X;x k k

M
1{ ( )} l =

needs to be computed (and likewise for Y;y l l
M

1{ ( )} l = ).
This will speed up the computation of the ROQ(20) by up
to a factor of four. Hence, in practice we need only build the
empirical interpolant over one half plane for either positive
or negative values of x (or equivalently y); we derive the
basis spanning the second half-plane by reflecting the basis
about the origin. To ensure that this symmetry is exploitable
the data points of the map must be distributed equally and
symmetrically about the beam axis ( x y, 0, 0( ) ( )= ). Those
points that lie on the x and y axes must also be weighted to
take into account they contribute to multiple quadrants
when the final sum is computed. In the cases where the
map data points are not correctly aligned we found that
bilinear interpolation of the data to retrieve symmetric points
did not introduce any significant errors. However, higher-
order interpolation methods can introduce artefacts to the
map data.

4. Exemplary case: near-unstable cavities and
control signals

There are several scenarios when modeling tools can benefit
heavily from the ROQ method, of particular interest are cases
where the simulation time is dominated by the integration
time of the mirror surface maps. One such example is an
investigation into the feasibility of upgrading the LIGO
interferometers with near-unstable arm cavities. The stability
of a Fabry–Perot cavity is determined by its length L and
radius of curvature (RoC) of each of its mirrors and can be
described using the parameter::

g L Rc L Rc1 1 . 22itm etm( )( ) ( )=

with g0 1  defining the stable region.
Near-unstable cavities are of interest because they result

in larger beam sizes on the cavity mirrors (see also figure 3)
which reduces the coating thermal noise [12], one of the
limiting noise sources of the detector. One negative aspect of
such near-unstable cavities is that the transverse optical mode
separation frequency approaches zero as g 0 or 1. The
mode separation frequency determines the difference in
resonance frequency of higher-order modes with respect to
the fundamental mode. Thus with a lower separation fre-
quency any defect in the cavity causing scattering into HOMs
is suppressed less and can contaminate control signals for that
cavity and couple extra noise into the main interferometer
output signal. Another potential problem is additional clip-
ping or scattering of the beam on the mirrors due to the larger
beam sizes which can result in increased roundtrip losses of
the arm cavity. The optimal cavity design must be determined
as a trade-off between these degrading effects and the
reduction in coating thermal noise. This is a typical task
where a numerical model can be employed to search the
parameter space. In this case each point in that parameter
space corresponds to a different beam size in the cavity which
forces a re-computation of the scattering matrices on the
mirrors. Thus the new algorithm described in this paper
should yield a significant reduction in computing time.

In this section we briefly summarize the results from the
simulations and in the following section we provide the
details of setting up the model and give an analysis of the
performance of the ROQ algorithm. We have implemented
the ROQ integration in our open-source simulation tool
FINESSE and use the official input parameter files for the LIGO
detectors [23]. Below we show the preliminary investigation
of the behavior of a single Advanced LIGO like arm cavity
with a finesse of 450 where the mirror maps for the mirrors
ETM08 and ITM04 were applied to the high reflective (HR)
surfaces. The nominal RoCs of ETM08 and ITM04 are
1934 m and 2245 m respectively [29]. Note that we do not
report the scientific results of the simulation task which will
be published elsewhere. This example is representative for a
class of modeling performed regularly for the LIGO com-
missioning and design and provides us with a concrete and
quantitive setup to demonstrate the required steps to use the
ROQ algorithm.
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Modeling the LIGO cavity for differing stabilities
involves varying the RoC of both the ITM and ETM. The
resulting change in w(z) at each surface means the scattering
matrices will need to be recomputed for each state we choose.
To view the HOM content in the cavity created by the scat-
tering a cavity scan can be performed, displacing one of the
cavity mirrors along the cavity axis on the order of the
wavelength of the laser light, 1064 nml = , to change the
resonance condition of the cavity. We have performed the
simulations using 10 = with Newton–Cotes integration
and our ROQ method. The results for cavity scans at different
RoCs are shown in figure 2(a). The dominant mode is the
fundamental TEM00 whose resonance defines the zero tuning,

the power in the TEM00 mode has been removed from this
plot to better show the lower power HOM content. For more
stable cavities (at the bottom of the plot in figure 2(a)) the
HOMs are well separated and not resonant at the same time as
the TEM00. As the RoC is increased, the stability is reduced
and the HOMs can be seen to converge and eventually
become resonant at a tuning of 0. At a stability of g 0.98»
the cavity mode begins to break down significantly and many
modes become resonant. The effect of this on a sensing and
control signal used for a Pound–Drever–Hall control system
is shown in figure 4, where for increasingly unstable cavities
the error signal becomes degraded, showing an offset to the
nominal zero crossing, a reduced slope and overall asym-
metry around the center. The complete investigation into the
feasibility of such cavities is beyond the scope of this paper, it
includes amongst other issues the quantitative comparison of
the control noise from the degradation of the control signals
with the reduced thermal noise. The simulation task described
above is sufficient to provide a test case for our ROQ method.

5. Application and performance of simulations
using ROQ

In this section we provide a detailed and complete recipe for
setting up and using the ROQ for the LIGO example, using
FINESSE and PYKAT, and discuss the performance, in terms of
speed and accuracy, of our method. The description should be
sufficient for the reader to implement our method for their

Figure 2. A modeled LIGO cavity power scan as its ITM and ETM mirrors radius of curvature of the mirrors of the ITM and ETM are varied
to make the cavity increasingly more unstable. The simulation was ran using 10max = and includes clipping from the finite size of the
mirrors and surface imperfections from the ETM08 and ITM04 maps. Figure 2(a) shows how the amount of power scattering into HOM
changes as g 1 . Also visible here is the reduction in the mode separation frequency with increasing instability. The contribution of the
TEM00 mode has been removed to make the HOM content visible. The reduced basis was built for mode order 14 = , to reduce errors, see
figure 7. The difference in this result when using ROQ compared to Newton–Cotes is shown in 2(b).

Figure 3. The beam size on the ITM and ETM of a LIGO cavity as a
function of cavity stability parameter as the mirror RoCs are tuned.
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own optical setup. In this section we include the costly ‘off-
line’ procedure of building the empirical interpolant for
completeness. As part of the ongoing code development of
FINESSE and PYKAT we intend to pre-generate the empirical
interpolants, suitable for a wide range of problems, so that the
typical user should not need to run the costly offline building
of the interpolant into their simulations.

5.1. Computing the ITM and ETM empirical interpolants

Firstly the range of beam parameters for the simulation must
be determined. Once this is known a training set can be
constructed and the empirical interpolant can be computed.
The surface distortions that are of interest are those on the HR
surfaces of a LIGO arm cavity mirror. We will require two
empirical interpolants, one for the ITM HR surface and one
for the ETM HR surface due to the differing beam parameters
at each mirror. The beam parameter range that the training
sets should span are determined by varying the RoC of the
ITM and ETM to include the range of cavity stabilities which
we want to model. The beam parameter ranges are shown in
figure 5. The required ranges are w4.7 m 12.0 mm0< < for
ITM and ETM, and z2.11 km 2.20 km< < for the ITM and

z1.88 km 1.79 km- < < - for the ETM, up to a maximum
optical mode order of 20 = , Newton–Cotes degree of 6,
L=1199. For this example we fix the maximum tolerable
error of the empirical interpolant to 10 14 = - .

Using these ranges the method described in section 3.1
can be used to produce the empirical interpolants. The offline
computation of the basis can have significant computational
cost. For very wide parameter ranges the memory required to
store the training sets can quickly exceed that of typical
machines. For the above parameters, with 100 sample points
each in the w0 and z range, up to 14 = and 10 14 = -

approximately 7 GB of memory was required. Running this
method on machines with less memory is possible by storing
the training set on a hard drive using a suitable data storage
format such as HDF5 for access. Computation time of the

empirical interpolant is then limited by the read and write
times of the media. Using a MacBook pro 2012 model which
contains a 2.7 GHz Intel core i7 with 8 GB of RAM gen-
erating the ITM and ETM reduced basis and empirical
interpolant takes 4» h each. The number of elements in the
final reduced basis for the ITM and ETM were N=30 and
N=29 respectively. In figure 8 the convergence of the
empirical interpolant error with respect to the acceptable
empirical interpolant error. One can see that the empirical
interpolant error converges exponentially as described in
appendix B.

5.2. Producing the ROQ weights

Once the empirical interpolant has been computed for both
ITM and ETM HR surfaces the ROQ weights(21) can be
computed by convoluting the mirror maps with the inter-
polant. The surface maps that we have chosen are the mea-
sured surface distortions of the (uncoated) test masses
currently installed at the LIGO Livingston observatory,
shown in figure 1. The maps contain L 1200» samples and
we can expect a theoretical speed-up of
L N 1200 30 16002 2 2 2» = from using ROQ over New-
ton–Cotes. These maps include an aperture, , and the var-
iation in surface height in meters, z x y,( ). Thus to calculate
the HOM scattering on reflection from one of these mirrors
with (6) the distortion term is:

A x y x y, , e , 23kz x y2i ,( ) ( ) ( )( )=

where x y,( ) is 1 if x y 0.16 m2 2+ < and 0 otherwise,
and k is the wavenumber of the incident optical field.

Using (23) with equation (21) (with a Newton–Cotes rule
of the same degree the empirical interpolant was generated
with) the ROQ weights can be computed for each map shown
in figure 1. This computational cost is proportional to the
number of elements in the empirical interpolant, M, and the
number of samples in the map, L2. For the LIGO maps this
takes 10 s» on our 2012 MacBook Pro. The resulting ROQ
rule for the maps can be visualized as shown in figure 6: the
amplitude of the ROQ weights map out the aperture and the
phase of the weights varies for different maps because of the
different surface structure. We note that there are non-zero
ROQ weights associated with points in the region where the
mirror maps are zero outside the aperture of the mirror. While
this may be counter intuitive, it is a consequence of the fact
that the empirical interpolant nodes lie within the full x–y
plane and, that they are constructed without any knowledge of
the mirror maps: the weights still receive no contribution from
the region where A x y, 0( ) = as this region does not con-
tribute to the sum in (21). However, the ROQ uses informa-
tion about the kernels (7) over the entire region, including
where A x y, 0( ) = . The computation of these ROQ weights
need only be performed once for each map, unless the range
of beam parameters required for the empirical interpolant are
changed.

We verify that the process of generating the ROQ rule
has worked correctly by computing the scattering matrices
with ROQ and Newton–Cotes across the parameter space. We

Figure 4. The Pound–Drever–Hall error signal for the LIGO cavity
modelled in figure 2. A significant change in zero-crossing position
and shape can be seen as the stability of the cavity is
reduced (g 1 ).
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compute k q; ETM07ˆ ( ) with 10max = using ROQ and then
again using Newton–Cotes integration. Computing the rela-
tive error between each element of these two matrices the
maximum error can be taken for q values spanning the
requested q parameter range. Figure 9 shows how the final
error of the empirical interpolant, Ms , propagates into an error
in the scattering matrix. This shows the maximum (solid line)
and minimum (dashed line) errors for any element in the
scattering matrix between the two methods. From this it can
be seen that building a more accurate empirical interpolant
results in smaller maximum errors in the scattering matrix.
Now, using the most accurate reduced basis the maximum

relative error is shown in figure 7 over the q space, where the
white dashed box shows the boundaries of the parameters in
the training set. Overall the method successfully computed a
ROQ rule that accurately reproduced the Newton–Cotes
results for scattering up to 10 = . In should be notes that the
largest errors, e.g. as seen in figure 9, do not represent the full
parameter space but occur only at smallest z and largest w0. It
was also found that building a basis including a higher
maximum HOM, for example basis of order 14 for scattering
computations up to order 10, significantly improved the
accuracy of the ROQ. Using an reduced basis constructed for
order 14 rather than order 10 only increased the number of

Figure 5. Range of beam parameters needed to model a change in curvature from 0 m to 90 m at the ITM and the ETM. In order to utilize the
ROQ to cover this parameter space, the empirical interpolant needs to be constructed using a training set made from kernels (7) densely
covering this space.

Figure 6. Visualization of the final quadrature rule, with the absolute and argument values of the ROQ weights (21) generated for each of the
maps as shown in figure 1 The top plots show the absolute value: the size of each point is proportional to w∣ ∣ and the center of each point lies
on a specific empirical interpolation node in the x–y plane X Y,i j( ) (see (15) and (20)). The bottom plots show wlog arg10( ( )). The dashed line
on each plot shows the mirror surface boundary; outside the boundary the mirror map data is equal to zero.
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elements in the basis by 2, thus not significantly degrading
any speed improvements. It can also be seen in figure 7 that
ROQ extrapolates beyond the originally requested q para-
meter space and does not instantly fail for evaluations outside
of it. A gradual decrease in the accuracy can be seen when
using larger w0 values.

5.3. Performance

The time taken to run these FINESSE simulations as  is
increased is shown in figure 10 demonstrating how much
more efficient it is to use ROQ over Newton–Cotes for the
computation of scattering matrices. Here, the timing of run-
ning the entirety of FINESSE is used—rather than just the ROQ
method—because there are additional timing improvements
from having to read and handle significantly less data with
ROQ: from the L×L maps down to M×M ROQ weights.
This smaller amount of data comes with the typical benefits of
fitting better into processor caches, smaller memory footprint
and reduced disk read times. The case with no maps being
used is also shown to illustrate how much time is spent in
FINESSE doing calculations not involving maps—which
becomes the dominant computational cost when using ROQ.
A significant improvement is also found for order zero scat-
tering where only one scattering integral needs to be calcu-
lated. This is partly time saved from having to read larger data
from the disk and manipulating it in memory. The one-time
offline cost for each map for a particular empirical interpolant,
thus is not included in the timing shown in the figure 10 (5 s
for each map in this example). The overall speed-up achieved
can be seen in figure 11, reaching 2700» times faster to run
the entire simulation at 10 = . The overall speed-up then

Figure 7. Maximum relative error between the scattering matrices computed for the ETM07 surface map, with ROQ and using Newton–
Cotes, for mode orders up to 18max = . The dashed white area represents the beam-parameter region over which training sets were
generated. The subplots illustrate how using an ROQ built for a larger max scattering reduces the maximum error significantly.

Figure 8. Empirical interpolant error as a function of the number of
basis elements selected by the greedy algorithm (algorithm 1) for the
example described in section 5.1. As expected from the error
analysis in appendix B, the empirical interpolant error displays
exponential convergence with the basis size.

Figure 9.Relative error in the scattering matrices computed using the
ROQ and Newton–Cotes integration (with 10max = ) as a function
of the empirical interpolant tolerance  . The empirical interpolant
was built for maximum coupling 14max = . The error is the
minimum (dashed lines) and maximum (solid lines) over the
parameter space with which the empirical interpolant was built for.

Figure 10. Time taken for a single run of FINESSE to model the steady
state optical fields in an LIGO cavity with surface maps on both the
ITM and ETM HR surfaces.
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begins to drop slightly as the base time taken to run the rest of
FINESSE becomes larger. The color trace in figure 11 shows the
speed-up if this base time is removed, again showing an
impressive speed-up peaking at 4000 times faster.

Using ROQ enables us to perform such modeling tasks with
a far greater efficiency. Running the model to compute the output
seen in figure 2(a) required computing 100 different scattering
matrices for the various changes in RoC. This took 20.5 h to
compute with Newton–Cotes and 18min with ROQ. Note that
the effective speed-up in this case is less than the large values in
figure 11 because here we have included the total runtime of the
simulation. This includes the initialization and running of the
other aspects of FINESSE which took ≈17min. The actual time
taken for just the ROQ calculation is 30 s» thus a speed-up in
the ROQ vs Newton–Cotes is ≈2500. The difference in the final
result between ROQ and Newton–Cotes is shown in terms of
relative error in figure 2(b). We have prepared the ROQ input for
this example such that the error is significantly lower than 1 ppm
(relative error of 10−6) thereby showing that ROQ can be both
much faster and still sufficiently accurate.

6. Conclusion

Numerical modeling of optical systems plays a vital role for the
design and commissioning of precision interferometers. The
typical use of the simulation software in this area requires rapid
iterations of many simulation runs and manual fine tuning as
modeling progresses, which is not well suited for large
computer clusters. The scope of current investigations is often
limited by the required computation time and thus the devel-
opment of fast and flexible tools is a priority. Current problems
in precision interferometers, such as LIGO, involve the
investigation of laser beam shape distortions and their effect on
the interferometer signal. Frequency-domain simulations using
Gaussian modes to describe the beam properties have emerged
as fast and flexible tools. However, the computation of the
scattering matrix for mirror surface distortions—effectively an
overlap integral of measured surface data with Hermite–Gauss

modes—has shown to be a limiting factor in improving the
computational speed of such tools. A significant reduction in
computational time of current numerical tools is required for
more efficient in-depth modeling of interferometers including
more realistic features such as clipping, optical defects, thermal
distortions and parametric instabilities. In this work we have
demonstrated how the EI method can be used to generate an
optimised quadrature rule for paraxial optical scattering cal-
culations, known as a ROQ. Our method removes the prohi-
bitive computational cost of computing the scattering by
speeding up the calculation of the steady state optical fields in a
LIGO arm cavity by up to a factor of 2750, reducing simulation
times from days to minutes. Using an exemplary simulation
task of near-unstable arm cavities for the LIGO interferometers
we have demonstrated that our method is both accurate and fast
for a typical modeling scenario where imperfections in the
interferometer have a significant impact on optical perfor-
mance. We have provided a complete recipe to recreate and use
the new algorithm and provide an open source implementation
in our general-purpose simulation software FINESSE. Impor-
tantly, the ROD method is generic and can be applied to any
optical scattering problem for any surface distortion data.
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Appendix A. EI method algorithm

The first input to the algorithm is a training space of kernels
—distributed on the parameter space xl —and the associated
set of parameters. This training space is denoted by

x, ;x
k

x
k

i
N

1{ ( )} l l= = and should be densely populated
enough to represent the full space of kernels as faithfully as
possible. Hence it is important that N1  . The second input
is the desired maximum error of the interpolant  . We find
that the L¥ norm is a robust error measure for the empirical
interpolant and hence  corresponds to the largest tolerable
difference between the empirical interpolant and any kernel in
the training set T .

Figure 11. The speed-up achieved using ROQ compared to Newton–
Cotes as a function of mode order using the timing values in
figure 10. The red line shows the speed-up if the time for
initialization and post-processing is subtracted from both times for
Newton–Cotes and ROQ. This demonstrates the improvements just
for the computational cost relating to map scattering calculations.
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The algorithm is initialized on steps 3 and 4 by setting
the zeroth order interpolant to be zero, and defining the zeroth
order interpolation error to be infinite. The greedy algorithm
proceeds as follows: we identify the basis element on iteration
i to be the x;x( ) l Î that maximizes the L¥ norm with
the interpolant from the previous iteration, x;i x1[ ]( )  l- .
This is performed in steps 7 and 8. On step 9 we select Xi, the
ith interpolation node, by selecting the position at which the
largest error occurs, and adding that position to the set of
interpolation nodes. By definition, the interpolant is equal to
the underlying function at the interpolation nodes and so the
error at Xi—which is the largest error on the current iteration
—is removed. On step 10 we normalize the basis function.
This ensures that the matrix (16) is well conditioned. On steps
11 and 12 we compute (16) and (19), which are used to
construct the empirical interpolant (18). Finally, on step 13
we compute the interpolation error is between the interpolant
on the current iteration x;i x[ ]( )  l and x;x( ) l Î as in
step 7. The procedure is repeated until i s .

Once the interpolant for x;x( ) l is found, the equivalent
interpolant for y;y( ) l is obtained trivially from

x;M x[ ]( )  l by setting x y .

Algorithm 1. EI method algorithm: the EI method algorithm
builds an interpolant for the kernels (7) iteratively using a
greedy procedure. On each iteration the current interpolant is
validated against a ‘training set’  of kernels and the worst
interpolation error is identified. The interpolant is then
updated so that it describes the worst-error point perfectly.
This is repeated until the worst error is less than or equal to a
user specified tolerance  .

1: Input: x, ;x
k

x
k

k
N

1{ ( )} l l= = and 
2: Set i=0
3: Set x; 0x0[ ]( )  l =
4: Set 0s = ¥
5: While i s
6: i i 1 +
7: x xarg max ; ;x

i
x i x L1

x

∣∣ ( ) [ ]( )∣∣  


l l l= -
l Î

- ¥

8: x x;i x
i( ) ( ) lx =

9: X x xarg maxi
x

i i i1∣ ( ) [ ]( )∣x x= - -

10: e x
x x

X X
i

i i i

i i i i i

1

1
( )

( ) [ ]( )
( ) [ ]( )





x x
x x

=
-
-

-

-
11: V e X l i m i,lm l m( )  =
12: B x e x V l i m i,m l l lm

1( ) ( )( )  å= -

13: x xmax ; ;i x i x L
x

∣∣ ( ) [ ]( )∣∣  


l ls = -
l Î

¥

14: end while
15: Output: Interpolation matrix B xj j

M
1{ ( )} = and interpolation nodes

Xj j
M

1{ } = . The equivalent interpolant for y;y( ) l is obtained tri-
vially from B xj j

M
1{ ( )} = and Xj j

M
1{ } = by setting x y and X Y .

Appendix B. Error bounds on the empirical
interpolant

Here, we briefly remark on some of the error properties of the
EI method. A more detailed error analysis of the empirical

interpolant can be found in [24]. For our purposes the
empirical interpolant possess a highly desirable property,
namely exponential convergence to the desired accuracy  . It
can be shown [24] (though we do not do so here) that there
exists constants C 0> , c 01 > and 0a > such that for any
function f the empirical interpolant satisfies

f f C c M2 exp . B1M L 1[ ]∣∣ [ ]∣∣ ( ) - L - a¥

Where Λ is the ‘Lebesgue constant’: fM L∣∣ ∣ [ ]∣ ∣∣L = ¥.
This states that under the reasonable assumption that

there exists an order M interpolant that allows for exponential
convergence, then the EI method will ensure that we converge
to this interpolant exponentially quickly. This is an important
property as it means that the order of the interpolant, M, tends
to be small for practical purposes. In addition, because the
quantity on the right-hand side C c M2 exp 1[ ]L - a is set to a
user specified tolerance  then we can set an a priori upper
bound on the worst-fit of the interpolant. However, one must
still verify that the interpolant describes functions outside the
training a postiori, though the error bound should still be
satisfied provided that the training set was dense enough. In
fact, it can be shown [27] that the EI method is a near optimal
solution to the Kolmogorov n-width problem in which one
seeks to find the bestM-dimensional (linear) approximation to
a space of functions.

It is important to recall that in this paper we are inter-
polating the integral kernels (7) which are a function of six
free parameters xl : two indices n and n¢ and two complex
beam parameters qx and qx

¢. Had we not used the EI method,
we would have had to find an alternative way of expressing
the xl -dependent coefficients in (14). Consider, for example,
a case in which we had used tensor-product splines to
describe the coefficients: Using a grid of just ten points in
each of the six parameters in xl would result in an order 106

spline which would surely be computationally expensive to
evaluate. Furthermore, there would be no guarantee of its
accuracy or convergence to a desired accuracy.
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