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ON THE RANDOM GREEDY F -FREE HYPERGRAPH PROCESS

DANIELA KÜHN, DERYK OSTHUS AND AMELIA TAYLOR

Abstract. Let F be a strictly k-balanced k-uniform hypergraph with e(F ) ≥ |F | − k + 1 and
maximum co-degree at least two. The random greedy F -free process constructs a maximal F -free
hypergraph as follows. Consider a random ordering of the hyperedges of the complete k-uniform
hypergraph Kk

n on n vertices. Start with the empty hypergraph on n vertices. Successively
consider the hyperedges e of Kk

n in the given ordering and add e to the existing hypergraph
provided that e does not create a copy of F . We show that asymptotically almost surely
this process terminates at a hypergraph with Õ(nk−(|F |−k)/(e(F )−1)) hyperedges. This is best
possible up to logarithmic factors.

1. Introduction

1.1. Results. Fix a k-uniform hypergraph F . In this paper, we study the following random
greedy process, which constructs a maximal F -free k-uniform hypergraph. Assign a birthtime
which is uniformly distributed in [0, 1] to each hyperedge of the complete k-uniform hypergraph
Kk
n on n vertices. Start with the empty hypergraph on n vertices at time p = 0. Increase p

and each time that a new hyperedge is born, add it to the hypergraph provided that it does not
create a copy of F (edges with equal birthtime are added in any order). Denote the resulting
hypergraph at time p by Rn,p.

The random greedy graph process (i.e. the case when k = 2) has been studied for many
graphs. The initial motivation (see for example [8]) was to study the Ramsey number R(3, t).
Indeed, the best current lower bounds on R(3, t) were obtained via the study of the triangle-
free process ([5], [10]). Osthus and Taraz [11] gave an upper bound on the number of edges in
the graph Rn,1 when F is strictly 2-balanced, showing that a.a.s. Rn,1 has maximum degree

O(n1−(|F |−2)/(e(F )−1)(log n)1/(∆(F )−1)). (Here a.a.s. stands for ‘asymptotically almost surely’,
i.e. for the property that an event occurs with probability tending to one as n tends to in-
finity.) Results for the cases when F = C4 and F = K4 were obtained independently by
Bollobás and Riordan [7]. Bohman and Keevash [4] showed that a.a.s. Rn,1 has minimum de-

gree Ω(n1−(|F |−2)/(e(F )−1)(log n)1/(e(F )−1)) whenever F is strictly 2-balanced and conjectured
that this gives the correct order of magnitude. Improved upper bounds have been obtained
for some graphs. For instance, the number of edges has been determined asymptotically when
F is a cycle ([3], [5], [10], [12], [14]) and when F = K4 ([15], [16]). Picollelli [13] determined
asymptotically the number of edges when F is a diamond, i.e. the graph obtained by removing
one edge from K4. Note that this graph is not strictly 2-balanced.

Much less is known about the process when F is a k-uniform hypergraph and k ≥ 3. The
only known upper bound is due to Bohman, Mubayi and Picollelli [6], who studied the F -free
process when F is a k-uniform generalisation of a graph triangle (with an application to certain
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2 DANIELA KÜHN, DERYK OSTHUS AND AMELIA TAYLOR

Ramsey numbers). In this paper, we obtain a generalisation of the upper bound in [11] to strictly
k-balanced hypergraphs. Here we say that a k-uniform hypergraph F is strictly k-balanced if
|F | ≥ k + 1 and for all proper subgraphs F ′ ( F with |F ′| ≥ k + 1 we have

e(F )− 1

|F | − k
>
e(F ′)− 1

|F ′| − k
.

We also need the following definition. Given a hypergraph H and i ∈ N, we define the maximum
i-degree of H by

∆i(H) := max{dH(U) : U ⊆ V (H), |U | = i},
where dH(U) is the number of hyperedges in H containing U . For any k-uniform hypergraph,
the maximum co-degree refers to the maximum (k − 1)-degree.

Theorem 1.1. Let k ∈ N be such that k ≥ 2. Let F be a strictly k-balanced k-uniform hypergraph
which has v vertices and h ≥ v − k + 1 hyperedges. Suppose ∆k−1(F ) ≥ 2. Then there exists a
constant c such that a.a.s.

(1) ∆k−1(Rn,1) < t where t := cn1− v−k
h−1 (log n)

3
∆k−1(F )−1

− 1
h−1 .

In particular, a.a.s. Rn,1 has at most tnk−1 hyperedges.

Note that Theorem 1.1 applies, for example, to all k-uniform cliques Kk
v on v ≥ k+ 1 vertices

and more generally to all balanced complete `-partite k-uniform hypergraphs with ` ≥ k and
more than k vertices.

Bennett and Bohman [2] studied a random greedy independent set algorithm in certain quasi-
random hypergraphs. This algorithm finds a maximal independent set by choosing vertices uni-
formly at random and adding them to the existing set provided they do not create a hyperedge.
Note that we can define an e(F )-regular hypergraph H whose set of vertices is E(Kk

n) and whose
hyperedges correspond to all copies of F in Kk

n. In this case, the random greedy independent
set process on H is exactly the F -free process. Their result can be applied in the context of the
F -free process to show that if F is a strictly k-balanced k-uniform hypergraph and every vertex
of F lies in at least two hyperedges, then a.a.s. Rn,1 has Ω(nk−(|F |−k)/(e(F )−1)(log n)1/(e(F )−1))
hyperedges. Up to logarithmic factors, this matches the upper bound given in Theorem 1.1.

1.2. Open questions. There are many natural open questions related to the random greedy
F -free process. First, we discuss bounds on the number of edges in Rn,1 when F is an `-cycle.
Theorem 1.1 applies in the case when F is a k-uniform tight cycle. However, there are other
natural notions of a hypergraph cycle: Given ` ∈ N with ` < k, we say that a k-uniform hyper-
graph C`,h is an `-cycle of length h if there is a cyclic ordering of its vertices x1, . . . , xh(k−`) and a
corresponding ordering on its hyperedges e0, . . . , eh−1 such that ei = {xi(k−`)+1, . . . , xi(k−`)+k}.
So consecutive hyperedges on the cycle intersect in exactly ` vertices. The case when ` = k − 1
corresponds to C`,h being a tight cycle of length h. It is easy to check that all `-cycles are
strictly k-balanced, but only tight cycles satisfy the co-degree condition in Theorem 1.1. In the
case when ` ≥ k/2, `-cycles meet the conditions in [2]. We conjecture that the bound on the
number of hyperedges in [2] is of the correct magnitude for any `.

Conjecture 1.2. Let `, k ∈ N be such that k ≥ 2 and k > ` and let F := C`,h be the `-cycle of

length h. Then a.a.s. Rn,1 has Θ(n
h`
h−1 (log n)

1
h−1 ) hyperedges.

One motivation for Conjecture 1.2 is that p = nh`/(h−1)−k(log n)1/(h−1) is the threshold for
the property that every hyperedge in Hn,p lies in an `-cycle of length h.
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Another open problem would be to generalise Theorem 1.1 by finding an upper bound on the
number of steps in the random greedy independent set process studied in [2].

The random greedy independent set process can also be applied to study arithmetic progres-
sion free sets. Suppose k, n ∈ N. The kAP-free process generates a subset I of Zn which does
not contain an arithmetic progression of length k as follows. The elements of Zn are ordered
uniformly at random. Each is then, in turn, added to the set I if it does not create a k term
arithmetic progression. So this is another instance of the random greedy independent set al-
gorithm, this time on the hypergraph with vertex set Zn whose hyperedges are all arithmetic
progressions of length k. When n is prime, Bennett and Bohman [2] showed that a.a.s. the

kAP-free process generates a kAP-free set I of size Ω(n(k−2)/(k−1)(log n)1/(k−1)). It would be
interesting to obtain a corresponding upper bound on I. (Note that an upper bound on the
number of steps in the random greedy independent set process would imply an upper bound for
the kAP-free process.)

1.3. Sketch of the argument. Rather than studying the random greedy process itself, we
are able to prove Theorem 1.1 by obtaining precise information about the random binomial
hypergraph Hn,p. (This idea was first used in [11].) More precisely, write Hn,p for the random
binomial k-uniform hypergraph on n vertices with hyperedge probability p, i.e., each hyperedge
is included in Hn,p with probability p, independently of all other hyperedges. We write H−n,p
for the hypergraph formed by removing all copies of F from Hn,p. Note that Hn,p can also be
viewed as the random hypergraph consisting of all hyperedges with birthtime at most p. Thus,
for all p ∈ [0, 1] we have

H−n,p ⊆ Rn,p ⊆ Rn,1.
We will always assume that Kk

n, Hn,p, H
−
n,p and Rn,p use the vertex set [n].

In Section 2, we collect some large deviation inequalities. The proof of Theorem 1.1 is given
in Section 3, the strategy is as follows. We first identify the largest point p where we can still
use Hn,p to approximate the behaviour of H−n,p (i.e. for this p, only a small proportion of edges
of Hn,p lie in a copy of F ). Now let U be a set of k−1 vertices in F such that dF (U) = ∆k−1(F ).

Let F̂ be the subgraph of F obtained by deleting all those hyperedges which contain U . Let t
be as in (1). Suppose for a contradiction that there exists a (k − 1)-set V of degree t in Rn,1
and let T be the neighbourhood of V in Rn,1. We will show that in this case we would almost

certainly find a copy α of F̂ in H−n,p[T ∪ V ] which maps U to V . Since H−n,p ⊆ Rn,1, α would

also be a copy of F̂ in Rn,1[T ∪ V ] which maps U to V . But this actually yields a copy of F in
Rn,1, a contradiction. So a.a.s. ∆k−1(Rn,1) < t. It is perhaps surprising that for our analysis
the order of hyperedges added after this critical point p is irrelevant.

2. Tools

Let S be a collection of subsets of E(Kk
n). For each α ∈ S, let Iα denote the indicator variable

which equals one if all hyperedges in α lie in Hn,p and zero otherwise. Set

X :=
∑
α∈S

Iα and µ := E[X].

Let Y be the size of a largest hyperedge-disjoint collection of elements of S in Hn,p (i.e. the
maximum size of a set S ′ ⊆ S such that Iα = 1 for all α ∈ S ′ and α ∩ α′ = ∅ for all distinct
α, α′ ∈ S ′). Erdős and Tetali [9] proved the following upper tail bound on Y .

Theorem 2.1. [9]. For every a ∈ N, we have P[Y ≥ a] ≤ (eµ/a)a.
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We also require a lower tail bound on Y . For all α, α′ ∈ S with α 6= α′, we write α ∼ α′ if
α ∩ α′ 6= ∅. Define

∆ :=
∑
α′∼α

E[IαIα′ ],

where the sum is over all ordered pairs α′ ∼ α in S. Also, let

η := max
α∈S

E[Iα] and ν := max
α∈S

∑
α′∈S:α′∼α

E[Iα′ ].

The following bound follows from Lemma 4.2 in Chapter 8 and Theorem A.15 in [1], see [11].

Theorem 2.2. Let ε > 0. Then P[Y ≤ (1− ε)µ] ≤ e(1−ε)µν+ ∆
2(1−η)

− ε
2µ
2 .

3. Proof of Theorem 1.1

3.1. Basic parameters. Let F be a strictly k-balanced k-uniform hypergraph which has v
vertices, h hyperedges and d := ∆k−1(F ) ≥ 2. Choose positive constants c1, c2 satisfying

1/c1 � 1/c2 � 1/v, 1/h.

(Here the notation a � b means that we can find an increasing function f for which all of the
conditions in the proof are satisfied whenever a ≤ f(b).) Given functions f and g, we will write

f = Õ(g) if there exists a constant c such that f(n) ≤ (log n)cg(n) for all sufficiently large n.
Set

p :=
1

c2(nv−k log n)1/(h−1)
and t := c1np(log n)3/(d−1).

Here p is chosen to be as large as possible subject to the constraint that a.a.s. only a small
proportion of the hyperedges of Hn,p lie in a copy of F . For each k + 1 ≤ i ≤ v, we define

hi := max{e(F ′) : F ′ ( F, |F ′| = i}.

Since F is strictly k-balanced, we have

h− 1

v − k
>
hi − 1

i− k
.

So for each k + 1 ≤ i ≤ v we can define a positive constant

(2) δi := i− k − (hi − 1)
v − k
h− 1

> 0.

Let

δ := min{δi : k + 1 ≤ i ≤ v}.

We will often use that for k + 1 ≤ i ≤ v

nv−iph−hi ≤ nv−i−
v−k
h−1

(h−hi) (2)
= nv−i−

v−k
h−1

(h−1− i−k−δi
v−k (h−1)) = n−δi ≤ n−δ.(3)

Note that this bounds the expected number of extensions of a fixed subgraph of F on i vertices
into copies of F in Hn,p.
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3.2. Many copies of F containing a fixed hyperedge. For a given hyperedge f ∈ E(Kk
n),

an (r, f)-cluster is a collection F1, F2, . . . , Fr of r copies of F such that each Fi contains f and
for each 1 < i ≤ r, there exists fi ∈ E(Fi) such that fi /∈ E(Fj) for any j < i. Define A to be
the event that Hn,p has no (log n, f)-cluster for any hyperedge f . We will bound the probability
of Ac, i.e., the probability that Hn,p has a (log n, f)-cluster for some hyperedge f .

Lemma 3.1. We have P[Ac] ≤ n−k.

Proof. Fix some f ∈ E(Kk
n). Write Zr,f for the number of (r, f)-clusters in Hn,p, so Z1,f

counts copies of F which contain the hyperedge f . There are h hyperedges in F which could be
mapped to f , so

E[Z1,f ] ≤ hnv−kph ≤ e−2k

with room to spare. Let r < log n and consider a fixed (r, f)-cluster C in Hn,p. Let ZC be the
number of (1, f)-clusters in Hn,p which contain at least one hyperedge which does not lie in C,
so each of these (1, f)-clusters together with C forms an (r + 1, f)-cluster. Suppose that α is a
(1, f)-cluster sharing k + 1 ≤ i ≤ v vertices with C. The set of hyperedges shared by α and C
forms a proper subgraph of F on i vertices, so α and C can have at most hi common hyperedges.
This allows us to estimate E[ZC ] as

E[ZC ] ≤ hnv−kph−1 +

v∑
i=k+1

vi(rv)i−knv−iph−hi
(3)

≤ e−3k + Õ(n−δ) ≤ e−2k.

If we sum over all (r, f)-clusters in Kk
n, we find that

E[Zr+1,f ] ≤ E[Zr,f ]e−2k ≤ e−2(r+1)k

and hence E[Zlogn,f ] ≤ n−2k. By summing over all f ∈ E(Kk
n), we obtain

P[Ac] ≤
(
n

k

)
n−2k ≤ n−k,

as required. �

3.3. Estimating the number of extensions of a fixed set. Recall that d = ∆k−1(F ). Let
U = {u1, u2, . . . , uk−1} ⊆ V (F ) be such that dF (U) = d. Let NF (U) denote the neighbourhood

of U in F , i.e. NF (U) := {x ∈ V (F ) : U ∪ {x} ∈ E(F )}. Define F̂ ⊆ F which has vertex set
V (F ) and all hyperedges f ∈ E(F ) such that |f∩U | ≤ k−2. Fix T ⊆ [n] of size t and an ordered
sequence V = (v1, v2, . . . , vk−1) of distinct vertices, where vi ∈ [n] \ T for each 1 ≤ i ≤ k − 1.

Given a hypergraph H ⊆ Kk
n, let S(H) = S(H,T, V ) be the set of all copies of F̂ in H such

that the following hold:

• for each 1 ≤ i ≤ k − 1, ui is mapped to vi;
• NF (U) is mapped into T and
• V (F ) \NF (U) is mapped into [n] \ T .

We let X := |S(Hn,p)| and X− := |S(H−n,p)|. Note that X− ≤ X since H−n,p ⊆ Hn,p.
Note that if T ⊆ NRn,1(V ), then S(Rn,1) = ∅, as otherwise we could find a copy of F in Rn,1.

Since H−n,p ⊆ Rn,1, it follows that X− = 0. So, in order to prove Theorem 1.1, it will suffice to

prove that a.a.s. we have X− > 0 for any choice of T, V .
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Lemma 3.2. Given T ⊆ [n] of size t and an ordered sequence V = (v1, v2, . . . , vk−1) of distinct
vertices, where vi ∈ [n] \ T for each 1 ≤ i ≤ k − 1, define X− as above. Then

P[(X− = 0) ∩ A] ≤ 2n−2t.

Proof. Write S := S(Kk
n). Note that

µ1 := E[X] ≥
(
t

d

)(
n− t− k + 1

v − d− k + 1

)
ph−d ≥ ttd−1nv−d−k+1ph−d

ddvv

=
tcd−1

1 nv−kph−1(log n)3

ddvv
=

cd−1
1

ddvvch−1
2

t(log n)2 ≥ 24h2t(log n)2.(4)

Let S ′(Hn,p) be a hyperedge-disjoint collection of elements of S(Hn,p) of maximum size and let
Y1 := |S ′(Hn,p)|. In order to apply Theorem 2.2, we will estimate ν, ∆ and η.

First we estimate ν. Define

ν∗ := max
α∈S

∑
α′∈S:α′∼α

E[Iα′ | Iα = 1]

and note that ν ≤ ν∗. We count the expected number of elements α′ ∈ S(Hn,p) \ {α} sharing at
least one hyperedge with some fixed element α ∈ S. Note that α and α′ must share at least two
vertices outside V by the definition of F̂ . We let k+ 1 ≤ i+ j ≤ v denote the number of shared
vertices, where i is the number of vertices shared in T . Consider any α′ ∈ S \ {α} sharing i+ j
vertices with α. Let K be the hypergraph on i + j vertices formed by the set of hyperedges
shared by α and α′. Let K ′ be the hypergraph on i+ j vertices obtained from K by adding all
hyperedges of the form V ∪x for each of the i vertices x ∈ T shared by α and α′. Since K ′ ( F ,
e(K ′) ≤ hi+j and so α and α′ can have at most hi+j − i common hyperedges. Then

ν ≤ ν∗ ≤
v∑

i+j=k+1

vi+jtd−inv−d−jph−d−(hi+j−i)

=
v∑

i+j=k+1

vi+j(c1(log n)
3
d−1 )d−inv−(i+j)ph−hi+j

(3)
= Õ(n−δ) = o(1).

Since ∆ counts the expected number of ordered pairs of elements in S(Hn,p) which share at least
one hyperedge, we have

∆ ≤ µ1ν
∗ = o(µ1).

Finally, the probability of a fixed element in S being present in Hn,p is given by

η = ph−d = o(1).

So we can apply Theorem 2.2 to see that

P[Y1 ≤ µ1/2] ≤ e−µ1/10
(4)

≤ n−2t.(5)

We define a cluster (α, F ′) to be the union of an element α ∈ S ′(Hn,p) and a copy F ′ of F
in Hn,p which share at least one hyperedge. Note that deleting F ′ from Hn,p to form H−n,p will
destroy α.

We define an auxiliary graph G as follows. For each element of S ′(Hn,p) which lies in a cluster,
choose one. These clusters form the vertices of G. Draw an edge between two vertices in G if
the corresponding clusters share a hyperedge. We will use that

(6) |G| ≤ (∆(G) + 1)α(G)
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(which holds for all graphs) to bound the number of vertices in G. We will show that with
sufficiently high probability |G| < Y1. (This in turn implies that at least one element of S ′(Hn,p)
will remain in H−n,p, i.e. X− > 0.)

First, we bound α(G). Let X2 be the number of clusters in Hn,p. We estimate µ2 := E[X2],
breaking the sum into parts depending on the number i of vertices shared by α and F ′ in each
cluster (α, F ′). For k+ 1 ≤ i ≤ v, we use that α and F intersect in a proper subgraph of F and
thus can have at most hi common hyperedges. The first term in our bound on µ2 corresponds
to those clusters (α, F ′) where α and F ′ share exactly one hyperedge:

µ2 = E[X2] ≤ µ1h
2nv−kph−1 +

v∑
i=k+1

µ1v
inv−iph−hi

(3)

≤ µ1h
2nv−kph−1 +O(µ1n

−δ) ≤ µ1/(12e2h2 log n).(7)

Let Y2 be the size of a largest hyperedge-disjoint collection of clusters in Hn,p. We note that
α(G) ≤ Y2 and use Theorem 2.1 to bound Y2:

P
[
α(G) ≥ µ1/(12h2 log n)

]
≤ P

[
Y2 ≥ µ1/(12h2 log n)

]
≤
(
eµ212h2 log n

µ1

)µ1/(12h2 logn)

(7)

≤ e−µ1/(12h2 logn)
(4)

≤ n−2t.(8)

We now bound ∆(G). Assume that A holds, that is, Hn,p does not contain a (log n, f)-cluster
for any hyperedge f . Fix some hyperedge f ∈ E(Hn,p). Let F be a collection of clusters (αi, Fi)
such that f ∈ E((αi, Fi)) for each i and αi 6= αj if i 6= j. Suppose that |F| ≥ h log n+1. For each
cluster (αi, Fi) in F , let ei be a hyperedge shared by αi and Fi. The αi are hyperedge-disjoint
by the definition of S ′(Hn,p), so f ∈ E(Fi) for all but at most one cluster (αi, Fi) ∈ F where
f ∈ E(αi). If F contains such a cluster, delete it. Then, starting with i = 1, if (αi, Fi) has not
already been deleted, delete from F any clusters (αj , Fj) with j > i such that ej lies in (αi, Fi).
Do this for each i in turn. Since the αi are hyperedge-disjoint, at each step we delete at most
h− 1 clusters from F . So a collection F ′ ⊆ F of at least log n clusters remains. But the set of
all Fi such that (αi, Fi) ∈ F ′ contains a (log n, f)-cluster in Hn,p. Therefore, |F| < h log n + 1.
Since every cluster has less than 2h hyperedges, we must have

(9) ∆(G) < 2h2 log n.

So, if A holds, if α(G) < µ1/(12h2 log n) and if |Y1| ≥ µ1/2, then

|G|
(6),(9)

≤ (2h2 log n+ 1)µ1/(12h2 log n) ≤ µ1/4 < |Y1|.

Thus,

P[(X− = 0) ∩ A] = P[(|G| = Y1) ∩ A] ≤ P[Y1 ≤ µ1/2] + P[α(G) ≥ µ1/(12h2 log n)]
(5),(8)

≤ 2n−2t,

as desired. �

3.4. Combining the bounds. We now use Lemmas 3.1 and 3.2 to prove Theorem 1.1.

Proof of Theorem 1.1. Define B to be the event that there exist T ⊆ [n] of size t and
an ordered sequence V = (v1, v2, . . . , vk−1) of distinct vertices such that vi ∈ [n] \ T for each
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1 ≤ i ≤ k − 1 and X− = 0. As remarked before Lemma 3.2, ∆k−1(Rn,1) ≥ t implies B. So we
can apply Lemmas 3.1 and 3.2 to see that

P[∆k−1(Rn,1) ≥ t] ≤ P[B] ≤ P[Ac] + P[A ∩ B] ≤ n−k + nt+k−1(2n−2t) = o(1).

This completes the proof of Theorem 1.1. �
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