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Abstract
1 We consider a bipartite stochastic block model on vertex sets V1 and V2, with planted partitions
in each, and ask at what densities efficient algorithms can recover the partition of the smaller vertex
set.

When |V2| � |V1|, multiple thresholds emerge. We first locate a sharp threshold for detection
of the partition, in the sense of the results of Mossel et al. (2014, 2013) and Massoulié (2014) for
the stochastic block model. We then show that at a higher edge density, the singular vectors of
the rectangular biadjacency matrix exhibit a localization / delocalization phase transition, giving
recovery above the threshold and no recovery below. Nevertheless, we propose a simple spectral
algorithm, Diagonal Deletion SVD, which recovers the partition at a nearly optimal edge density.

The bipartite stochastic block model studied here was used by Feldman et al. (2015b) to give
a unified algorithm for recovering planted partitions and assignments in random hypergraphs and
random k-SAT formulae respectively. Our results give the best known bounds for the clause density
at which solutions can be found efficiently in these models as well as showing a barrier to further
improvement via this reduction to the bipartite block model.
Keywords: Stochastic block model, spectral algorithms, random matrices, planted satisfiability

1. Introduction

The stochastic block model is a widely studied model of community detection in random graphs,
introduced by Holland et al. (1983). A simple description of the model is as follows: we start with
n vertices, divided into two or more communities, then add edges independently at random, with
probabilities depending on which communities the endpoints belong to. The algorithmic task is then
to infer the communities from the graph structure.

A different class of models of random computational problems with planted solutions is that
of planted satisfiability problems: we start with an assignment σ to n boolean variables and then
choose clauses independently at random that are satisfied by σ. The task is to recover σ given the
random formula. A closely related problem is that of recovering the planted assignment in Goldreich
(2000)’s one-way function, see Section 3.1.

A priori, the stochastic block model and planted satisfiability may seem only tangentially re-
lated. Nevertheless, two observations reveal a strong connection:

1. Planted satisfiability can be viewed as a k-uniform hypergraph stochastic block model, with
the set of 2n booleans literals partitioned into two communities of true and false literals under
the planted assignment, and clauses represented as hyperedges.

1. Extended abstract. Full version appears as 1506.06737, v2.
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2. Feldman et al. (2015b) gave a general algorithm for a unified model of planted satisfiability
problems which reduces a random formula with a planted assignment to a bipartite stochastic
block model with planted partitions in each of the two parts.

The bipartite stochastic block model in Feldman et al. (2015b) has the distinctive feature that
the two sides of the bipartition are extremely unbalanced; in reducing from a planted k-satisfiability
problem on n variables, one side is of size Θ(n) while the other can be as large as Θ(nk−1).

We study this bipartite block model in detail, first locating a sharp threshold for detection and
then studying the performance of spectral algorithms.

Our main contributions are the following:

1. When the ratio of the sizes of the two parts diverge, we locate a sharp threshold below which
detection is impossible and above which an efficient algorithm succeeds (Theorems 1 and 2).
The proof of impossibility follows that of Mossel et al. (2014) in the stochastic block model,
with the change that we couple the graph to a broadcast model on a two-type Poisson Galton-
Watson tree. The algorithm we propose involves a reduction to the stochastic block model
and the algorithms of Massoulié (2014); Mossel et al. (2013).

2. We next consider spectral algorithms and show that computing the singular value decomposi-
tion (SVD) of the biadjacency matrix M of the model can succeed in recovering the planted
partition even when the norm of the ‘signal’, ‖EM‖, is much smaller than the norm of the
‘noise’, ‖M − EM‖ (Theorem 3).

3. We show that at a sparser density, the SVD fails due to a localization phenomenon in the
singular vectors: almost all of the weight of the top singular vectors is concentrated on a
vanishing fraction of coordinates (Theorem 4).

4. We propose a modification of the SVD algorithm, Diagonal Deletion SVD, that succeeds at a
sparser density still, far below the failure of the SVD (Theorem 3).

5. We apply the first algorithm to planted hypergraph partition and planted satisfiability prob-
lems to find the best known general bounds on the density at which the planted partition or
assignment can be recovered efficiently (Theorem 5).

2. The model and main results

The bipartite stochastic block model Fix parameters δ ∈ [0, 2], n1 ≤ n2, and p ∈ [0, 1/2]. Then
we define the bipartite stochastic block model as follows:

• Take two vertex sets V1, V2, with |V1| = n1, |V2| = n2.

• Assign labels ‘+’ and ‘-’ independently with probability 1/2 to each vertex in V1 and V2. Let
σ ∈ {±1}n1 denote the labels of the vertices in V1 and τ ∈ {±1}n2 denote the labels of V2.

• Add edges independently at random between V1 and V2 as follows: for u ∈ V1, v ∈ V2 with
σ(u) = τ(v), add the edge (u, v) with probability δp; for σ(u) 6= τ(v), add (u, v) with
probability (2− δ)p.

Algorithmic task: Determine the labels of the vertices given the bipartite graph, and do so with an
efficient algorithm at the smallest possible edge density p.
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Figure 1: Bipartite stochastic block model on V1 and V2. Red edges are added with probability δp
and blue edges are added with probability (2− δ)p.

Preliminaries and assumptions In the application to planted satisfiability, it suffices to recover
σ, the partition of the smaller vertex set, V1, and so we focus on that task here; we will accomplish
that task even when the number of edges is much smaller than the size of V2. For a planted k-SAT
problem or k-uniform hypergraph partitioning problem on n variables or vertices, the reduction
gives vertex sets of size n1 = Θ(n), n2 = Θ(nk−1), and so the relevant cases are extremely
unbalanced.

We will say that an algorithm detects the partition if for some fixed ε > 0, independent of n1,
whp it returns an ε-correlated partition, i.e. a partition that agrees with σ on a (1/2 + ε)-fraction of
vertices in V1 (again, up to the sign of σ).

We will say an algorithm recovers the partition of V1 if whp the algorithm returns a partition
that agrees with σ on 1− o(1) fraction of vertices in V1. Note that agreement is up to sign as σ and
−σ give the same partition.

2.1. Optimal algorithms for detection

On the basis of heuristic analysis of the belief propagation algorithm, Decelle et al. (2011) made the
striking conjecture that in the two part stochastic block model, with interior edge probability a/n,
crossing edge probability b/n, there is a sharp threshold for detection: for (a − b)2 > 2(a + b)
detection can be achieved with an efficient algorithm, while for (a − b)2 ≤ 2(a + b), detection
is impossible for any algorithm. This conjecture was proved by Mossel et al. (2014, 2013) and
Massoulié (2014).

Our first result is an analogous sharp threshold for detection in the bipartite stochastic block
model at p = (δ − 1)−2(n1n2)

−1/2, with an algorithm based on a reduction to the SBM, and a
lower bound based on a connection with the non-reconstruction of a broadcast process on a tree
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associated to a two-type Galton Watson branching process (analogous to the proof for the SBM
Mossel et al. (2014) which used a single-type Galton Watson process).

Algorithm: SBM Reduction.

1. Construct a graph G′ on the vertex set V1 by joining u and w if they are both connected to the
same vertex v ∈ V2 and v has degree exactly 2.

2. Randomly sparsify the graph (as detailed in Section 5).

3. Apply an optimal algorithm for detection in the SBM from Massoulié (2014); Mossel et al.
(2013); Bordenave et al. (2015) to partition V1.

Theorem 1 Let δ ∈ [0, 2] \ {1} be fixed and n2 = ω(n1). Then there is a polynomial-time
algorithm that detects the partition V1 = A1 ∪B1 whp if

p >
1 + ε

(δ − 1)2
√
n1n2

for any fixed ε > 0.

Theorem 2 On the other hand, if n2 ≥ n1 and

p ≤ 1

(δ − 1)2
√
n1n2

,

then no algorithm can detect the partition whp.

Note that for p ≤ 1√
n1n2

it is clear that detection is impossible: whp there is no giant component
in the graph. The content of Theorem 2 is finding the sharp dependence on δ.

2.2. Spectral algorithms

One common approach to graph partitioning is spectral: compute eigenvectors or singular vectors
of an appropriate matrix and round the vector(s) to partition the vertex set. In our setting, we can
take the n1×n2 rectangular biadjacency matrix M , with rows and columns indexed by the vertices
of V1 and V2 respectively, with a 1 in the entry (u, v) if the edge (u, v) is present, and a 0 otherwise.
The matrix M has independent entries that are 1 with probability δp or (2 − δ)p depending on the
label of u and v and 0 otherwise.

A typical analysis of spectral algorithms requires that the second largest eigenvalue or singular
value of the expectation matrix EM is much larger than the spectral norm of the noise matrix, (M−
EM). But here we have ‖M − EM‖ = Θ̃(

√
n2p), which is in fact much larger than λ2(EM) =

Θ(p
√
n1n2) when p = o(n−11 ). Does this doom the spectral approach at lower densities?

Question 1 For what values of p = p(n1, n2) is the singular value decomposition (SVD) of M
correlated with the vector σ indicating the partition of V1?
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Algorithm: Singular Value Decomposition.

1. Compute the left singular vector of M corresponding to the second largest singular value.

2. Round the singular vector to a vector z ∈ {±1}n1 by taking the sign of each entry.

In particular, this question was asked by Feldman et al. (2015b). We show that there are two
thresholds, both well below p = n−11 : at p = Ω̃(n

−2/3
1 n

−1/3
2 ) the second singular vector of M is

correlated with the partition of V1, but below this density, it is uncorrelated with the partition, and
in fact localized. Nevertheless, we give a simple spectral algorithm based on modifications of M
that matches the bound p = Õ((n1n2)

−1/2) achieved with subsampling by Feldman et al. (2015b).
In the case of very unbalanced sizes, in particular in the applications noted above, these thresholds
can differ by a polynomial factor in n1.

Algorithm: Diagonal Deletion SVD.

1. Let B = MMT − diag(MMT ) (set the diagonal entries of MMT to 0).

2. Compute the second eigenvector of B.

3. Round the eigenvector to a vector z ∈ {±1}n1 by taking the sign of each entry.

Our results locate two different thresholds for spectral algorithms for the bipartite block model:
while the usual SVD is only effective with p = Ω̃(n

−2/3
1 n

−1/3
2 ), the modified diagonal deletion

algorithm is effective already at p = Ω̃(n
−1/2
1 n

−1/2
2 ), which is optimal up to logarithmic factors. In

particular, when n1 = n, n2 = nk−1 for some k ≥ 3, as in the application above, these thresholds
are separated by a polynomial factor in n.

Figure 2: Main theorems illustrated.

First we give positive results for recovery using the two spectral algorithms.

Theorem 3 Let n2 ≥ n1 log4 n1, with n1 →∞. Let δ ∈ [0, 2]\{1} be fixed with respect to n1, n2.
Then there exists a universal constant C > 0 so that
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1. If p = C(n1n2)
−1/2 log n1, then whp the diagonal deletion SVD algorithm recovers the

partition V1 = A1 ∪B1.

2. If p = Cn
−2/3
1 n

−1/3
2 log n1, then whp the unmodified SVD algorithm recovers the partition.

Next we show that below the recovery threshold for the SVD, the top left singular vectors are in
fact localized: they have nearly all of their mass on a vanishingly small fraction of coordinates.

Theorem 4

Let n2 ≥ n1 log4 n1. For any constant c > 0, let p = cn
−2/3
1 n

−1/3
2 , t ≤ n

1/3
1 , and r = n1/ log n1.

Let σ = σ/
√
n1, and v1, v2, . . . vt be the top t left unit-norm singular vectors of M .

Then, whp, there exists a set S ⊂ {1, . . . , n1} of coordinates, |S| ≤ r, so that for all 1 ≤ i ≤ t,
there exists a unit vector ui supported on S so that

‖vi − ui‖ = o(1).

That is, each of the first t singular vectors has nearly all of its weight on the coordinates in S. In
particular, this implies that for all 1 ≤ i ≤ t, vi is asymptotically uncorrelated with the planted
partition:

|σ · vi| = o(1).

One point of interest in Theorem 4 is that in this case of a random biadjacency matrix of un-
balanced dimension, the localization and delocalization of the singular vectors can be understood
and analyzed in a simple manner, in contrast to the more delicate phenomenon for random square
adjacency matrices.

Our techniques use bounds on the norms of random matrices and eigenvector perturbation the-
orems, applied to carefully chosen decompositions of the matrices of interest. In particular, our
proof technique suggested the Diagonal Deletion SVD, which proved much more effective than the
usual SVD algorithm on these unbalanced bipartite block models, and has the advantage over more
sophisticated approaches of being extremely simple to describe and implement. We believe it may
prove effective in many other settings.

Under what conditions might we expect the Diagonal Deletion SVD outperform the usual SVD?
The SVD is a central algorithm in statistics, machine learning, and computer science, and so any
general improvement would be useful. The bipartite block model addressed here has two distinctive
characteristics: the dimensions of the matrix M are extremely unbalanced, and the entries are very
sparse Bernoulli random variables, a distribution whose fourth moment is much larger than the
square of its second moment. These two facts together lead to the phenomenon of multiple spectral
thresholds and the outperformance of the SVD by the Diagonal Deletion SVD. Under both of these
conditions we expect dramatic improvement by using diagonal deletion, while under one or the
other condition, we expect mild improvement. We expect diagonal deletion will be effective in the
more general setting of recovering a low-rank matrix in the presence of random noise, beyond our
setting of adjacency matrices of graphs.
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3. Planted k-SAT and hypergraph partitioning

Feldman et al. (2015b) reduce three planted problems to solving the bipartite block model: planted
hypergraph partitioning, planted random k-SAT, and Goldreich’s planted CSP. We describe the re-
duction here and calculate the density at which our algorithm can detect the planted solution by
solving the resulting bipartite block model.

We state the general model in terms of hypergraph partitioning first.

Planted hypergraph partitioning Fix a function Q : {±1}k → [0, 1] so that
∑

x∈{±1}k Q(x) =

1. Fix parameters n and p ∈ (0, 1) so that maxxQ(x)2kp ≤ 1. Then we define the planted
k-uniform hypergraph partitioning model as follows:

• Take a vertex set V of size n.

• Assign labels ‘+’ and ‘-’ independently with probability 1/2 to each vertex in V . Let σ ∈
{±1}n denote the labels of the vertices.

• Add (ordered) k-uniform hyperedges independently at random according to the distribution

Pr(e) = 2kp ·Q(σ(e))

where σ(e) is the evaluation of σ on the vertices in e.

Algorithmic task: Determine the labels of the vertices given the hypergraph, and do so with an
efficient algorithm at the smallest possible edge density p.

Usually Q will be symmetric in the sense that Q(x) depends only on the number of +1’s in the
vector x, and in this case we can view hyperedges as unordered. We assume thatQ is not identically
2−k as this distribution would simply be uniform and the planted partition would not be evident.

Planted k-satisfiability is defined similarly: we fix an assignment σ to n boolean variables which
induces a partition of the set of 2n literals (boolean variables and their negations) into true and
false literals. Then we add k-clauses independently at random, with probability proportional to the
evaluation of Q on the k literals of the clause.

Planting distributions for the above problems are classified by their distribution complexity,
r = minS 6=∅{|S| : Q̂(S) 6= 0}, where Q̂(S) is the discrete Fourier coefficient of Q corresponding
to the subset S ⊆ [k]. This is an integer between 1 and k, where k is the uniformity of the hyperedges
or clauses.

A consequence of Theorem 1 is the following:

Theorem 5 There is an efficient algorithm to detect the planted partition in the random k-uniform
hypergraph partitioning problem, with planting function Q, when

p > (1 + ε) min
S⊆[k]

1

22kQ̂(S)2nk−|S|/2

for any fixed ε > 0. Similarly, in the planted k-satisfiability model with planting function Q, there
is an efficient algorithm to detect the planted assignment when

p > (1 + ε) min
S⊆[k]

1

22kQ̂(S)2(2n)k−|S|/2
.

In both cases, if the distribution complexity of Q is at least 3, we can achieve full recovery at the
given density.
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Proof SupposeQ has distribution complexity r. Fix a set S ⊆ [k] with Q̂(S) 6= 0, and |S| = r. The
first step of the reduction of Feldman et al. (2015b) transforms each k-uniform hyperedge into an
r-uniform hyperedge by selecting the vertices indicated by the set S. Then a bipartite block model
is constructed on vertex sets V1, V2, with V1 the set of all vertices in the hypergraph (or literals in
the formula), and V2 the set of all (r − 1)-tuples of vertices or literals. An edge is added by taking
each r-uniform edge and splitting it randomly into sets of size 1 and r−1 and joining the associated
vertices in V1 and V2. The parameters in our model are n1 = n and n2 ∼ nr−1 (considering ordered
(r − 1)-tuples of vertices or literals).

These edges appear with probabilities that depend on the parity of the number of vertices on
one side of the original partition in the joined sets, exactly the bipartite block model addressed in
this paper; the parameter δ in the model is given by δ = 1 + 2kQ̂(S) (see Lemma 1 of Feldman
et al. (2015b)). Theorems 1 then states that detection in the resulting block model exhibits a sharp
threshold at edge density p∗ , with p∗ = 1

22kQ̂(S)2nk−r/2
. The difference in bounds in Theorem 5 is

due to the two models having n vertices and 2n literals respectively.
To go from an ε-correlated partition to full recovery, if r ≥ 3, we can appeal to Theorem 2

of Bogdanov and Qiao (2009) and achieve full recovery using only a linear number of additional
hyperedges or clauses, which is lower order than the Θ(nr/2) used by our algorithm.

Note that Theorem 2 says that no further improvement can be gained by analyzing this particular
reduction to a bipartite stochastic block model.

There is some evidence that up to constant factors in the clause or hyperedge density, there
may be no better efficient algorithms O’Donnell and Witmer (2014); Feldman et al. (2015a), unless
the constraints induce a consistent system of linear equations. But in the spirit of Decelle et al.
(2011), we can ask if there is in fact a sharp threshold for detection of planted solutions in these
models. In one special case, such sharp thresholds have been conjectured: Krzakala et al. (2014)
have conjectured threshold densities based on fixed points of belief propagation equations. The
planted k-SAT distributions covered, however, are only those with distribution complexity r = 2:
those that are known to be solvable with a linear number of clauses. We ask if there are sharp
thresholds for detection in the general case, and in particular for those distributions with distribution
complexity r ≥ 3 that cannot be solved by Gaussian elimination. In particular, in the case of the
parity distribution we conjecture that there is a sharp threshold for detection.

Conjecture 1 Partition a set of n vertices at random into sets A,B. Add k-uniform hyperedges
independently at random with probability δp if the number of vertices in the edge from A is even
and (2 − δ)p if the number of vertices from A is odd. Then for any δ ∈ (0, 2) there is a constant
cδ so that p = cδn

−k/2 is a sharp threshold for detection of the planted partition by an efficient
algorithm. That is, if p > (1+ ε)cδn

−k/2, then there is a polynomial-time algorithm that detects the
partition whp, and if p ≤ cδn−k/2 then no polynomial-time algorithm can detect the partition whp.

This is a generalization to hypergraphs of the SBM conjecture of Decelle et al. (2011); the k = 2
parity distribution is that of the stochastic block model. We do not venture a guess as to the precise
constant cδ, but even a heuristic as to what the constant might be would be very interesting.

3.1. Relation to Goldreich’s generator

Goldreich (2000)’s pseudorandom generator or one-way function can be viewed as a variant of
planted satisfiability. Fix an assignment σ to n boolean variables, and fix a predicate P : {±1}k →

8
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{0, 1}. Now choose m k-tuples of variables uniformly at random, and label the k-tuple with the
evaluation of P on the tuple with the boolean values given by σ. In essence this generates a uni-
formly random k-uniform hypergraph with labels that depend on the planted assignment and the
fixed predicate P . The task is to recover σ given this labeled hypergraph. The algorithm we de-
scribe above will work in this setting by simply discarding all hyperedges labeled 0 and working
with the remaining hypergraph.

4. Related work

The stochastic block model has been a source of considerable recent interest. There are many al-
gorithmic approaches to the problem, including algorithms based on maximum-likelihood methods
Snijders and Nowicki (1997), belief propagation Decelle et al. (2011), spectral methods McSherry
(2001), modularity maximization Bickel and Chen (2009), and combinatorial methods Bui et al.
(1987), Dyer and Frieze (1989), Jerrum and Sorkin (1998), Condon and Karp (2001). Coja-Oghlan
(2010) gave the first algorithm to detect partitions in the sparse, constant average degree regime.
Decelle et al. (2011) conjectured the precise achievable constant and subsequent algorithms Mas-
soulié (2014); Mossel et al. (2013); Bordenave et al. (2015); Abbe and Sandon (2015) achieved this
bound. Sharp thresholds for full recovery (as opposed to detection) have been found by Mossel et al.
(2015); Abbe et al. (2016); Hajek et al. (2015a).

Bogdanov and Qiao (2009) used ideas for reconstructing assignments to random 3-SAT for-
mulas in the planted 3-SAT model to show that Goldreich’s construction of a one-way function in
Goldreich (2000) is not secure when the predicate correlates with either one or two of its inputs. For
more on Goldreich’s PRG from a cryptographic perspective see the survey of Applebaum (2013).

Feldman et al. (2015b) gave an algorithm to recover the partition of V1 in the bipartite stochastic
block model to solve instances of planted random k-SAT and planted hypergraph partitioning using
subsampled power iteration.

A key part of our analysis relies on looking at an auxiliary graph on V1 with edges between
vertices which share a common neighbor; this is known as the one-mode projection of a bipartite
graph: Zhou et al. (2007) give an approach to recommendation systems using a weighted version
of the one-mode projection. One-mode projections are implicitly used in studying collaboration
networks, for example in Newman (2001)’s analysis of scientific collaboration networks. Larremore
et al. (2014) defined a general model of bipartite block models, and propose a community detection
algorithm that does not use one-mode projection.

The behavior of the singular vectors of a low rank rectangular matrix plus a noise matrix was
studied by Benaych-Georges and Nadakuditi (2012). The setting there is different: the ratio between
n1 and n2 converges, and the entries of the noise matrix are mean 0 variance 1.

Butucea et al. (2015) and Hajek et al. (2015b) both consider the case of recovering a planted
submatrix with elevated mean in a random rectangular Gaussian matrix.

Notation All asymptotics are as n1 →∞, so for example, ‘E occurs whp’ means lim
n1→∞

Pr(E) =

1. We write f(n1) = Õ(g(n1)) and f(n1) = Ω̃(g(n1)) if there exist constants C, c so that f(n1) ≤
C logc(n1) · g(n1) and f(n1) ≥ g(n1)/(C logc(n1)) respectively. For a vector, ‖v‖ denotes the
l2 norm. For a matrix, ‖A‖ denotes the spectral norm, i.e. the largest singular value (or largest
eigenvalue in absolute value for a square matrix). For ease of reading, C will always denote an
absolute constant, but the value may change during the course of the proofs.

9
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5. Theorem 1: detection

In this section we sketch the proof of Theorem 1, giving an optimal algorithm for detection in the
bipartite stochastic block model when n2 = ω(n1). The main idea of the proof is that almost all
of the information in the bipartite block model is in the subgraph induced by V1 and the vertices
of degree two in V2. From this induced subgraph of the bipartite graph we form a graph G′ on
V1 by replacing each path of length two from V1 to V2 back to V1 with a single edge between the
two endpoints in V1. We then apply an algorithm from Massoulié (2014); Mossel et al. (2013), or
Bordenave et al. (2015) to detect the partition.

Fix ε > 0. Given an instance G of the bipartite block model with

p = (1 + ε)(δ − 1)−2(n1n2)
−1/2,

we reduce to a graph G′ on V1 as follows:

• Sort V2 according to degrees and remove any vertices (with their accompanying edges) which
are not of degree 2.

• We now have a union of 2-edge paths from vertices in V1 to vertices in V2 and back to vertices
in V1. Create a multi-set of edges E on V1 by replacing each 2-path u − v − w by the edge
(u,w).

• Choose N from the distribution Poisson((1 + ε)(δ − 1)−4n1/2).

• If N > |E|, then stop and output ‘failure’. Otherwise, select N edges uniformly at random
from E to form the graph G′ on V1, replacing any edge of multiplicity greater than one with a
single edge.

• Apply an SBM algorithm to G′ to partition V1.

From the construction above, conditioned on σ the distribution of G′ is that of the stochastic
block model on V1 with partition σ: each edge interior to the partition is present with probability
a/n1, each crossing edge with probability b/n1, and all edges are independent.

For σ such that β1 = o(n−1/3), we have

a =
(1 + ε)(2− 2δ + δ2)

(δ − 1)4
(1 + o(1))

b =
(1 + ε)(2δ − δ2)

(δ − 1)4
(1 + o(1))

For these values of a and b the condition for detection in the SBM, (a − b)2 ≥ (1 + ε)2(a + b) is
satisfied and so whp the algorithms from Massoulié (2014); Mossel et al. (2013); Bordenave et al.
(2015) will find a partition that agrees with σ on 1/2 + ε′ fraction of vertices.

6. Theorem 2: impossibility

The proof of impossibility below the threshold (a− b)2 = 2(a+ b) in Mossel et al. (2014) proceeds
by showing that the log n depth neighborhood of a vertex ρ, along with the accompanying labels,
can be coupled to a binary symmetric broadcast model on a Poisson Galton-Watson tree. In this
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model, it was shown by Evans et al. (2000) that reconstruction, recovering the label of the root
given the labels at depth R of the tree, is impossible as R → ∞, for the corresponding parameter
values (the critical case was shown by Pemantle and Peres (2010)).

In the binary symmetric broadcast model, the root of a tree is labeled with a uniformly random
label +1 or −1, and then each child takes its parent’s label with probability 1− η and the opposite
label with probability η, independently over all of the parent’s children. The process continues in
each successive generation of the tree.

The criteria for non-reconstruction can be stated as (1− 2η)2B ≤ 1, where B is the branching
number of the tree T . The branching number is B = pc(T )−1, where pc is the critical probability
for bond percolation on T (see Lyons (1990) for more on the branching number).

Assume first that n2 ∼ cn1 for some constant c, and that p = d/n1. Then there is a natural
multitype Poisson branching process that we can associate to the bipartite block model: nodes of
type 1, corresponding to vertices in V1, have a Poisson(cd) number of children of type 2; nodes
of type 2, corresponding to vertices in V2, have a Poisson(d) number of children of type 1. The
branching number of this distribution on trees is

√
c · d, an easy calculation by reducing to a one-

type Galton Watson process by combining two generations into one. Transferring the block model
labeling to the branching process gives η = δ/2, and so the threshold for reconstruction is given by

(δ − 1)2
√
cd ≤ 1

or in other words,

p ≤ 1

(δ − 1)2
√
n1n2

exactly the threshold in Theorem 2. In fact, in this case the proof from Mossel et al. (2014) can be
carried out in essentially the exact same way in our setting.

Now take n2 = ω(n1). A complication arises: the distribution of the number of neighbors of
a node of type 1 does not converge (its mean is n2p → ∞), and the distribution of the number of
neighbors of a node of type 2 converges to a delta mass at 0. But this can be fixed by ignoring the
vertices in V2 of degree 0 and 1. Now we explore from a vertex ρ ∈ V1, but discard any vertices
from V2 that do not have a second neighbor. We denote by Ĝ the subgraph of G induced by V1 and
the vertices of V2 of degree at least 2. Let T be the branching process associated to this modified
graph: nodes of type 1 have Poisson(d2) neighbors of type 2, and nodes of type 2 have exactly 1
neighbor of type 1, where here p = d/

√
n1n2. The branching number of this process is d, and the

reconstruction threshold is (δ − 1)2d ≤ 1, again giving the threshold p ≤ 1
(δ−1)2√n1n2

, as required.
As in Mossel et al. (2014), the proof of impossibility in the full version of this papers shows

the stronger statement that conditioned on the label of a fixed vertex w ∈ V1 and the graph G, the
variance of the label of another fixed vertex ρ tends to 1 as n1 → ∞. The proof of this fact has
two main ingredients: showing that the depth R neighborhood of a vertex ρ in the bipartite block
model (with vertices of degree 0 and 1 in V2 removed) can be coupled with the branching process
described above, and showing that conditioned on the labels on the boundary of the neighborhood,
the label of ρ is asymptotically independent of the rest of the graph and the labels outside of the
neighborhood.

11
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7. Theorem 3: Recovery

We follow a similar framework in proving both parts of Theorem 3. RecallingM to be the adjacency
matrix, let B = MMT − diag(MMT ) and DV = diag(MMT ).

A simple computation shows that the second eigenvector of EB is the vector σ that we wish
to recover; we will consider the different perturbations of EB that arise with the three spectral
algorithms and show that at the respective thresholds, the second eigenvector of the resulting matrix
is close to σ. To analyze the diagonal deletion SVD, we must show that the second eigenvector of
B is highly correlated with σ (the addition of a constant multiple of the identity matrix does not
change the eigenvectors). The main step is to bound the spectral norm ‖B−EB‖. Since the entries
of B are not independent, we will decompose B into a sequence of matrices based on subgraphs
induced by vertices of a given degree in V2. This (Lemma 1) is the most technical part of the work.

To analyze the unmodified SVD, we write MMT = EB+ (B−EB) +EDV + (DV −EDV ).
The left singular vectors of M are the eigenvectors of MMT . EB has σ as its second eigenvector
and EDV is a multiples of the identity matrix and so adding it does not change the eigenvectors. As
above we bound ‖B −EB‖ and what remains is showing that the difference of the matrix DV with
its expectation has small spectral norms at the respective thresholds; this involves simple bounds on
the fluctuations of independent random variables.

We will assume that σ and τ assign +1 and−1 labels to an equal number of vertices; this allows
for a clearer presentation, but is not necessary to the argument. We will treat σ and τ as unknown
but fixed, and so expectations and probabilities will all be conditioned on the labelings.

The main technical lemma, whose proof is in the full version of the paper, is the following:

Lemma 1 Define B,DV as above. Assume n1, n2, and p are as in Theorem 3. Then there exists
an absolute constant C so that

1. EB = λ1J/n1 + λ2σσ
T /n1, with λ1 = n1n2p

2 and λ2 = (δ − 1)2n1n2p
2, where J is the

all ones n1 × n1 matrix.

2. For p ≥ n−1/21 n
−1/2
2 log n1, ‖B − EB‖ ≤ Cn1/21 n

1/2
2 p whp.

3. EDV is a multiple of the identity matrix.

4. For p ≥ n−2/31 n
−1/3
2 log n1, ‖DV − EDV ‖ ≤ C

√
n2p log n1 whp.

We also will use the following lemma from Lelarge et al. (2013) to round a unit vector with high
correlation with σ to a ±1 vector that denotes a partition:

Lemma 2 (Lelarge et al. (2013)) For any x ∈ {−1,+1}n and y ∈ Rn with ‖y‖ = 1 we have

d(x, sign(y)) ≤ n
∥∥∥∥ x√

n
− y
∥∥∥∥2 ,

where d represents the Hamming distance.

The next lemma is a classic eigenvector perturbation theorem. Denote by PA(S) the orthog-
onal projection onto the subspace spanned by the eigenvectors of A corresponding to those of its
eigenvalues that lie in S.
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Lemma 3 (Davis and Kahan (1970))
Let A be an n × n symmetric matrix with |λ1| ≥ |λ2| ≥ . . . , with |λk| − |λk+1| ≥ 2δ. Let B

be a symmetric matrix with ‖B‖ < δ. Let Ak and (A + B)k be the spaces spanned by the top k
eigenvectors of the respective matrices. Then

sin(Ak, (A+B)k) = ‖PAk
− P(A+B)k‖ ≤

‖B‖
δ

In particular, If |λ1| − |λ2| ≥ 2δ, |λ2| − |λ3| ≥ 2δ, ‖B‖ < δ, and e2(A), e2(A + B) are the
second (unit) eigenvectors of A and A + B, respectively, satisfying e2(A) · e2(A + B) ≥ 0, then
‖e2(A)− e2(A+B)‖ ≤ 4‖B‖

δ .

Now using Lemmas 1, 2, and 3 we prove parts 1 and 2 of Theorem 3.

Diagonal deletion SVD Let p ≥ n
−1/2
1 n

−1/2
2 log n1. Part 1 of Lemma 1 shows that if we had

access to the second eigenvector of EB, we would recover σ exactly. (The addition of a multiple of
the identity matrix does not change the eigenvectors). Instead we have access to B = EB + (B −
EB), a noisy version of the matrix we want. We use a matrix perturbation inequality to show that
the top eigenvectors of the noisy version are not too far from the original eigenvectors.

Let y1 and y2 be the top two eigenvectors of B, and B̂ be the space spanned by y1 and y2, and
(EB)2 the space spanned by the top two eigenvectors of EB. Then Lemma 3 gives

sin((EB)2, B̂) ≤ C‖B − EB‖
λ2

≤ C n
1/2
1 n

1/2
2 p

(δ − 1)2n1n2p2
= O

(
1

log n1

)
where the inequality holds whp by Lemma 1. Assuming δ ∈ (0, 2), we use the particular case of
Lemma 3 to show that ‖y2 − σ/

√
n1‖ = O(log−1 n1). We round y2 by signs to get z, and then

apply Lemma 2 to show that whp the algorithm recovers 1 − o(1) fraction of the coordinates of σ.
(If δ = 0 or 2, then instead of taking the second eigenvector, we take the component of B̂ perpen-
dicular to the all ones vector and get the same result).

The SVD Let p ≥ n−2/31 n
−1/3
2 log n1. Let y1 and y2 be the top two left singular vectors ofM , and

M2 be the space spanned by y1 and y2. y1 and y2 are the top two eigenvectors ofMMT = B+DV .
Again Lemma 3 gives that whp,

sin((EB)2,M2) ≤ C
‖B − EB‖+ ‖DV − EDV ‖

λ2
≤ C1n

1/2
1 n

1/2
2 p+ C2

√
n2p log n1

(δ − 1)2n1n2p2
= O

(
1

log n1

)
.

This gives ‖y2−σ/
√
n1‖ = O(log−1 n1), and shows that the SVD algorithm recovers σ whp. Note

that in this case ‖DV − EDV ‖ � ‖B − EB‖. It is these fluctuations on the diagonal that explain
the poor performance of the SVD and its need for a higher edge density for success.

8. Theorem 4: Failure of the vanilla SVD

Here we again use a matrix perturbation lemma, but in the opposite way: we will show that the
‘noise matrix’ (DV −EDV ) has a large spectral norm (and an eigenvalue gap), and thus adding the
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‘signal matrix’ approximately preserves the space spanned by the top eigenvalues. This shows that
the top t eigenvectors of B+DV have almost all their weight on a small number of coordinates and
is enough to conclude that they cannot be close to the planted vector σ.

The perturbation lemma we use is a generalization of the Davis-Kahan theorem found in Bhatia
(1997).

Lemma 4 (Bhatia (1997)) Let A and B be n × n symmetric matrices with the eigenvalues of A
ordered λ1 ≥ λ2 ≥ . . . λn. Suppose r > k, λk − λr > 2δ, and ‖B‖ ≤ δ. Let Ar denote the
subspace spanned by the first r eigenvectors of A and likewise for (A+B)k. Then

‖PA⊥r P(A+B)k‖ ≤
‖B‖
δ
.

In particular, if vk is the kth unit eigenvector of (A+ B), then there is some unit vector u ∈ Ar so
that

‖u− vk‖ ≤
4‖B‖
δ

.

We also need to analyze the degrees of the vertices in V1. The following lemma gives some
basic information about the degree sequence:

Lemma 5 Let d1, . . . dn1 be the sequence of degrees of vertices in V1. Then there exist constants
c1, c2, c3 so that

1. The di’s are independent and identically distributed, with distribution di ∼ Bin(n2/2, δp) +
Bin(n2/2, (2− δ)p).

2. Edi = n2p.

3. Whp, max
i
di ≤ n2p+ c1

√
n2p log n1.

4. Whp,
∣∣{i : di ≥ n2p+ c2

√
n2p log n1}

∣∣ ≥ n1/31 .

5. Whp,
∣∣{i : di ≥ n2p+ c3

√
n2p log log n1}

∣∣ ≤ n1/ log n1.

Now we can prove Theorem 4. Let p = cn
−2/3
1 n

−1/3
2 . The left singular vectors of M are the

eigenvectors of B + DV . Recall that DV is a diagonal matrix with the ith entry the degree of the
ith vertex of V1. EDV is therefore a multiple of the identity matrix, and so subtracting EDV from
B + DV does not change its eigenvectors. The standard basis vectors form an orthonormal set of
eigenvectors of DV − EDV .

For the constants c2, c3 in Lemma 5, let η1 = c2
√
n2p log n1 and η2 = c3

√
n2p log logn1.

Order the eigenvalues of DV − EDV as λ1 ≥ λ2 ≥ · · · ≥ λn and let r be the smallest integer
such that λr < η2. Then we have λi − λr ≥ c

√
n2p log n1 for all 1 ≤ i ≤ t. From Lemma 5,

r ≤ n1/ log n1.
We now bound

‖B‖ ≤ ‖EB‖+ ‖B − EB‖ ≤ n1n2p2 + Cn
1/2
1 n

1/2
2 p.
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Now Lemma 4 says that if vi is the ith eigenvector of DV − EDV + B, then there is a vector u in
the span of the first r eigenvectors of DV − EDV so that

‖vi − u‖ ≤ C
n1n2p

2 + n
1/2
1 n

1/2
2 p√

n2p log n1
= O

(
1√

log n1

)
.

The span of the first r eigenvectors of DV − EDV is supported on only r coordinates, so u is
far from σ = σ/

√
n1:

‖u− σ‖ ≥
√

2− 2
√
r/n1 =

√
2−O(1/

√
log n1).

By the triangle inequality, vi must also be far from σ: |vi · σ| = O(1/
√

log n1). This proves
Theorem 4.
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planting for random k-sat. Journal on Satisfiability, Boolean Modeling and Computation, 8:
149–171, 2014.

16



SPECTRAL THRESHOLDS IN THE BIPARTITE STOCHASTIC BLOCK MODEL

Daniel B Larremore, Aaron Clauset, and Abigail Z Jacobs. Efficiently inferring community struc-
ture in bipartite networks. Physical Review E, 90(1):012805, 2014.
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