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Abstract

Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults
worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference
with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for
the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled
receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of
endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules,
an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the
closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated
surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV
c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface
MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to
downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions
of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery
of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance
of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large
number of potential viral targets are expressed.
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Introduction

Viruses that persist asymptomatically in infected individuals

need to evade or modulate immune responses, and particularly the

adaptive T cell responses. A universal mechanism for virus

persistence involves latency, where viral genes are transcriptionally

silenced and, therefore, not available as targets for immune

effectors. In addition, viruses may exhibit active immune-evasion

mechanisms. In this context, the herpesviruses are paradigmatic.

For example, the human cytomegalovirus (HCMV, a b-herpesvi-

rus), encodes at least 25 proteins with immune-modulating

functions [1], of which 5 can impair antigen presentation via

MHC-class I to the CD8+ T cell responses: US6 binds to the

transporter associated with antigen processing (TAP) complex to

inhibit peptide transport from the cytosol to the ER [2–4], US3

[5–7] and US10 [8] interfere with the maturation of MHC class I

heavy chains and their egress from the ER, while US2 and US11

trigger retrograde transport of MHC class I from the ER to the

cytosol with subsequent proteasome-mediated degradation [9–11].

Epstein-Barr virus (EBV) is a c1-herpesvirus whose normal

biology is fundamentally distinct from most other human

herpesviruses in that it has growth-transforming activity for

human B cells [12]. This provides an alternative strategy for

replicating virus genomes in proliferating cells without necessarily

producing infectious viral progeny. This is a potentially dangerous

strategy and it is unsurprising, therefore, that EBV is associated

with the pathogenesis of certain human cancers [12,13].

Nevertheless, EBV has evolved to persist asymptomatically in

most immunocompetent individuals, and it is ubiquitous in adult

populations worldwide. This successful persistence is largely

attributable to the ability of EBV to establish various types of

‘latency’ (i.e. not producing infectious virus progeny) in lymphoid

cells [14]. It is notable that the most restricted forms of latency

(which involve expression either of no viral genes, or of non-coding

small RNAs and possibly the poorly immunogenic EBNA1 and/or

LMP2A proteins) are normally associated with quiescent cells and

can evade recognition by CD8+ T cells [12,14,15]. In contrast, the

form of latency associated with growth transformation is

PLoS Pathogens | www.plospathogens.org 1 January 2009 | Volume 5 | Issue 1 | e1000255



characterized by expression of at least 8 viral proteins, including

immunodominant antigens [12,14,15], together with enhanced

expression of antigen presentation components [16,17] that render

the cells susceptible to recognition and elimination by EBV-

specific CD8+ cytotoxic T cell responses in vivo [12,14,15]. The

increased incidence of EBV-associated B lymphoproliferative

disease in iatrogenically immunosuppressed transplant patients

[12,18] emphasizes the need for adaptive T cell immune responses

to prevent uncontrolled proliferation of EBV-transformed B cells.

While the interaction of EBV with the host immune responses

differs from non-oncogenic herpesviruses during the growth-

transforming phase of virus infection, it does share many

properties with non-oncogenic herpesviruses during the lytic virus

replication phase of the viral life-cycle. Responses to EBV lytic

cycle antigens dominate the EBV-specific T cell response in both

primary and persistent infection with the virus, but the ability of

CD8+ T cells to recognize EBV-infected B cells in lytic cycle is

compromised by a reduced expression of cell surface MHC class I

[15,19,20]. The levels of cell surface MHC class I in lytic cycle

reflect active interference with the antigen processing pathway by

mechanisms that are poorly understood but which are at least in

part due to an impairment of TAP-dependent peptide transport

into the ER [21] and by host protein synthesis shutoff [22]. The

early lytic cycle genes, BNLF2a and BGLF5 were recently identified

as genes targeting TAP function [23] and host-shutoff [22,24]

respectively. While BGLF5 protein remains expressed throughout

lytic cycle, BNLF2a protein expression decreases within 24 hr of

induction and probably only acts during the early stages of lytic

cycle (N. Croft, D. Horst et al, manuscript in preparation).

In the present study, we have identified a third lytic cycle gene

that actively interferes with MHC class I antigen presentation to

CD8+ T cells by increasing the turnover of MHC class I molecules

at the cell surface and targeting them for lysosomal degradation.

This new immune-evasion function of EBV mapped to BILF1,

which was previously identified as a rhodopsin-like seven-

transmembrane segment G-protein coupled receptor (GPCR)

with constitutive signaling functions [25–27]. We have character-

ized the molecular mechanisms by which BILF1 increases MHC

class I turnover, and found them to be independent of its G-

protein activating function and distinct from the mechanisms

employed by other herpesviruses that target MHC class I for

degradation.

Results

BILF1 affects MHC class I expression and antigen
presentation to CD8+ T cells

We initiated a systematic screen of the EBV lytic genes to

identify viral products that might affect MHC class I expression.

EBV genes were cloned into the bicistronic vector pCDNA3-

IRES-nls-GFP, which co-expresses the inserted gene with GFP,

then transfected into 293 and MJS cells. At 48 h after transfection,

the cells were stained with PE-conjugated W6/32 mAb and the

levels of surface MHC class I molecules were measured by flow

cytometry. Representative results of W6/32 staining in transfected

293 cells are shown in Fig. 1A. As a negative control, ‘empty’

pCDNA3-IRES-nls-GFP vector was transfected, and as a positive

control, a known immune-evasion gene was transfected using the

pCDNA3-BNLF2a-IRES-nls-GFP vector. The results show that

the LF2, BMRF2, and BILF2 had no effect on MHC class I levels,

whereas BILF1 caused a reduction comparable to BNLF2a. In

addition, two other EBV genes, LF1 and BXLF2 were also

screened in the same set of experiments and had no effect on

MHC class I levels (data not shown). This assay was then extended

to a second cell line (MJS) chosen for its expression of MHC class

II as well as MHC class I molecules, which confirmed the

downregulation of MHC class I by BILF1, with no effect on the

levels of MHC class II (Fig. 1B).

These screening experiments suggested a specific effect on

surface MHC class I expression by BILF1. To examine this in

more detail, we generated a retroviral expression vector for BILF1,

and transduced both 293 and MJS cells to generate stable cell lines

expressing BILF1. Since the BILF1 in these retroviral vectors

contained an N-terminal HA-tag sequence, expression of BILF1 in

the transduced cells was initially confirmed by staining of viable

cells with anti-HA mAb and flow cytometry analysis (data not

shown). Staining with PE-W6/32 mAb confirmed that expression

of MHC class I expression at the cell surface was reduced in

BILF1-expressing 293 and MJS cells relative to paired lines

transduced with a control retrovirus vector (Fig. 2A). This effect

was reproducibly stronger in the stable retroviral transduced cells

than in the previous transient-transfection experiments. No

downregulation of MHC class II in MJS, nor of transferrin

receptor (TfR) in 293 or MJS, was observed by flow cytometry

(data not shown). Western blots of whole cell lysates showed that

the effect of BILF1 on the levels of cell surface MHC class I were

reflected by a similar decrease in the amount of total cellular

MHC class I heavy chains (Fig. 2B). Notably, the levels of TAP-1

and TAP-2 components of the peptide transporter complex and

calregulin were unaffected by expression of BILF1 (Fig. 2B). Levels

of TfR receptor were unaffected in 293 cells but reproducibly

showed a small increase, along with MHC class II, in MJS cells

(Fig. 2B).

The aforementioned results raised the possibility that BILF1

might cause an impairment of the antigen processing pathway that

would affect antigen recognition by CD8+ T cell responses. To test

this hypothesis, HLA-B8 positive MJS cells were transiently

transfected with p509 plasmid together with control pCDNA3-

IRES-nlsGFP vector or different amounts of pCDNA3-BILF1-

IRES-nlsGFP. The p509 vector expresses BZLF1, an EBV lytic

Author Summary

Epstein-Barr virus (EBV) is a herpesvirus and an important
human pathogen that can cause diseases ranging from
non-malignant proliferative disease to fully malignant
cancers of lymphocytes and epithelial cells. Nevertheless,
the vast majority of people in all populations worldwide
are infected with EBV. After primary infection the virus
persists for the life of the infected individual, and usually
without clinical symptoms. To understand how EBV causes
disease, we also need to know how this virus is able to
persist in healthy individuals with potent immune-
responses. A picture is emerging which suggests that
EBV, similar to non-tumorigenic herpesvirus, has multiple
co-operating mechanisms to modulate immune responses
by interfering with antigen processing pathway in cells
undergoing lytic virus replication. We have now identified
an EBV-encoded protein, BILF1, which targets MHC class I
molecules for lysosomal degradation, leading to impaired
recognition by immune T cells. BILF1 is a constitutively
active G-protein-coupled receptor, but its effect on MHC
class I degradation is independent of its signaling
functions, and the molecular mechanisms are distinct
from those identified in other viruses that induce
degradation of MHC class I. This work aids our under-
standing of EBV biology and emphasizes the complexity of
mechanisms evolved by viruses to enable persistent
infection.

EBV BILF1 Impairs Antigen Processing
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cycle protein that is the target of the HLA-B8 restricted ‘RAK’

CD8+ T cell effector clone. Following co-culture of RAK T cells

with the transfected MJS target cells, the release of IFN-c was

assayed by ELISA as a measure of T cell recognition. The

representative experiment in Fig. 3A shows that the RAK clone

did not respond to vector control transfected MJS, but showed

clear recognition of cells transfected with BZLF1. This recognition

was inhibited in a dose-dependent manner by co-transfection of

BILF1, exceeding 90% inhibition at the highest dose of pCDNA3-

BILF1-IRES-nlsGFP transfected. Similar results were obtained in

3 separate experiments. Western-blots of the transfected target

cells (.. 3B) showed that BILF1 protein expression increased with

increasing amounts of pCDNA3-BILF1-IRES-nlsGFP plasmid, as

expected. Interestingly, the amount of BZLF1 protein also showed

a smaller but reproducible concomitant increase in expression,

possibly as a result of constitutive BILF1 signaling (e.g. activation

of NFkB; see below) enhancing the CMV promoter driving BZLF1

expression in p509. A similar inhibition of EBV-specific CD8+ T

cell recognition by BILF1 was observed in additional experiments

performed with 293 cells transfected with the BMLF1 target

recognized by HLA-A2 restricted T cell clones (data not shown).

In healthy infected individuals, EBV latency is established in the

B lymphocyte pool, which implies that at some stage lytic cycle

must occur in B cells for the virus to be transmitted to epithelial

cells or other hosts. We therefore examined the effect of BILF1

expression in B cells. To simplify the experiment, we chose to use

LCLs that had been established by infection of normal resting B

cells with a BZLF1 knock-out recombinant EBV; this provided us

with a range of endogenous latent proteins as target antigens in a

good antigen-presenting host cell which was unable to enter lytic

cycle and, therefore, unable to express BILF1 from the viral

genome. These LCL were transduced with a PLZRS-BILF1-

IRES-GFP retrovirus, and 6 days later were stained for surface

MHC class I and class II molecules with PE-conjugated

antibodies. The GFP positive (BILF1+) population was shown by

flow cytometry to express almost 40% less surface MHC class I

compared to the GFP negative (BILF12) population in the same

culture (Fig. 4A). The expression of BILF1 did not affect the

expression of surface MHC class II molecules. The reduction in

the expression of surface MHC class I by BILF1 was smaller than

that seen in 293 and MJS cells (Fig. 2), but was reproducibly

observed in 3 experiments with two different LCLs.

To examine the functional significance of this BILF1-mediated

reduction of surface MHC class I expression, EBV-specific T cell

recognition experiments were performed on GFP+ cells isolated on

a fluorescence activated cell sorter after transduction with either a

control retrovirus (PLZRS-IRES-GFP) or the BILF1 retrovirus

(PLZRS-BILF1-IRES-GFP). These cells were used as targets in T

cell assays with different effector cell clones specific for

constitutively-expressed latent EBV proteins. The representative

experiments in Fig. 4B show that CD8+ effectors specific for one of

three different latent proteins (EBNA1, HLA-B35 restricted;

Figure 1. BILF1 identified as a lytic gene that downregulates surface MHC class I. 293 (A) or MJS (B) cells were transfected with different
EBV genes in the bi-cistronic vector, pCDNA3-IRES-nlsGFP. At 48 hr post-transfection, surface MHC class I was stained with PE-conjugated W6/32 mAb
and (in MJS only) MHC class II was stained with PE-conjugated anti-DR mAb, YE2/36-HLK. Two-colour flow cytometry was used to analyse staining in
the untransfected GFP2 population, shown as the solid line histogram, and in the transfected GFP+ population, shown as the dashed line histogram.
The grey histogram denotes background staining obtained with an isotype control PE-conjugated antibody.
doi:10.1371/journal.ppat.1000255.g001

EBV BILF1 Impairs Antigen Processing
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EBNA3A, HLA-B35 restricted; and LMP2A, HLA-A2 restricted)

all recognized the BILF1-expressing LCLs less efficiently than the

control LCLs. In contrast, recognition of BHRF1 antigen by

HLA-DR4 restricted CD4+ effectors was not significantly different

between the control and BILF1-expressing LCLs (Fig. 4B). Similar

results were obtained in 3 separate experiments.

Figure 2. Characterization of cells stably transduced with a BILF1 retroviral vector. (A) 293 or MJS cells were stably transduced with
control (pQCXIH) or BILF1 (pQCXIH-HABILF1) retrovirus. Surface MHC class I molecules were stained with PE-conjugated W6/32 antibodies and
analyzed by flow cytometry. The solid line histograms depict the surface HLA class I staining of control cell lines, while the dashed line histogram
depicts the surface HLA class I staining of cell lines expressing BILF1. The grey histogram illustrates background staining obtained with an isotype
control PE-conjugated antibody. (B) Total cell lysates were generated from the retrovirus-transduced 293 and MJS cell lines, and 26105 cell
equivalents were separated by SDS-PAGE and analyzed by Western Blotting with mAbs specific for BILF1 (3F10, anti-HA tag), MHC class I (HC10), MHC
class II (DA6.147), TAP-1 (148.3), TAP-2 (435.3), TfR (H68.4) or with polyclonal antibodies to calregulin as a loading control.
doi:10.1371/journal.ppat.1000255.g002

EBV BILF1 Impairs Antigen Processing
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BILF1 decreases the half-life of newly-synthesised MHC
class I molecules

To further examine the mechanism of the effect of BILF1 on

MHC class I, we conducted a pulse-chase analysis of radio-labeled

molecules to study the fate of newly synthesized MHC class I

molecules. Control and BILF1+ 293 cells were pulse-labeled with
35S-methionine/cysteine and chased at 37uC in medium contain-

ing cold methionine and cysteine. At each time point, cells were

lysed in NP40 detergent buffer and immunoprecipitated with mAb

W6/32, which reacts with properly assembled MHC class I

complexes.

In the first set of pulse-chase experiments, the immunoprecip-

tated MHC class I heavy chains were treated with endoglycosidase

H (Endo-H), an enzyme which deglycosylates newly-synthesized

heavy chains but not the mature form that has been exported from

the ER. Most MHC class I heavy chains were Endo-H-sensitive at

the beginning of the chase, as expected for newly synthesised

heavy chain in the ER. Within 30–60 min, nearly all heavy chains

became Endo-H-resistant. The rate of conversion of MHC class I

heavy chain to the Endo-H resistant form was similar in control

293 cells and in BILF1+ 293 cells (Fig. 5A). These results indicate

that the export of MHC class I from the ER and its passage

through the Golgi is not impeded by BILF1, and that BILF1 most

probably acts at a later stage.

In order to compare the half life of MHC class I molecules, cells

were pulsed with radiolabel for 15 min, then chased for up to 8 h

before lysis and immunoprecipitation. As shown in Fig. 5B (upper

and middle panels), both MHC class I heavy chain and its

associated b2-microglobulin showed a half-life of around 8 h in

the control 293 cells, which was reduced to around 5 h in BILF1+

293 cells. In the same experiment, immunoprecipitations of the

TfR showed no difference between control and BILF1+ 293 cells

(Fig. 5B, lower panel).

It is worth noting that over a series of experiments the

incorporation of radiolabel into MHC class I molecules was not

reduced in BILF1-expressing 293 cells relative to the control cells,

indicating that BILF1 did not inhibit their translation.

Physical association of BILF1 with MHC class I complexes
In the pulse-chase and immunoprecipitation of MHC class I, an

additional co-precipitating band at around 33 kD was reproducibly

observed in W6/32 immunoprecipitates of BILF1-293 lysates but

not in control lysates (data not shown). To test the hypothesis that

this band might be the smaller, non-glycosylated, form of BILF1 co-

precipitating with MHC class I, we carried out a second round of

precipitations on eluates from the W6/32 precipitations. The

eluates were first diluted in lysis buffer, then equal aliquots were re-

precipitated either with a mAb to the HA-tag of BILF1 or with the

HC10 mAb to MHC class I free heavy chain. As shown in Fig. 6A,

re-precipitation of the W6/32 eluate from BILF1+ 293 cells with

anti-HA revealed a band at around 33 kD and a smear at 48–55 kD

(lane 2) that were not present in the re-precipitation with HC10

mAb (lane 4), and neither were they detectable in the anti-HA re-

preciptate of the control 293 sample (lane 1). These experiments

indicated that BILF1 associated with the MHC class I complex. It is

also worth noting that re-precipitation with HC10 mAb pulled

down a ladder of bands above the MHC class I heavy chain

(indicated with asterisks in Fig. 6A), which probably represent

ubiquitinated MHC molecules; the intensity of these bands was

indistinguishable between control 293 and BILF1+ 293 cells.

To confirm the association of MHC class I with BILF1,

additional immunoprecipitations were conducted with lysates from

non-radiolabeled cells. Here, control 293 and BILF1+ 293 cells

were again solubilized in NP40 detergent buffer, then immuno-

precipitated with W6/32 (MHC class I), anti-HA (BILF1), or anti-

TfR, before analysis by Western blotting. As shown in Fig. 6B,

some MHC class I molecules were co-precipitated by anti-HA

mAb (lane 6, top blot), and some BILF1 molecules were co-

precipitated by W6/32 mAb (lane 4, middle blot). In the control

TfR immunoprecipitations, no co-precipitation of MHC class I or

BILF1 was observed (lane 8, top and middle blots). Taken

together, the radiolabeled and cold immunoprecipitation data

provide compelling evidence that BILF1 physically associates with

the MHC class I molecules. Indeed, since weak co-precipitating

BILF1 bands were even seen immediately following a 15 min

pulse-label (data not shown), it is likely that the interaction first

occurs in the ER.

BILF1 is associated with MHC class I molecules on the cell
surface and increases their rate of internalization

For other viral proteins known to target MHC class I molecules

for degradation, three broad mechanisms have been identified:

either they induce retrograde transport from the ER to the cytosol

for degradation by proteasomes, as exemplified by HCMV US2

and US11 [9–11]; or they redirect them to endolysosomal vesicles

for degradation, exemplified by gp48 of murine CMV [28]; or

they trigger enhanced endocytosis of MHC class I from the cell

surface, followed by lysosomal degradation, as exemplified by K3

and K5 of KSHV [29].

Figure 3. BILF1 inhibits T cell recognition of endogenous EBV
antigen in MJS cells. (A) MJS cells were co-transfected with 0.02 mg
p509 plasmid (BZLF1 expression vector) and different amounts (0–2 mg)
of pCDNA3-HABILF1-IRES-nlsGFP bulked to a constant amount of DNA
with control plasmid. At 24 hr post-transfection, the MJS cells were co-
cultured with CD8+ effector ‘RAK’ T cells for a further 18 hrs and the
supernatants were tested for the release of IFN-c as a measure of T cell
recognition. All results are expressed as IFN-c release in pg/ml and error
bars indicate standard deviation of triplicate cultures. (B) Total cell
lysates were generated from the above transfections, and 26105 cell
equivalents were separated and analyzed by Western Blotting using
antibodies specific for BZLF1, HA tag (BILF1), or calregulin as a loading
control.
doi:10.1371/journal.ppat.1000255.g003

EBV BILF1 Impairs Antigen Processing
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Figure 4. BILF1 downregulates surface MHC class I expression and inhibits the T cell recognition of endogenous EBV antigen in
LCLs. (A) LCLs were transduced with PLZRS-HABILF1-IRES-GFP retrovirus. After 6 days, surface MHC class I was stained with PE-conjugated W6/32
mAb and MHC class II was stained with PE-conjugated anti-DR mAb, YE2/36-HLK. Two-colour flow cytometry was used to analyze staining in the
untransduced, GFP2, population, shown as the solid line histogram, and in the transduced GFP+ (BILF1+) population, shown as the dashed line
histogram. The grey histogram denotes background staining obtained with an isotype control PE-conjugated antibody. (B) LCL cultures transduced
with control retrovirus or with the BILF1 retrovirus were sorted by flow cytometry to generate GFP+/BILF12 and GFP+/BILF1+ lines to use as targets in
assays with EBV-specific T cells. The control and BILF1+ LCL targets were incubated with HLA-matched CD8+ effector T cells clones specific for EBNA1
(HPV), EBNA3A (YPL), or LMP2A (CLG) peptides, or a CD4+ effector T cell clone specific for a BHRF1 (PYY) peptide. After 18 hrs the supernatants were
tested for the release of IFN-c as a measure of T cell recognition. All results are expressed as IFN-c release in pg/ml and error bars indicate standard
deviation of triplicate cultures.
doi:10.1371/journal.ppat.1000255.g004

EBV BILF1 Impairs Antigen Processing
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In order to investigate which of these mechanisms might be

employed by BILF1, we first examined the cellular localisation of

BILF1. Confocal microscopy of BILF1-espressing 293 cells showed

that BILF1 was predominantly located in the plasma membrane

(Fig. 7A). Since antibodies to the HA-tag engineered to the N-

terminus of BILF1 allowed detection of BILF1 at the surface of

viable cells, we were able to examine whether the association

between MHC class I molecules and BILF1 can also be

demonstrated at the cell surface. Thus, viable control 293 and

BILF1+ 293 cells were first incubated with W6/32 (MHC class I),

anti-HA (BILF1), or anti-TfR on ice to allow the antibodies to

bind to the surface antigen. After removal of excess unbound

antibodies by washing, the cells were then solubilized in NP40

detergent buffer and the antibody:antigen complexes precipitated

with protein A/G beads. As shown in Fig. 7B, some MHC class I

molecules were co-precipitated by anti-HA mAb (sample 4, upper

blot), and some BILF1 molecules were co-precipitated by W6/32

mAb (sample 2, lower blot). In the control TfR immunoprecip-

itations, no co-precipitation of MHC class I or BILF1 was

observed (sample 6).

We next asked whether BILF1 enhances the endocytosis of

surface MHC molecules. In MJS cells, BILF1 substantially

increased the rate of disappearance of MHC class I molecules

from the cell surface, but did not affect the rate of disappearance of

MHC class II molecules (Fig. 7C). Similar results were obtained

with LCLs that had been transduced with a BILF1 retrovirus (data

not shown). In 293 cells, expression of BILF1 reproducibly

increased the rate of disappearance of MHC class I molecules

from the cell surface, although the magnitude of the effect was

masked by the unusually high rate of disappearance in the control

293 cells (Fig. 7D, upper graph). Importantly, the rate of

Figure 5. Effect of BILF1 on maturation and degradation of
MHC class I molecules. (A) Acquisition of endoglycosidase H (Endo
H) -resistance of MHC class I heavy chain. 293 cells (26106) stably
transduced with control or BILF1 retrovirus were metabolically labeled
for 15 min with 35S-methionine/cysteine and chased for the indicated
time periods. After lysis in NP-40 detergent buffer, samples were
immunoprecipitated with mAb W6/32 and treated with Endo H
enzyme. Protein samples were separated by 10% acrylamide SDS/PAGE
gel, dried and exposed to autoradiography. (B) Kinetics of MHC class I
molecule degradation. 293 cells (26106) stably transduced with control
or BILF1 retrovirus were metabolically labeled for 15 min and chased for
the indicated time periods. After lysis in NP-40 detergent buffer,
samples were immunoprecipitated with mAb W6/32 (HLA class I heavy
chain and b2-microglobulin) or H68.4 (TfR). Protein samples were
separated by 10% SDS/PAGE gel, dried and exposed to autoradiogra-
phy.
doi:10.1371/journal.ppat.1000255.g005

Figure 6. BILF1 is physically associated with the MHC class
molecule complex. (A) 293 cells (107) stably transduced with control
(C) or BILF1 (B) retrovirus were metabolically labeled for 15 min and
chased for 20 min. After lysis in NP-40 buffer and immunoprecipitation
with mAb W6/32, the samples were dissociated by boiling in reducing
sample buffer, and were re-precipitated with either 3F10 ( HA tag on
BILF1) or HC10 (MHC class I heavy chain). Protein samples were
separated by 10% acrylamide SDS/PAGE gel, dried and exposed to
autoradiography. The arrowhead and bracket indicate the presence of
33 kD and 45–55 kD BILF1 bands, whilst the asterisks indicate probable
ubiquitinated MHC class I species. (B) 293 cells (26106) stably
transduced with control (C) or BILF1(B) retrovirus were treated with
concanamycin A (50 nM) for 20 hr prior to lysing the cells with NP40
detergent buffer and immunoprecipitation with antibodies specific for
MHC class I (W6/32), HA tagged BILF1 (12CA5), or TfR (H68.4). Cell
lysates and immune complexes were separated by SDS/PAGE gel, and
analyzed by western blotting using antibodies specific for MHC class I
(HC10), HA tagged BILF1 (3F10), and TfR (H68.4). The first two samples
on the gel are total cell lysates representing 5% of the input lysate for
immunoprecipitations.
doi:10.1371/journal.ppat.1000255.g006
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appearance of new MHC class molecules at the cell surface was

identical for the first 30 min of analysis; thereafter, the appearance

of new MHC class I molecules reached a plateau in BILF1+ cells,

while new molecules continued to accumulate for at least a further

30 min in control 293 cells (Fig. 7D, lower graph). We interpret

the differences between control and BILF1 cells in these latter

experiments to be due to the effect of the increased rate of

internalisation of MHC class I molecules that becomes apparent

after 20–30 min (see Fig. 7D, upper graph). Together, the results

in Fig. 7A–D suggest that BILF1 targets the mature MHC class I

complexes for degradation after they reach the cell surface.

Lysosomal inhibitors block BILF1-induced degradation of
MHC class I

We used a panel of inhibitors to identify the mechanism of

BILF1-induced degradation of MHC class I molecules, including:

bafilomycin A1 and concanamycin A, which can inhibit

proteolysis by raising endolysosomal pH [30,31]; leupeptin, which

inhibits cysteine and serine proteases [32]; and the proteasome

inhibitor, MG132 [33]. Control and BILF1+ 293 cells were

incubated with or without these inhibitors for 20 hr before

harvesting the cells for Western blot analysis. The representative

blot probed with HC10 in Fig. 8A shows that bafilomycin A1,

concanamycin A, and leupeptin all restored the level of MHC class

I heavy chains in BILF1-293 cells to the same levels seen in

control-293. The blots from three independent experiments were

quantitated by densitometry, and the mean values shown in the

histogram beneath the blot in Fig. 8A.

Fluorescence microscopy of BILF1+ cells treated with lysosomal

inhibitors revealed a marked accumulation of intracellular MHC

class I staining that was not observed in BILF12 cells treated with

lysosomal inhibitor (Fig. 8B), nor in BILF1+ cells treated with the

proteasome inhibitor, MG132 (data not shown). Furthermore,

quantitation of the total cell MHC class I protein in Western blots

revealed that the BILF1+ 293 cells retained their overall reduced

expression of MHC class I molecules relative to control 293 cells

following treatment with the proteasome inhibitor (Fig. 8C).

Taken together, the results in Figs. 7 and 8 suggest that the

accelerated degradation induced by BILF1 occurs within an

endolysosomal compartment following internalisation of MHC

class I complexes from the cell surface.

Comparison of BILF1/GPCR homologs
It is well established that many, if not all, herpesviruses encode

proteins with features of GPCRs [27]. The most closely related

vGPCR to BILF1 amongst the human herpesviruses is the ORF74

product of KSHV (a c2-herpesvirus), which shares just 15% amino

acid sequence identity and 29.7% similarity with BILF1 (Fig. 9A).

However, a more closely related herpesvirus , CeHV15 (a c1-

herpesvirus, as is EBV), of the Rhesus Old World primate encodes

a BILF1 homolog sharing 80.4% amino acid sequence identity

and 88.5% similarity with EBV BILF1 (Fig. 9A).

Figure 7. BILF1 associates with MHC class I molecules at the cell surface and increases their rate of internalization. (A) BILF1 is
predominantly localized at the cell surface. 293 cells stably transduced with BILF1 retrovirus were grown on glass slides, fixed and permeabilized, then
stained with rat anti-HA (3F10) primary antibodies and Alexa FluorH 594 goat anti-rat IgG. The nuclei were counterstained with DAPI. The stained
slides were analyzed with a laser scanning confocal microscope, and the three photographs show different 1 micron-thick sections through
representative cells. BILF1 stained red, and the nuclei stained blue. (B) BILF1 and MHC class I molecules co-precipitate at the cell surface. 293 cells
(26106) stably transduced with control (C) or BILF1 (B) retrovirus were incubated with saturating concentrations of antibodies specific for MHC class I
(W6/32), TfR (H68.4) or HA tagged BILF1 (3F10) on ice. After washing away excess antibody, the cells were lysed with NP40 detergent buffer, then
precipitated with protein A/G beads and subjected to western-blotting as in Fig. 6B, using antibodies specific for MHC class I (HC10) and HA tagged
BILF1 (3F10). (C) BILF1 increases the rate of internalization of MHC class I, but not class II, from the cell surface. MJS cells stably transduced with
control or BILF1 retrovirus were incubated at 0uC with saturating concentrations of mAb to MHC class I (W6/32; top graph) or MHC class II (L234;
bottom graph), then washed and incubated at 37uC for different periods of time. The cells were subsequently stained with PE-conjugated goat anti-
mouse IgG antibody, and analyzed by flow cytometry. The mean fluorescence intensities of staining were averaged for triplicate samples, and
normalized to the initial time 0 min samples. (D) BILF1 increases the rate of internalization, but not the rate of appearance, of MHC class I at the cell
surface. Top graph: 293 cells stably transduced with control or BILF1 retrovirus were incubated at 0uC with saturating concentrations of mAb to MHC
class I (W6/32), then treated exactly as for the internalization assay performed with MJS cells in panel C. Bottom graph: replicate aliquots of the
saturated W6/32-bound cells were harvested at the indicated time points, and the appearance of new MHC class I molecules was assayed by staining
with PE-conjugated W6/32 antibody. The mean fluorescence intensities of staining were averaged for triplicate samples.
doi:10.1371/journal.ppat.1000255.g007
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In order to investigate whether these vGPCRs shared with EBV

BILF1 the ability to downregulate MHC class I, we cloned them

into the bicistronic vector pCDNA3-IRES-nls-GFP and transient-

ly transfected them into 293 and MJS cells, and analysed their

effect on cell surface MHC class I expression exactly as in Fig. 1.

The results illustrated by a representative experiment in Fig. 9B,

show that Rhesus CeHV15-BILF1 clearly did reduce MHC class I

expression at the cell surface, but that KSHV-ORF74 did not.

Figure 8. Lysosomal inhibitors block BILF1-enhanced degradation of MHC class I. (A) 293 cells stably transduced with control- (C) or BILF1-
(B) retrovirus were treated with or without Bafilomycin A1, concanamycin A, or leupeptin for 20 hr. Lysates from 26105 cell equivalents were
separated by SDS/PAGE gel, and analyzed by western blotting using antibodies specific for MHC class I (HC10) and calregulin. The blot is one
representative of three independent experiments. The histogram shows the mean results (6S.D.) of quantification by densitometry of all the blots
from 3 independent experiments, where the densities of the HC10 bands were normalized relative to their own calregulin loading control. (B) 293
cells stably transduced with control or BILF1 retrovirus were treated with concanamycin A (50 nM) for 6 hr prior to fixation and permeabilization with
methanol/acetone, then stained with W6/32 primary antibodies and Alexa FluorH 488 goat anti-mouse IgG secondary antibodies. The photographs
were obtained with a conventional fluorescence microscope. (C) 293 cells stably transduced with control (C) or BILF1 (B) retrovirus were treated with
or without the proteasome inhibitor, MG132, for 20 hr, and analyzed by western blot as in panel A. The additional, lower molecular weight species
detected is probably deglycosylated and/or partially degraded free heavy chain that is normally targeted for proteasomal degradation.
doi:10.1371/journal.ppat.1000255.g008
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Downregulation of MHC class I by BILF1 is independent
of its signaling function

Since different vGPCRs activate different G-proteins and

signalling pathways, the results in Fig. 9 could be interpreted as

indicating that shared signalling functions of the EBV and

CeHV15 vGPCRs determine their ability to downregulate

MHC class I. To test this hypothesis, we obtained a signaling-

negative mutant of EBV BILF1. The BILF1 polypeptide contains

an EKT sequence in its predicted third transmembrane domain,

which represents a conservative amino acid substitution of the

‘DRY box’ (i.e. residues with acidic, basic, polar side chains),

known to be important in G-protein signaling [27,34]. Substitution

of an alanine for lysine at residue 122 abolished G-protein

activation and BILF1 signaling function, as we observed by

Figure 9. The ability of BILF1 homologs to downregulate MHC class I. (A) Multiple sequence alignment of EBV-BILF1, the rhesus
lymphocryptovirus CeHV15-BILF1, and KSHV-ORF74. The alignment was done with ClustalW version 1.8, and shading was done with Boxshade
version 3.21, available at http://www.ch.embnet.org/software/BOX_form.html. (B) 293 or MJS cells were transfected with EBV-BILF1, CeHV15-BILF1 or
KSHV-ORF74 genes in the bicistronic vector, pCDNA3-IRES-nlsGFP. At 48 hr post-transfection, surface MHC class I molecules were stained and
analyzed exactly as in Fig. 1.
doi:10.1371/journal.ppat.1000255.g009
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transfecting wild-type BILF1 or the K122A-BILF1 mutant into the

HEK293-NFkB reporter line. The results in Fig. 10A are the

mean of three independent experiments, and show that whereas

transfection of wt-BILF1 typically induced more than a 5-fold

increase in NFkB activity relative to the empty vector control

transfectant, the K122A-BILF1 mutant did not induce any

discernable NFkB activation above the vector control. In both

293 and MJS cells, transient transfection of the mutant K122A-

BILF1 was able to cause downregulation of MHC class I (Fig. 10B).

These results suggest that the ability of BILF1 to target MHC class

I molecules for endolysosomal degradation is not critically

dependent upon its signaling function.

Discussion

In this study we have shown that the BILF1 protein, which was

recently identified as a constitutive signaling vGPCR [25,26], can

downregulate cell surface MHC class I and abrogate EBV-specific

T cell recognition. The essential elements of the mechanism of this

immune evasion function have been elucidated. Pulse–labeling

and immunoprecipitation experiments with BILF1-transduced

cells revealed that BILF1 associates with MHC class I molecules

within 15 mins of biosynthesis. The MHC class I molecules can

mature to the Endo H-resistant glycosylated form as normal, but

were more rapidly internalized from the cell surface and were

degraded by lysosomal enzymes. The effects of BILF1 on MHC

class I were not critically dependent upon the activation of G-

protein signaling, and were not exhibited by the most closely

related human herpesvirus GPCR homolog, the ORF74 protein of

KSHV, which has 15% amino acid sequence identity with EBV

BILF1. Interestingly, the BILF1 homolog of a Rhesus c1-

herpesvirus (CeHV15 BILF1, showing 80% amino acid identity

with EBV BILF1) did downregulate MHC class I similarly to EBV

BILF1. This observation reinforces the degree of similarity in the

sequences and functions of the EBV and CeHV15, and

strengthens the case for CeHV15 infection of Rhesus Macaques

being an excellent animal model for understanding the interplay

between immune responses and virus-infected cells during

persistence of the virus in the healthy host and the development

of virus-induced tumors [23,35,36].

Our in vitro studies, identifying a new function for BILF1, add to

the complexity of the immune-evasion mechanisms of Epstein-

Barr virus during lytic replication. EBV has now been demon-

strated to target the MHC class I antigen processing pathway at

the level of translation, through BGLF5 [22,24]; peptide transport,

through BNLF2a [23]; and by targeting mature MHC class I

molecules for degradation, through BILF1. BGLF5 and BNLF2a

are both products of early lytic cycle genes [24,37], but there are

conflicting reports on the early/late status of BILF1 [25,26,37].

Our own results (D. van Leeuwen, unpublished) show that

induction of BILF1 mRNA expression during lytic cycle is

insensitive to phosphonoacetic acid treatment, indicating that it

is an early gene, although its appearance is delayed relative to

BNLF2a transcripts. The temporal expression of BNLF2a, BGLF5

and BILF1 proteins and their impact at different points along the

antigen processing pathway, suggest that their cooperative effects

will cause efficient abrogation of antigen presentation, particularly

at the later stage of lytic cycle. This is consistent with the

observation that CD8+ T cell responses to late lytic cycle antigens

are rare compared to the responses to immediate-early and early

antigens [20]. It has also been suggested that the viral IL-10

homolog (vIL-10) produced by the BCRF1 gene might be involved

in evasion from CD8+ T cell responses since vIL-10 can selectively

reduce levels of TAP-1 mRNA, and therefore peptide transport, in

human B cells [38]. However, since BCRF1 is a late gene, any

autocrine effects of vIL-10 on TAP-1 mRNA would be masked by

the earlier expression of the host-shutoff protein, BGLF5 [22,24].

In the context of immune-evasion, it is likely that secreted vIL-10

may be more relevant to bystander B cells being infected by the

virus released from cells undergoing lytic replication in vivo,

coupled with the effects of vIL-10 on T cell and NK cell functions.

BILF1 is a seven transmembrane segment GPCR which, like

many vGPCRs encoded by herpesviruses, shares structural and

functional characteristics with chemokine receptors [25–27]. One

role of viral chemoreceptors is to contribute to efficient lytic

replication cycle by reprogramming the host cell through multiple

signaling pathways [27], a process that might aberrantly lead to

cellular transformation and oncogenesis, as has been suggested for

KSHV ORF74 [39–41]. In addition, it has long been recognized

that viral chemoreceptors have the potential to contribute to

immune-evasion strategies. For example, Bodaghi and colleagues

reported in 1998 that one of the four vGPCRs of HCMV, encoded

by US28, can modify the chemokine environment of infected cells

by binding and internalizing MCP-1 (monocyte chemoattractant

protein) and RANTES (regulated on activation, normal T cell

expressed and secreted) to efficiently sequester these chemokines.

In certain cellular contexts, i.e. latent infection of monocytes with

HCMV, US28 can also transcriptionally upregulate MCP-1

Figure 10. BILF1 signaling function is not required to
downregulate MHC class I. (A) Wild-type or K122A-mutant BILF1
expression plasmids were transfected into the HEK293-NFkB reporter
cell line, and the degree of NFkB activation measured by detection of
luciferase activity. The results are the mean6S.D. for three independent
experiments performed in triplicate. (B) 293 and MJS cells were
transfected with wild type BILF1 or mutant K122A-BILF1 genes in the
bicistronic vector, pCDNA3-IRES-nlsGFP. At 48 hr post-transfection,
surface MHC class I molecules were stained and analyzed exactly as
in Fig. 1.
doi:10.1371/journal.ppat.1000255.g010
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expression [42], whilst during lytic cycle in fibroblasts the

transcription of MCP-1 is downregulated [43], though not by

US28. Similarly to HCMV US28, the U51 GPCR of HHV6 is

also able to bind and sequester RANTES and MCP-1, but the

HHV6 U51 additionally induces transcriptional downregulation of

RANTES [44]. These examples of transcriptional regulation of

immune-modulating chemokines by vGPCRs of b-herpesvirus are

likely to be more significant in the lytic cycle of this virus

subfamily, where host protein synthesis shutoff is not a feature of

lytic cycle as it is in a- and c-herpesviruses [22].

Our observation with BILF1 represents the first example of a

viral GPCR/chemokine receptor interfering directly with the

MHC class I antigen processing pathway. Interestingly, a similar

phenomenon was recently reported for the cellular chemokine

receptor, CXCR4 [45]. Thus, CXCL12 ligand-induced activation

of CXCR4 on malignant cancer cell lines and peripheral blood

mononuclear cells triggered down-regulation of MHC class I from

the cell surface. Mechanistically, this process involves physical

association of CXCR4 with the b2-microglobulin component of

mature MHC class I complexes, ubiquitination of the MHC class I

heavy chain, and endocytosis of MHC complexes into a late

endosomal/lysosomal compartment where degradation presum-

ably occurs. Although BILF1 is unable to directly associate with

b2-microglobulin (JZ, unpublished data) and we have no evidence

that BILF1 induces ubiquination of MHC class I heavy chains

above the levels seen in control BILF12 cells (Fig. 6), CXCR4 does

share some broad features with the mechanism by which BILF1

downregulates MHC class I, which raises the possibility that

targeting of the antigen processing pathway might not be a

property uniquely associated with the c2-herpesvirus BILF1

vGPCRs. It is perhaps relevant that when co-expressed in the

same cell, BILF1 and CXCR4 show almost complete co-

localization (both being present predominantly in the plasma-

membrane), whereas the KSHV-ORF74 and HCMV-US28

vGPCRs (predominantly intracellular) exhibit separate localiza-

tions to BILF1 [25].

Many other viral gene-products have been shown to target

MHC class I molecules for degradation. Some, such as the US3,

US10, US2 and US11 proteins of HCMV, target MHC molecules

before they reach the cell surface, either by interfering with the

maturation of MHC class I molecules and their egress from the

ER [5–8] or by inducing retrograde transport from the ER to the

cytosol with subsequent degradation by proteasomes [9–11].

Other viral proteins, such as the KSHV K3 and K5 proteins

[29,46,47], induce endocytosis and lysosomal degradation of cell

surface MHC class I complexes. Although BILF1 shares no

obvious structural or sequence properties with any of these viral

proteins, the mechanism of interference with MHC class I by

BILF1 shares many features with those proteins that induce

endocytosis of cell surface MHC class I molecules and subsequent

degradation. However, whereas, KSHV K3 and K5 proteins were

shown to induce ubiquitination of MHC class I heavy chains,

which appears to be a signal for endocytosis and subsequent

degradation [48,49], we found no evidence that BILF1 induced

ubiquitination of MHC class I heavy chains above the level seen in

control BILF1-negative cells. Furthermore, BILF1 lacks a plant

homeodomain (PHD) or RING-finger motif present in K3 and K5

proteins that are necessary for their ability to induce ubiquitination

of MHC class I molecules [49–51].

Some viral proteins, such as murine CMV gp48 [28] and the

HHV-6A/B U21 proteins [52], contain dileucine motifs in their

cytosolic C-terminus that have been shown to be important for

lysosomal targeting of MHC class I complexes, but no dileucine

motif is present in the cytosolic domains of BILF1. The HIV-1 Nef

protein contains a typical di-leucine motif that is involved in the

binding of adapter proteins involved in membrane trafficking

[53,54], although mutation of this motif does not affect the ability

of Nef to downregulate MHC class I [55]. Indeed, although Nef

was one of the first viral proteins reported to induce endocytosis

and degradation of MHC class I molecules from the cell surface

[56], it is now unclear to what extent endocytosis of MHC class I

accounts for its downregulation by Nef. An alternative explanation

is that Nef acts predominantly by diverting intracellular MHC

class I complexes to endosomes and lysosomes before they can

reach the plasma-membrane [57–59]. This would make Nef more

similar to murine CMV gp48 which also diverts MHC class I from

the ER to the lysosomal compartment for degradation [28].

Since BILF1 is predominantly located in the plasma membrane,

our data on BILF1 suggest that endocytosis of surface MHC class I

molecules associated with BILF1 is likely to be the main

mechanism of targeting the MHC class I molecules to the

lysosome. However, we cannot yet rule out the possibility that

some MHC class I molecules might also be diverted before they

reach the surface. An investigation of what adaptor molecules can

associate with BILF1 will provide crucial information to elucidate

the finer details of BILF1’s mechanism of action. It also remains to

be determined what are the sequence elements of BILF1 that are

involved in its association with MHC class I molecules.

Experiments are ongoing to resolve these unanswered questions.

It is perhaps surprising that BILF1 can inhibit T cell recognition

so efficiently when it has a comparatively small effect on the levels

of surface MHC class I (see Figs. 2–4). There are a number of

possible explanations for this. First, BILF1 might target different

HLA alleles with different efficiency. Thus, while HLA-A2, -B8,

and B35 might be efficiently removed from the cell surface for

degradation, other alleles recognized by W6/32 antibody may be

unaffected and will mask the full extent that selected MHC

molecules are being degraded. Secondly, the association of BILF1

with MHC class I molecules in the ER might interfere with

Tapasin or TAP binding and thus interfere with correct peptide

loading, while stabilizing a defective MHC complex and allowing

egress from the ER. Thirdly, the association of BILF1 with MHC

class I molecules at the cell surface might directly interfere with

recognition by TCR. None of these possibilities is mutually

exclusive, and further work is ongoing to test them.

In summary, through identifying and partially characterizing

the molecular mechanisms of an immune-evasion function for

BILF1, we have extended our understanding of the normal

biology of an important human pathogen. The discovery of a third

EBV lytic cycle gene that cooperates to interfere with MHC class I

antigen processing underscores the importance of the need for

EBV to be able to evade CD8+ T cell responses during the lytic

replication cycle, at a time when such a large number of potential

viral targets are expressed.

Materials and Methods

Plasmids and retroviral expression vectors
The EBV lytic genes BMRF2, BILF1, BILF2, and BXLF2 were

PCR-amplified from the B95.8 virus sequences, and LF1 and LF2

from Raji EBV sequences, within the Bacterial artificial Chromo-

some (BAC) plasmid, 2089 [60]. The KSHV gene ORF74 was

PCR-amplified from a KSHV BAC [61]. The BILF1 homolog of a

Rhesus lymphocryptovirus was PCR-amplified from a cosmid

derived from the CeHV15 virus, [62] that was kindly provided by

F. Wang (Harvard Medical School, Boston). All the viral genes

were subcloned into the EcoRI/NotI sites of pCDNA3-IRES-nls-

GFP vector with an additional 59-HA tag. All plasmids were
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verified by restriction digest and sequence analysis. EBV BNLF2a

with 39-HA tag in pCDNA3-IRES-nls-GFP vector has been

described previously [23]. Expression plasmids p509, containing

the EBV BZLF1 gene, and pCEP4-SM, containing the EBV

BSLF2/BMLF1 spliced gene, have been described previously [24].

Two retroviral vector systems were used. The Retro-XTM

Universal Packaging System (Clontech Laboratories, Inc.) was

used to prepare retrovirus based on the PQCXIH vector for

hygromycin drug selection. The alternative vector, pLZRS-IRES-

GFP, instead allowed coexpression of the marker gene GFP. The

BILF1 gene with a 59-HA tag was subcloned into each vector.

Cells and transfections
The HEK293 epithelial cell line (American Type Culture

Collection) and derived cell lines were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum and penicillin-streptomycin antibiotics. The

HEK293-NFkB-luc cell line (kindly provided by G. Lipford,

Munich) contained a stably transfected NFkB-luciferase promoter-

reporter gene [63], and was maintained in medium supplemented

with 0.7 mg/ml G418 as a selective agent. The MJS (Mel JuSol)

melanoma-derived cell line [64] was maintained in RPMI-1640

medium supplemented with 10% fetal bovine serum and

penicillin-streptomycin antibiotics. 293 and MJS cell lines

transduced by PQCXIH-based retroviruses were maintained in

their medium with 400 mg/ml hygromycin. For some experi-

ments, 293 and MJS cells were transiently transfected with plasmid

DNA using Lipofectamine 2000 (Invitrogen). EBV specific CD8+

cytotoxic T cells were grown in 10% FCS in RPMI-1640 medium

supplemented with 30% supernatant from the IL-2-producing

MLA 144 cell line [65] and 50 U/ml recombinant IL-2 as

described elsewhere [20].

Retroviral infection
For the transduction of 293 cells and MJS cells, the packaging

cell line (GP2-293) was transfected with retroviral vectors

(PQCXIH or PQCXIH-BILF1) and PVSV-G to produce

replication-defective viral particles. The supernatants containing

recombinant retrovirus were harvested 48 hours after transfection,

and filtered through a 0.22-mm pore, low protein-binding filter. To

generate stable cell lines by transduction with PQCXIH-BILF1 or

control PQCXIH-BILF1 retrovirus, 293 cells or MJS cells were

infected with 1 ml retrovirus supernatants with polybrene added to

4 mg/ml final dilution. The stable cell lines were selected by

400 mg/ml hygromycin.

For retrovirus transduction of LCLs, the packaging cell line

(GP2-293) was transfected with retroviral vectors (PLZRS-IRES-

GFP or PLZRS-BILF1-IRES-GFP) and PVSV-G to produce

replication-defective viral particles. To generate stable cell lines by

transduction with these viral vectors, the LCLs were infected with

retrovirus supernatants and the GFP+ cells were sorted on a

Cytomation MoFlo cell sorter at 72 hr post-infection.

Antibodies
The BZ.1 murine mAb specific for the EBV BZLF1 encoded

protein was generated in the authors’ laboratory [66]. Murine

mAbs used to detect human MHC class I were: W6/32 [67] which

recognizes native b2m-associated MHC class I (HLA-A, -B, and -

C alleles) complexes; and HC10 [68], recognizing free HLA class I

heavy chains. The DA6.147 murine mAb specific for HLA-DR a-

chains was obtained from the ATCC, and mAb L234 [69] specific

for HLA-DR b-chains, was kindly provided by P. Cresswell

(Howard Hughes Medical Institute, New Haven). For flow

cytometry experiments, antibodies for detecting MHC class I

and class II were purchased from Serotec, including phycoery-

thrin(PE)-conjugated anti-HLA A,B,C (MCA81PE; clone W6/32)

andPE-conjugated anti-HLA DR (MCA71PE; clone YE2/36-

HLK). The murine mAbs specific for the TAP1, 148.3 [70], and

TAP2, 435.3, were kindly provided by R. Tampe (Wolfgang

Goethe-University, Frankfurt) and by P.M. van Endert (Institute

Necker, Paris) respectively. The murine mAb, H68.4, to human

transferrin receptor (TfR) protein was purchased from Roche

Diagnostics, and Goat antibodies to calregulin (sc6467) were

purchased from Santa Cruz Biotechnology. Rat mAb, 3F10, and

mouse mAb, 12CA5, directed against the influenza virus derived

HA tag, were purchased from Roche Diagnostics and Santa Cruz

Biotechnology respectively.

Flow cytometry analysis of cell surface MHC molecules
Cell surface expression of MHC class I on viable cells was

determined by staining with PE-labeled W6/32 antibodies or PE-

labeled isotype control mAb (both from Serotec) and detection on

a Beckman Coulter XL flow cytometer. The data were analysed

using Flowjo software (Tree Star).

To assay the kinetics of internalization of surface MHC class I

and class II molecules, 293 cells or MJS cells were incubated for

60 min on ice with saturating amounts of W6/32 or L234 mAb,

then washed three times in phosphate-buffered normal saline

(PBS) and replaced in warm culture medium and incubated at

37uC for the length of time indicated in the results section. To

terminate MHC/antibody complex internalization, cells were

rapidly cooled to 0uC. Finally, the mAb-bound surface MHC

molecules were stained at 0uC with PE-conjugated goat anti-

mouse IgG2a antibody (Serotec), and cells were analyzed by flow

cytometry.

To assay the kinetics of appearance of surface MHC class I, 293

cells were incubated for 60 min on ice with saturating amounts of

W6/32, then washed three times in PBS, replaced in warm culture

medium and incubated at 37uC for the length of time indicated in

the results section. To terminate further appearance of new surface

MHC-I, cells were rapidly cooled to 0uC. Finally, the newly

appeared surface MHC-I molecules were stained with PE-

conjugated W6/32, and the cells were analyzed by flow cytometry.

Western Blots
Total cell lysates were denatured in reducing sample buffer

(final concentration: 2% SDS, 72.5 mM Tris-HCl pH 6.8, 10%

glycerol, 0.2 M sodium 2-mercaptoethane-sulfonate, 0.002%

bromophenol blue), then sonicated and heated to 100uC for

5 minutes. Solubilized proteins equivalent to 26105 cells/20 ml

sample were separated by sodium dodecyl sulfate/polyacrylamide

gel electrophoresis (SDS/PAGE) on 4–12% gradient Bis-Tris

NuPage mini-gels with MOPS running buffer (Invitrogen).

Following electroblotting to polyvinylidene difluoride membranes

(Invitrogen) and blocking with I-Block (Tropix, Applied Biosys-

tems) in phosphate-buffered saline and 0.1% Tween-20 detergent,

specific proteins were detected by incubating the membranes with

primary antibodies at 4uC overnight. The 148.3 and 435.3 mouse

anti-TAP1 and TAP2 mAbs were used at 1/100 dilution of culture

supernatant, whilst the DA6.147 anti-HLA-DR was used at a 1/

250 dilution; the purified mouse mAbs, BZ.1, H68.4, 12CA5,

HC10, were used at 1 mg/ml; the rat anti-HA mAb was used at

50 ng/ml; and the goat antibody to calregulin, was used at 1 mg/

ml. Primary antibodies specifically bound to blotted proteins were

detected by incubation for 30 min with appropriate alkaline

phosphatase conjugated secondary antibodies, then were devel-

oped using a CDP-StarTM detection kit (Tropix, Applied

Biosystems) and exposed to autoradiographic film. In one set of
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experiments, the alkaline-phosphatase-conjugated CleanBlotTM

immunoprecipitation dection reagent (Thermo Scientific) was used

at a 1/500 for 60 min to detect blots of immunoprecipitates being

probed with the HC10 mAb.

T cell function assays
The effector T cell clone, RAK, specific for BZLF1 and

restricted through HLA-B8, was generated as described elsewhere

[20]. Targets for the RAK clone were generated by transfection of

MJS cells (HLA-B8 type) with a BZLF1 expression plasmid with or

without a BILF1 expression plasmid. At 24 hr post-transfection,

recognition of target cells by the effector T cells was determined by

ELISA of IFN- c release using a standard protocol described

elsewhere [71]. Briefly, 104 effector T cells were incubated for

18 hr at 37uC in V-bottom microtest plate wells with 105 target

cells, then the supernatants were harvested for quantitation of

IFN-c by ELISA (Endogen) in accordance with the manufacturer’s

recommended protocol. Specificity control targets included HLA-

matched and HLA-mismatched EBV-transformed lymphoblastoid

cell lines (LCL), empty vector-transfected MJS cells, and empty

vector-transfected MJS cells pulsed with the RAKFKQLL

synthetic peptide.

LCLs transformed with a BZLF12 recombinant EBV (to

prevent induction of endogenous lytic cycle genes) were trans-

duced with control PLZRS-IRES-GFP or PLZRS-BILF1-IRES-

GFP retroviruses. These lines were used as targets in assays with a

panel of effector T cell clones specific for constitutively expressed

latent EBV genes, EBNA1, EBNA3A, LMP2 or BHRF1. The

effector T cell clone, HPV, was a CD8+ line specific for EBNA1

and restricted through HLA-B35 [72]; clone YPL was a CD8+ line

specific for EBNA3A and restricted through HLA-B35 [72]; clone

CLG was a CD8+ line specific for LMP2A and restricted through

HLA-A2 [73]; clone PYY was a CD4+ line specific for BHRF1

and restricted through DR4 (Kelly, G.L., Long, H.M. et al,

submitted for publication). Recognition of target cells by the

effector T cells was determined by ELISA of IFN- c release using a

standard protocol described elsewhere [71].

Metabolic Labeling, Immunoprecipitation, and Endo H
Digestion

Cells (107) were starved with 15 ml methionine-free DMEM

medium supplemented with 10% dialysed FCS for 1 h at 37uC,

then labeled for 15 min with 200 mCi of EasyTag Express 35S

protein labeling mix (NEN Life Science Products) in a final volume

of 1 ml. After two washes with chase medium (normal DMEM

medium supplemented with 10% FCS), the cells were resuspended

at 26106 cells/ml and chased at 37uC for the times indicated.

Samples containing 26106 cells were lysed in 400 ml of NP-40

buffer (0.5% Nonidet P-40, 5 mM MgCl2 and 50 mM Tris-HCl,

pH 7.5) with protease inhibitor cocktail (Sigma) at 4uC for 45 min.

Nuclei and insoluble debris were removed by centrifugation, and

the supernatants were precleared first with 1.2 ml of normal mouse

serum and 20 ml Dynabeads Protein A (Invitrogen) for 2 hr at

4uC, and then again with 20 ml Dynabeads Protein A and 20 ml

Dynabeads protein G at 4uC overnight. The precleared lysates

were immunoprecipitated for 2 hr with 6 ml of W6/32 Mini-

permTM culture supernatant and 20 ml Dynabeads Protein A plus

20 ml Dynabeads protein G, before washing the beads four times

with NET buffer (0.5% NP-40, 150 mM NaCl2, 5 mM EDTA

and 50 mM Tris-HCl, pH 7.5) and eluting by boiling in reducing

gel sample buffer for 5 min. For endoglycosidase H (Endo H)

treatment, 20 ml samples were incubated at 37uC for 2.5 hr with

2 ml G5 reaction buffer and 1.5 ml of Endo H enzyme (New

England Biolabs Inc.). For second-round precipitations, boiled

eluates were first diluted 10-fold with lysis buffer, then reprecip-

itated as above with either HC10 (MHC class I heavy chain) or

3F10 (anti-HA tag on BILF1). Finally, the samples were separated

by SDS-PAGE on 10% Bis-Tris NuPage mini-gels with MOPS

buffer (Invitrogen). After the gels were fixed and dried, they were

exposed to autoradiographic film.

Cold co-immunoprecipitations
For immunoprecipitations from whole cell lysates, 26106 cells

were lysed in 400 ml of NP-40 buffer with protease inhibitors and

were immunoprecipitated as above. Lysates were precipitated with

1 mg of either W6/32 (HLA-ABC), 12CA5 (HA-tag; BILF1) or

H68.4 (TfR) mAbs. Eluted samples were separated on 4–12% Bis-

Tris NuPage mini-gels with MOPS buffer, electroblotted to

polyvinylidene difluoride membranes and probed with antibodies

HC10 (anti- HLA class I heavy chain), H68.4 (anti-TfR) or 3F10

(anti-HA tag on BILF1). For the selective immunoprecipitation of

cell-surface surface molecules, 26106 cells were incubated for

60 min on ice with saturating amounts of W6/32, H68.4 or

12CA5, then washed three times in PBS. The cells were then lysed

in 400 ml of NP-40 buffer with protease inhibitors and immuno-

precipitated with 20 ml Dynabeads Protein A plus 20 ml

Dynabeads protein G.

Immunofluorescence staining of fixed cells
293-BILF1 cells were grown on glass slides coated with

fibronectin, and were treated with concanamycin A for 6 hrs.

For the confocal microscopy, the cells were rinsed with PBS and

fixed with 4% (w/v) paraformaldehyde in PBS for 20 min, then

permeabilized with 0.5% Triton X-100 in PBS for 5 min. For

conventional fluorescence microscopy, the cells were fixed and

permeabilized with methanol-acetone (1:1 vol:vol) for 15 min at

220uC. The slides were incubated with primary antibodies for

2 hr at 37uC, washed extensively in PBS, then incubated with

Alexa FluorH 488 goat anti-mouse IgG or Alexa FluorH 594 goat

anti-rat IgG secondary antibodies (Invitrogen) for 45 min. After

repeated washing the slides were mounted with vectashield

mounting medium with DAPI stain (Vector laboratories) and

analyzed with a Zies LSM510 laser scanning confocal microscope,

or with a Nikon E600 conventional fluorescence microscope.

Protease inhibitor assays
293 cells stably transduced with control or BILF1 retrovirus

were treated with Bafilomycin A1 (2 mM), concanamycin A

(50 nM), or leupeptin (200 mM) or MG132 (10 mM) for 20 hr. All

inhibitors were purchased from Sigma-Aldrich. Lysates from

26105 cell equivalents were separated by SDS/PAGE gel, and

analyzed by Western Blotting using antibodies specific for MHC

class I (HC10) and calregulin.

NFkB reporter assays
HEK293-NFkB-luc cells were seeded at 26105/ml in a 96-well

plate at 24 hr prior to transfection with a constitutively expressed

Renilla-luciferase reporter construct (phRL-TK, 70 ng/well, Pro-

mega) for normalizing transfection efficiency, together with BILF-

wild-type, BILF1-K122A mutant, or empty vector DNA (160 ng/

well). The Lipofectamine-2000 (Invitrogen) and DNA mix in Opti-

MEM medium was prepared according to the supplier’s

instructions, and 50 ml was then added to each well. Cell extracts

were generated after 48 h using Cell Culture Lysis Buffer

(Promega), and extracts were assayed for firefly luciferase and

Renilla-luciferase activity using the Luciferase Assay System and

Renilla Luciferase Assay System (Promega), respectively.
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