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SUPPLEMENTARY FIGURES WITH LEGENDS 

 

Supplementary figure 1 Schematics of experimental arrangements used in present study. A, 
Recording with glass electrodes. B, Recording with tetrodes. C, Current source density and 
laminar profile electrode arrangement. D, Multiple electrodes recording on a local scale. E, 
Multiple electrodes recording on a large (global) scale. F, Electric field application. G, Local 
glutamate application. H, Orthodromic response recording evoked by stimulating Schaffer 
collaterals. I, Antidromic stimulation of CA1 axons. 
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Supplementary figure 2 Multifocal seizure onset recorded with electrodes covering CA1 
area. Seizure starting in: the middle of CA1 (A), the subicular end (B), and simultaneously at 
both subicular and CA3 ends of CA1 (C). D, In CA1 minislice multifocal onset is preserved 
with 35% seizures starting in left part of minislice, 28% in the middle and 37% in the right. 
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Supplementary figure 3 Seizures, interictal period and preburst. A, Two consecutive 
seizures and interictal period with HFA and multiunit activity, high-pass filtered at 10 Hz.  B, 
Seizures and interictal period with preburst preceding second seizure. C, Example of preburst 
and associated wavelet power spectra. Prebursts have similar morphology to activity 
observed during the early stages of seizures. D, Detail of activity at an early stage of the 
preburst shown in C and during a more advanced stage (E). 
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Supplementary figure 4 Detail of HFA from individual channels of a tetrode. Note that the 
relative sizes of units on the different channels: unit 1 is maximal on channel 3, and unit 2 on 
channel 2. Circle (●) shows comparison between extracellular action potentials and 
individual HFA activity oscillation. Asterisk shows two different neurons co-firing during the 
individual oscillation of HFA, which suggests that individual HFA cycles represent firing of 
action potentials of small neuronal populations. 
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Supplementary figure 5 Block of synaptic transmission in the low-calcium model. A, 
Monitoring of orthodromic responses to Schaffer collateral stimulation before and after 
introduction of low-calcium aCSF. B, Normal synaptic response with superimposed 
population spike; response is preceded by a fibre volley. C, Disappearance of synaptic 
responses in low-calcium aCSF; only the fibre volley remains. Before the synaptic response 
disappears there is a transient period during which orthodromic stimulation evokes repetitive 
spikes (A: traces preceding c). 
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Characterizing signal complexity and local neuronal synchrony using entropy rates 

 

Let us suppose that enhanced synchronization among neurons in some location will lead to 

increased level of regularity or rhythmicity; or, from another point of view, a decreased level 

of complexity of electrographic signal (field potentials) recorded from that location. In order 

to quantitatively characterize the regularity, or temporal complexity of the signal, we consider 

the field potential signal as an output of a complex, dynamic process evolving in time. A 

series of measurements done on such a system in consecutive instants of time i = 1, 2, … is 

called time series { }ix . Consider further that the temporal evolution of the studied system is 

not completely random, i.e., that the state of the system in present time   in some way depends 

on the states in which the system was in previous time instants.  The strength of such a 

dependence per a unit time lag, or, inversely, a rate at which the system „forgets“ information 

about its previous states, can be an important quantitative characterization of temporal 

complexity in the system's evolution. 

 

The time series { }ix , which is a recording of the system temporal evolution, can be 

considered as a realization of a stochastic process { }iX , i.e., a sequence of stochastic 

variables, characterized by the joint probability distribution function  

( ) ( ) ( ) ( ){ }1 1 1 1,..., , ,..., Pr ,..., ,..., .n n n np x x p x x X X x x= =   

 

Uncertainty in a stochastic variable is measured by its entropy. The rate in which the 

stochastic process „produces“ uncertainty is measured by its entropy rate. The entropy rate of  

a stochastic process { }iX  is defined as (Cover & Thomas, 1991): 
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where  ( )1 ,..., nH X X   is the entropy of the joint distribution  ( )1 ,..., :np x x  
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The concept of entropy rates is common to the theory of stochastic processes as well as to the  

information theory where the entropy rates are used to characterize information production by 

information sources (Cover & Thomas, 1991). Alternatively, the time series can be considered 

as a projection of a trajectory of a (chaotic) dynamical system, evolving in some measurable 

state space. A. N. Kolmogorov, who introduced the  theoretical  concept  of classification of 

dynamical systems by information rates, was inspired by the information theory and  

generalized  the notion  of the entropy  of  an  information  source (Sinai, 1976). The 

Kolmogorov-Sinai entropy (Sinai, 1976), KSE thereafter, is a topological invariant, suitable 

for classification of dynamical systems or their states, and is related to the sum of the system's 

positive Lyapunov exponents (LE) according to the theorem of  Pesin (Pesin, 1977). Thus, the 

concept of entropy rates is common to theories based on philosophically opposite assumptions 

(randomness vs. determinism) and is ideally applicable for characterization of complex 

biological processes, where possible deterministic rules are always accompanied by random 

influences. However, possibilities to compute the exact entropy rates from experimental data 

are limited to a few exceptional cases (Palus, 1996). 
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Let us consider that { }iX  is a zero-mean stationary Gaussian process with spectral density 

function f(ω). Then its entropy rate hG, apart from constant term, can be expressed using  

( )f ω   as [see (Palus, 1997) and references therein]: 

 

                                                     ( )1 log .
2Gh f d

π

π
ω ω

π −
= ∫                                             (3) 

 

Dynamics of a stationary Gaussian process is fully described by its spectrum. Therefore the 

connection given by Eq. (3) between the entropy rate of such a process and its spectral density 

( )f ω  is understandable. The estimation of the entropy rate of a Gaussian process (GPER) is 

reduced to the estimation of its spectrum.  

 

If a studied time series was generated by a nonlinear, possibly chaotic, dynamical system, its 

description in terms of a spectral density is not sufficient. However, Palus (1997) have found 

that a relation between the KSE (or, equivalently, the sum of positive LE’s) of a dynamical 

system and the entropy rate of a Gaussian process isospectral to time series generated by the 

dynamical system exists as a nonlinear one-to-one function when the KSE varies smoothly 

with variations of system's parameters, but is broken in critical states near bifurcation points. 

Thus Gaussian process entropy rate (GPER) can be used as a useful first approximation of 

level of complexity of studied signals.   
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