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ORIGINAL ARTICLE

The cerebellum and motor dysfunction in neuropsychiatric disorders

E. GOWEN1 & R. C. MIALL2

1Faculty of Life Sciences, University of Manchester, and 2School of Psychology, University of Birmingham, UK

Abstract
The cerebellum is densely interconnected with sensory-motor areas of the cerebral cortex, and in man, the great expansion
of the association areas of cerebral cortex is also paralleled by an expansion of the lateral cerebellar hemispheres. It is
therefore likely that these circuits contribute to non-motor cognitive functions, but this is still a controversial issue. One
approach is to examine evidence from neuropsychiatric disorders of cerebellar involvement. In this review, we narrow this
search to test whether there is evidence of motor dysfunction associated with neuropsychiatric disorders consistent with
disruption of cerebellar motor function. While we do find such evidence, especially in autism, schizophrenia and dyslexia,
we caution that the restricted set of motor symptoms does not suggest global cerebellar dysfunction. Moreover, these
symptoms may also reflect involvement of other, extra-cerebellar circuits and detailed examination of specific sub groups of
individuals within each disorder may help to relate such motor symptoms to cerebellar morphology.
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Introduction

The cerebellum has long been known to be a critical

structure for the coordination and control of move-

ment. However, both recent and quite early evidence

indicates that the cerebellum also plays a role in

cognitive and emotional functions (1–6; see 7 for a

comprehensive review of early work). It is also

increasingly clear that there are extensive connec-

tions between the cerebellum and frontal associative

areas of the cerebral cortex that fall well outside the

classical sensory-motor circuit (8,9). These findings

have raised questions as to whether through these

connections the cerebellum contributes directly to

the behavioural and cognitive symptoms of psychia-

tric disorders such as autistic spectrum disorder

(ASD), schizophrenia, and depression. There is also

a suggested link between cerebellar abnormality and

dyslexia, with motor deficits potentially linked to

differential development of the anterior cerebellum,

as well as with attention deficit hyperactivity disorder

(ADHD). Interestingly, symptoms and signs char-

acteristic of these conditions such as personality

change, mood disorder, executive dysfunction and

language and reading deficits have been reported in

cerebellar pathology (3,5,10–13).

However, as the cerebellum has been traditionally

and strongly linked with motor control (14–19), one

might then expect signs of compromised motor

control in these psychiatric disorders, if generalized

cerebellar dysfunction contributed to their pathol-

ogy. Indeed, clumsiness and abnormal motor beha-

viour has been well documented in disorders such as

autism and Asperger’s syndrome (Asperger, 1944,

translated in [20], 21–23), in dyslexia (24,25) and in

schizophrenia (26–28). It is clear that the cerebellum

is functionally heterogeneous, with cerebellar zones

selectively interconnecting with many cerebral sub-

systems (29). Thus one might not be surprised to

find the developmental disorders that affect different

cerebral systems also affect the cerebellum. We

attempt a more specific argument, however, addres-

sing whether motor dysfunction is common across

neuropsychiatric disorders, over and above the

possible role of the cerebellum to the cognitive and

psychiatric aspects of each disorder. Consequently,

this review will examine this issue, presenting

evidence for and against motor symptoms that are

consistent with cerebellar dysfunction. We also

review recent anatomical and functional imaging

papers that have looked for cerebellar involvement in

these disorders.

Motor functions of the cerebellum

Deficiency in cerebellar motor control can manifest

as inaccuracies of visually guided movement (30–

33), speeded complex movement (14,34), loss of

muscle tone (13), timing (35–37) and loss of
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prediction and coordination (38–42). Clinically,

these features are apparent as dysmetria (inaccurate

movement), dysdiadochokinesis (inability to execute

rapidly alternating movements), hypotonia (reduced

muscle tone) and dyscoordination or ataxia (inability

to perform smoothly coordinated voluntary move-

ment) (14,43). The topography of the cerebellar

cortex with respect to motor control and non-

motor function is perhaps surprisingly unclear.

Somatotopic maps of the proximal and distal

musculature are seen in the anterior and posterior

lobes (44,45), and lesions of these lateral areas lead

to distal motor dysfunction (46,47). Likewise, the

vermis and paravermal cortex are closely intercon-

nected to spinal, vestibular and brainstem systems

controlling balance, medial musculature, eye move-

ments and gait (29,47). However the lateral hemi-

spheres have expanded dramatically in primates, and

the cerebello-cerebral connections and roles of these

lateral areas are yet to be fully determined. In

general, one can see a separation of information

from the lateral cerebellar cortex through the dorsal

portions of the lateral nucleus to motor and

premotor cerebral areas, and a ventral stream linking

to non-motor areas (48). While the motoric symp-

toms of cerebellar dysfunction are indisputable, the

exact function or functions of the cerebellum in

motor control are still very uncertain. Key ideas are

its role in associative sensory-motor learning, timing,

error detection and correction, and coordination of

different effectors. While the consensus is that the

cerebellum is closely concerned with motor control

and sensory-motor integration, there are also claims

that its function is largely sensory (49,50) or in state

estimation (51,52). Theoretical work has provided a

detailed account of how the cerebellum may control

aspects of movement and timing, suggesting that it

provides predictive estimates of future motor com-

mands in terms of their timing and sensory

consequences that allow detection and correction

of errors (17,53–56).

These characteristic findings of movement dis-

turbances allowed Dow and Moruzzi (43) and

subsequent researchers to develop test batteries such

as the Assessment Battery for Children (57), the

Bruininks-Oseretsky test (58) a subcomponent of

the National Evaluation Scale for Schizophrenia

(59) and The Test of Motor Impairment –

Henderson Revision (60) to specifically detect

cerebellar dysfunction. Subsequently, these test

batteries have been applied to various neuropsychia-

tric disorders such as autism, Asperger’s syndrome

and schizophrenia and have provided indirect and

qualitative behavioural evidence for abnormal cere-

bellar motor control. In the following sections we

examine whether these qualitative reports are sup-

ported by quantitative behavioural and imaging

evidence. We have restricted our focus to Autism

Spectrum Disorder, schizophrenia and depression,

and also include developmental dyslexia and

ADHD, as together these have attracted the majority

of interest both in terms of cerebellar involvement

and motor research.

Autistic Spectrum Disorder (ASD)

Currently, it is unclear what are the precise

distinguishing features between autism and

Asperger’s syndrome, and this is compounded by

the possibility that different subgroups may be

present within each disorder (61). As different

diagnostic criteria are employed, this has led to

overlap between the two disorders, rendering it

difficult to evaluate whether the prevalence and

characteristics of motor deficits differ between

autism and Asperger’s syndrome. A number of

studies indicate that autism and Asperger’s syn-

drome cannot be differentiated according to motor

abnormalities (62,63), but others indicate that

differences may be apparent on a finer level (64–

66). This is an area that requires extensive and

consistent research and one that is beyond the scope

of the current review. Consequently, we have used

the term ASD to cover both autism and Asperger’s

syndrome.

There have been a number of qualitative reports

suggesting impairments of prediction and coordina-

tion in ASD, particularly balance (62–64,67,68) and

speeded complex and visually guided movements

(tested as manual dexterity or ball skills)

(63,64,69,70). Heightened interest in motor control

abnormalities associated with ASD has increasingly

led to the use of quantitative studies of matched

groups. With regard to speeded complex movements

and muscle tone, there is little evidence of either

dysdiadochokinesis or hypotonia (71,72). This

negative result is supported by the observation that

movement preparation but not movement execution

is impaired in individuals with ASD (65). Such

findings may relate to the developmental nature of

ASD, as hypotonia resulting from cerebellar lesions

is most severe during the early acute stage but

subsides with time (34). Few studies have specifi-

cally investigated dysmetria or used combined eye-

hand tracking tasks where the cerebellum is known

to play a role (32,33,73). One rather general

sensory-motor test that does involve eye-hand

coordination and employs cerebellar resources (31)

is the Annett peg-board test in which participants

rapidly move a row of small pegs from one side of a

board to holes in the other side. Completion times

and errors (dropped pegs) are normally recorded.

However, results with ASD participants are mixed,

with reports of slower completion times compared to

controls (74) or of no differences (68). Recently,

using a functionally related visually guided pointing

task, we observed that ASD participants were both

slower and less accurate, suggesting poorer visual
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guidance of movement (71). In addition, during a

reach to grasp task, ASD individuals were able to

synchronize reaching and grasping components

but displayed an increased peak velocity and

decreased duration compared to controls (75),

which the authors suggested represented a strategy

to avoid disruptive visual feedback mechanisms.

Interestingly, a low IQ group performing the same

task demonstrated inability to synchronize reaching

and grasping components, suggesting that they were

unable to use predictive mechanisms of control.

These results emphasize the presence of different

subgroups, and that impairments in visual feedback

and/or predictive mechanisms may exist.

Postural stability requires intact anticipatory and

sensory processes and the cerebellar vermis is

believed to use vestibular, proprioceptive and visual

inputs to coordinate muscle timing so that the centre

of gravity stays within the limits of stable upright

standing (38,76). ASD participants consistently

display impaired balance during eyes open and eyes

closed conditions, suggesting deficits of both visual

and proprioceptive integration (71,77). Posturo-

graphy investigations of cerebellar patients suggest

that different lesions result in varying degrees and

direction of sway, as well as affecting the ability to

use visual compensation (78). Future examination of

such sway characteristics may reveal whether bal-

ance abnormalities in ASD are related to diffuse or

local damage. Direct evidence for reduced antici-

patory function in ASD children has been demon-

strated during bimanual load lifting in the form of

absent anticipatory muscular events and absent

anticipatory motor cortex activity using electromyo-

graphic and electroencephalogram recordings

respectively (72,79). Gripping an object also

requires predictive control so that load force changes

can be anticipated and grip force altered accordingly

to prevent gripped objects from slipping (80,81).

However, we observed (71) that ASD subjects were

equally able to predict this load change despite being

poorer at a visually guided task. As our subjects had

average/high ability this complements the findings of

(75), suggesting that they were able to use some

predictive control. Alternatively, as we only tested

grip force of the dominant hand (71), and it has been

demonstrated that impairments in predictive grip

force are restricted to the hand ipsilateral to the

cerebellar lesion (41) some differences might have

been apparent in the non-preferred hand.

There are very few studies that have directly

looked at timing ability in ASD. We used a

synchronisation and continuation interval timing

task where subjects tapped in time with an external

beep, or produced a remembered sequence of beeps

(71). In contrast to the continuation task, Asperger

participants tended to display greater absolute error

in the synchronisation task, caused mainly by an

underestimation the target interval. These findings

are reminiscent of abnormal conditioned eye-blink

responses observed in autistic subjects, characterized

by earlier acquisition and extinction and by shorter

response latencies (82). Eye blink conditioning is

known to rely on cerebellar structures such as the

anterior interpositus nucleus and H-VI lobules (83).

Timing deficits are frequently associated with

cerebellar lesions using perceptual and motor inter-

val tasks in the sub-second range (35,84,85) and

during conditioned eye blink responses (86). It is

unclear whether such findings arise from impair-

ments in one area within the cerebellum that is

specialized for timing computations, a localized

timing system distributed throughout the cerebellum

where temporal information is computed within

structures involved for a particular task, or a

distributed network that involves structures outside

the cerebellum (37). The former has been suggested

by Ivry and colleagues (35), as lateral cerebellar

lesions impaired a central timing process, whereas

medial lesions impaired implementation. Conse-

quently, the timing deficits observed in our

Asperger participants could arise from either impo-

verished sensory input to the cerebellum, damage to

a specialized timing module within the cerebellum,

localized cerebellar damage for sensorimotor inte-

gration, or an inability to execute the correct motor

response despite intact timing signals. As simple

motor execution appears unaffected in ASD and our

participants performed within normal limits on the

continuation task, this suggests that the observed

timing deficits were due to either poor sensory input

or reduced sensorimotor integration. Future work

comparing sensory function with motor and percep-

tual timing tasks could help elucidate the origin of

subnormal ASD timing and whether any function-

ally identifiable ASD subgroups exist.

Overall, behavioural findings indicate that indivi-

duals with ASD display impairments in visually

guided movements, prediction and coordination

(balance) and timing but show intact motor execu-

tion. As we have suggested (71) a common theme

appears to be the integration of sensory input

(vision, proprioception, audition) with a motor

response, a function well suited to the cerebellum.

However, future work needs to distinguish whether

this results from impaired integration or from

disrupted sensory input. Furthermore, studies need

to control for IQ levels as this does appear to have an

impact on motor control (71,75,77).

A cerebellar contribution towards these motor

signs is supported by post-mortem evidence reveal-

ing Purkinje cell loss, hypo- and hyper-plasia in the

vermis and in the hemispheres (87,88). It should be

noted that many existing post-mortem reports of

ASD brains suffer from much inter-subject varia-

bility and low subject numbers, and of course lack

functional or behavioural correlates, so the increas-

ing spatial resolution of modern MR imaging is likely

270 E. Gowen & R. C. Miall



to provide the most convincing evidence of struc-

tural change. Hypo- and hyper-plasia of the cere-

bellar vermis and hemispheres has also been

demonstrated using anatomical or structural MRI

(88,90 and others see 88). In man, the cerebellar

vermis and lateral hemispheres are much more

heavily connected with prefrontal areas, via the

ventral dentate nucleus and thalamus, than in non-

human primates (91). Reduced exploratory beha-

viour in autistic children has been correlated with

hypoplasia of vermal lobules VI–VII and frontal lobe

suggesting a direct link between structural abnorm-

alities and autistic signs (92).

There is now a number of growing functional

imaging studies, that complement the structural

abnormalities mentioned above with patterns of

abnormal activation in tasks aimed to test cognitive

and motor functions. Allen & Courchesne (93)

reported increased cerebellar activation in a button

pressing task, and reduced activation in a visual

attention task. With a similar motor task and the

same subject groups, it was further shown that a

correlation between structural and functional

changes existed in the autistic group (94). With a

more complex motor sequence learning task,

changes in prefrontal and parietal cortex have been

seen (95), with greater variability in peak activation

loci, suggested to represent a developmental process

in which the abnormal cerebello-cerebral pathways

contribute to abnormal fronto-parietal function.

Finally, electrophysiological methods have detected

differential evoked responses in autism in a spatial

attention task (96) that is consistent with abnormal

cerebellar modulating influence on fronto-parietal

systems. However, it should be emphasized that the

role of the cerebellum in attention shifting remains

under debate as the original evidence linking the

cerebellum to attention (1,97) has not been repli-

cated in subsequent cerebellar studies (98,99).

Instead it has been suggested that the apparent

deficits of attention in cerebellar patients may be due

to either redirection of attention resources to an

impaired motor response, small group sizes, extra-

cerebellar involvement or a cerebellar contribution

to response reassignment rather than attention

shifting (99,100)

Developmental dyslexia

The cerebellar deficit hypothesis in developmental

dyslexia has been predominantly championed by

Nicolson and colleagues. They suggest that the full

range of difficulties encountered by dyslexics such as

reading, writing and spelling can be explained by

cerebellar dysfunction (25). Specifically, hand writ-

ing impairment may be directly attributed to poor

motor coordination, whereas impoverished reading

and spelling skills may arise through delayed and less

fluent articulation and automatizing that may take

up more resources such as working memory, leading

to difficulties in language acquisition and phonolo-

gical awareness. In a series of studies examining

large cohorts of dyslexic children, they demonstrated

time estimation deficits (101), impaired postural

stability, hypotonia and slower toe tapping speed

(25,102). Recently, supportive evidence from an

extensive study examining dyslexic balancing skills

has highlighted that instability is a common finding

in dyslexia and is correlated to impaired literacy and

cognitive ability (103). The same group has also

shown that adult dyslexic individuals exhibit slower

processing speed on the Annett peg-board test (104)

and impaired implicit motor learning (105) both of

which were correlated with literacy skills.

Such indirect behavioural evidence has now been

supported by structural, functional and post-mortem

results that indicate both anterior and posterior

cerebellar abnormalities (106, see 107 for review).

Recent work by this group comparing automatic and

manual estimation of grey and white matter volumes

in the cerebellum confirms the differential develop-

ment of the anterior cerebellum, but also suggests

that changes here and in the cerebral cortex are

correlated to whole brain volume changes (108).

Likewise, greater cerebellar symmetry in dyslexic

adults correlates with phonological processing defi-

cits (109), which reflects the greater cerebral

symmetry seen in dyslexic subjects. There is also

evidence of altered symmetric cerebellar metabolism

in the dyslexic cerebellum that correlates to both peg

moving performance and phonological scores (109).

Nicholson and colleagues (110) have also demon-

strated functional activation reductions in the right

anterior cerebellar cortex in dyslexic adults that can

be associated with their deficits in a motor sequence

learning task, supporting the link between disturbed

cerebellar function, motor deficits, and dyslexia.

However, the links between developmental disrup-

tion of the cerebellum and dyslexic reading and

language skills are often blurred by the diverse

phenomenology of dyslexia and the strongly con-

founding effects of IQ or ADHD (111). Cerebellar

involvement is perhaps more clearly suggested by

evidence of dyslexic symptoms after acquired lesions

(11,12,112). Furthermore, the relationship between

these structural and behavioural findings is unclear

and one criticism against the cerebellar deficit

hypothesis is the absence of consistent motor deficits

found in all dyslexic subjects. In order to allay such

criticism, future imaging work is required to

demonstrate that specific structural and functional

abnormalities can relate to different aspects of

cognitive or motor impairment.

Schizophrenia

The involvement of the cerebellar vermis in schizo-

phrenia has been proposed for some time (113).
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More recently, several authors (114–116) have

suggested the disorder to be a consequence of

disruption to the cortico-cerebellar-thalamic-cortical

circuits, whereby the fluidity and synchrony of

thought is modified by the cerebellum in a similar

manner to movement control. This ‘‘poor mental

coordination’’ is referred to as cognitive dysmetria.

Qualitative reports and assessments have frequently

documented motor abnormalities in patients with

schizophrenia (often classed as neurological, non-

localizing soft signs in the schizophrenia literature)

(28,117–122, see 26 for a review). Indeed, employ-

ing a meta-analysis examining neurocognitive defi-

cits, Heinrichs and Zakzanis (118) observed that

motor abnormalities exhibited the second highest

effect size. Importantly, it appears that first episode,

drug naı̈ve patients exhibit motor control abnorm-

alities in excess of healthy controls (123) and there is

little relationship between the level/duration of anti-

psychotic treatment and motor abnormalities (26,

although see 124), highlighting that these signs are

most probably not a consequence of anti-psychotic

medication.

In contrast to ASD studies, schizophrenic patients

exhibit deficits in both simple and complex move-

ment execution such as rapid alternating movement,

finger tapping and fine manual dexterity (Purdue

pegboard test, similar to Annett peg-board test but

requires assembly of collars and washers onto pegs).

Some authors have reported correlations between

these finding and social functioning (125), whereas

others have found relatively weaker correlations

between motor and executive impairments (126).

Furthermore, the extent of these motor abnormal-

ities vary with the clinical course of schizophrenia

within individuals (117) and have been correlated to

smaller cerebellar volumes (117,119). In turn,

smaller cerebellar volumes, particularly of the vermis

have been associated with cognitive and psychotic

symptoms (127,128).

It has been suggested that these motor abnorm-

alities may arise from deficient predictive control

mechanisms whereby the predicted sensory outcome

of one’s movement does not match with the actual

sensory afference (129–132). Consequently, schizo-

phrenic individuals demonstrate difficulties in recog-

nizing their actions as their own and perceiving the

consequences of their actions (133,134). This may

extrapolate to difficulties in distinguishing the

origins of their perceptions, and thus links schizo-

phrenic hallucinations to a failure to predict action

outcomes (129). However, evidence suggests that

some predictive processes may be spared and that

impairments may be more apparent during sequen-

cing of motor actions (135). Such effects may be

related to incorrect timing judgements as schizo-

phrenic patients show increased binding between a

movement and a previous causal action, i.e., they

underestimate the temporal interval between events

leading to heightened but incorrect associations

(136). Furthermore, underestimation of short tem-

poral durations has been observed (137) which is

similar to our findings in individuals with ASD.

Importantly, these results could not be explained by

levels of intelligence or working memory and as the

tasks did not require a motor response this suggested

a deficit of specialized cerebellar timing processes.

In line with these timing and prediction deficits,

postural stability appears affected in schizophrenia

(138–140) although these findings suffer from the

use of qualitative recording methods, (138,139) and

lack of suitable IQ matching with control subjects

(138–140). Furthermore, it is possible that the co-

morbidity of alcohol abuse in schizophrenia con-

tributes to the reported balance disturbances (141).

There is, of course, a strong impact of alcohol abuse

on the anterior cerebellar lobe as well as on many

other brain regions (142). Studies that have

attempted to control for this factor indicate that

balance ability is not related to prior alcohol abuse

(138–140). Interestingly, eye closure does not

appear to affect balance in schizophrenic patients

to any greater degree than in controls, suggesting a

visual, rather than proprioceptive impairment (140).

Increased postural sway in individuals with schizo-

phrenia has been correlated to both the degree of

cognitive impairment and cerebellar tissue loss:

Those patients who demonstrated cerebellar signs

(predominantly increased postural sway) were more

likely to exhibit greater deficits in memory, visuos-

patial, attention and motor skills, combined with

cerebellar hypoplasia (138). As only 32 out of the

155 patients demonstrated cerebellar signs it should

be emphasized that, as with autism and dyslexia,

different subgroups of schizophrenic patients may

exist.

Konarski et al. (2) have recently reviewed struc-

tural and functional imaging evidence for cerebellar

involvement in schizophrenia, and argue that there is

converging evidence for this role, despite a tendency

for it to have been overlooked in previous research.

However, rather few studies have tested functional

activation differences during performance of motor

tasks. Reduced cerebellar activation during a motor

sequence task has been reported (143). A contrast

between schizophrenic and control subjects in a

joystick movement task with PET scanning reported

no differential cerebellar activity (144), but did see

cerebral differences (in the insular cortex and right

angular gyrus); in contrast, hyper-activation of

anterior cerebellum in a very similar task was seen

(145), when contrasting passivity status across

schizophrenic sub-groups.

Mood and bipolar disorder

There are limited reports linking the cerebellum to

depression and bipolar disorder. Beyer and Krishnan
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(146) review studies of volumetric differences,

mainly in bipolar depression and report mixed

evidence for cerebellar atrophy in comparison with

schizophrenic or control groups. Strakowksi,

DelBello and Adlert (147) review evidence of a

functional neuroanatomical basic for bipolar disor-

der, and provide some support for structural change

in the cerebellar vermis, that progresses with

repeated episodes of mood disturbance (148).

Using magnetic resonance spectroscopy, Cecil et al.

(149) found reduced levels of N-acetylaspartate

(NAA) in the cerebellar vermis, while increased

glucose metabolism has been found in the cerebel-

lum and posterior cortex (lingular gyrus and cuneus)

across all mood subgroups (150). Even fewer studies

appear to have examined motor control in indivi-

duals with bipolar disorder. Qualitative studies have

observed dysdiadochokinesis in individuals with

bipolar disorders compared to healthy control partici-

pants, but this finding has been related to impairments

in attentional set shifting resulting from dorsolateral

prefrontal cortex dysfunction (151,152).

A further problem with assessing the role of the

cerebellum in such disorders is the widespread use of

therapeutic drugs such as lithium and antidepres-

sants (153,154), since long-term usage is known to

lead to changes in cerebellar structure and conse-

quently cerebellar signs such as ataxia, gait instabil-

ity, dysmetria, dysdiadochokinesis and hypotonia

(155). For example, vermal hypoplasia (156) and

cerebellar volume (157) have been correlated to

duration of antidepressant exposure. Future studies

need to examine drug naı̈ve patients and investigate

correlations between drug level/exposure and cere-

bellar signs before any firm conclusions regarding

the role of the cerebellum in bipolar motor deficits

can be drawn.

ADHD

The evidence for a cerebellar contribution to ADHD

in adults is quite limited, but from developmental

studies using anatomical imaging, it has been

suggested that there is involvement of quite

diverse cerebello-thalamo-striato-cortical systems

(158,159), with hypoplasia of the posterior cerebel-

lar vermis (160). However, a recent meta-analysis of

functional imaging studies (161) reports limited

functional differences in the cerebellum, with greater

evidence for fronto-striatal and fronto-parietal dys-

function, consistent with executive and attentional

networks. This is reflected in behavioural studies

where evidence for cerebellum specific motor

dysfunction is sparse and any motor abnormalities

have been more frequently related to dysfunction of

frontal-striatal-basal ganglia networks rather than to

the cerebellum (162). Generally, motor control in

ADHD has not been extensively or quantitatively

studied, although qualitative studies point to

clumsiness (163), slower repetitive actions such as

finger tapping (162,164) and poorer manual dexter-

ity and balance (165,166). In addition, ADHD

individuals demonstrate impairments in time repro-

duction and perception tasks (see 167 for an

extensive review). Observations that time perception

is preferentially impaired for durations greater than

one second (168; although see 167 evidence for sub-

second impairments) suggests deficits in frontal lobe

working memory processes as opposed to the

cerebellum which contributes to sub-second timing

functions (84,169). Of note was the bimodal

distribution of results with half the group performing

normally (168), highlighting the existence of sub-

groups.

Examination of motor control is complicated by

both the nature of ADHD, as motor deficits may

arise due to poor attention to the task, and by the

high degree of co-morbidity between ADHD and

developmental coordination disorder (DCD) (170),

defined as motor coordination that is significantly

lower than the child’s mental and intellectual ability.

With regard to the former, motor and timing

abnormalities appear to persist despite normal

performance on other attention demanding tasks

(165) and also during increased motivational state

(171), although other work has demonstrated poor

time judgment only during low arousal states (172).

It is difficult to judge whether observed motor

deficits in ADHD should be considered separate to

or as a continuation with DCD. Using the Purdue

peg-board task Pitcher et al. (173) demonstrated

that participants with a combined diagnosis of

ADHD and DCD performed significantly worse

than those with just ADHD, who did not differ from

controls. This indicates that DCD may be a

dissociable disorder. Such concerns may also trouble

studies of ASD and dyslexia as DCD is also

frequently present (170,174) leading to the sugges-

tion (170) that one link between ADHD, autism and

DCD may be the degree to which the cerebellum is

affected. Alternatively, it has been hypothesized that

the range of executive and motor signs could be a

continuation of different abnormalities within the

cortico-striato-thalamo-cortical loops (175). Once

again quantitative and detailed assessment com-

bined with assessment of co-morbid disorders and

neuroimaging is required to understand these

relationships further.

Conclusion

With the exception of depression, bipolar disorders

and ADHD there appears to be some quantitative

behavioural evidence that individuals with ASD,

schizophrenia and dyslexia display signs of cerebellar

motor dysfunction. Although, it is difficult to

compare the three disorders as the same tests have

not been applied to each, it does appear that they
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display a preponderance of balance and timing

deficits, indicating a global functional deficit is

unlikely. Abnormal timing has also been a consistent

and quantitatively examined feature of ADHD. Both

balance and timing are key signs in cerebellar

pathology (35,78,176) but can also involve many

other neural areas (169,177,178) that may also be

abnormal in neuropsychiatric disorders. A higher

proportion of imaging studies report changed

activation or structure within the vermis than in

other cerebellar areas, which would complement the

observations of balance dysfunction (38,76).

Different timing processes may be localized to a

variety of areas both within and outside the

cerebellum (36,42,84,179,180) highlighting that

future studies should adopt more specific timing

paradigms in order to localize deficits. In contrast to

ASD, schizophrenic and dyslexic individuals show

signs of hypotonia and dysdiadochokinesis suggest-

ing that motor execution deficits may play more of a

role. Whether this indicates that cerebellar dysfunc-

tion may be more widespread, or whether there may

be greater involvement of higher cortical areas,

remains to be discovered. Of potential significance

are the observations of different types of impaired

eye blink conditioning in ASD, dyslexia and ADHD

(82,181,182). In ASD, eye blink conditioning was

associated with earlier acquisition and extinction and

shorter response latencies, in dyslexia there was an

absence of conditioning and in ADHD an inability

to sustain the learned response occurred. This

suggests that for each condition different cerebellar

networks are affected. An intriguing possibility is

that the form of cerebellar involvement and its onset

may give rise to different disorders.

A related issue is the degree to which cerebellar

damage alone is responsible for these motor impair-

ments. The cerebellum receives extensive input from

areas that are involved in motor control such as the

basal ganglia, SMA, parietal cortex, motor and

premotor cortex (8,9) rendering it difficult to judge

whether motor impairments arise from deficits in

cerebellar circuitry or from inaccurate afferent

connections. Consequently, it is unclear as to

whether sensory, integration or motor impairments

(or all three) contribute towards the motor deficits.

There is burgeoning work demonstrating sensory

alterations in those with schizophrenia and autism in

terms of enhanced tactile sensation (183), enhanced

visual processing (184,185), increased global motion

thresholds (186,187) and weak context suppression

(188, see 189 for a review). What is unclear is the

impact of these sensory differences on motor

coordination. Altered sensory input to the cerebel-

lum may prevent normal motor coordination which

would appear as cerebellar motor deficits and may

give rise to the altered structural and functional

cerebellar findings; future work should aim to

correlate sensory deficits to motor deficits.

What does appear clear is the vast heterogeneity of

findings within each disorder suggesting interplay of

differentially affected cerebellar and extra-cerebellar

regions, compounded by variables such as develop-

mental experience, drug exposure and experimental

procedures. It may be that a balance exists in the

degree and location of impairment between cerebel-

lar, cortical and striatal circuits that determines the

final cognitive and motor clinical picture. Therefore

it is important to identify different subgroups in each

of the disorders we have discussed, using well

matched control groups and a variety of quantitative

motor and cognitive measures in order to explore

correlations. In addition, careful consideration

should be paid to the presence of co morbidity

within ASD, dyslexia and ADHD and the impact of

drugs on the motor findings owing to the high

prevalence of medicated patients. Future studies are

required to correlate motor, sensory and cognitive

deficits together with fMRI, in order to define

linkages, subgroups and ultimately whether specific

cerebellar regions are associated with the different

motor, sensory and cognitive findings.
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