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ABSTRACT

The Concordance-based Media Axis Transform (CMAT) presented in this paper is a
multiscde medial axis (MM A) agorithm that computes the medial resporse from grey-level
boundry measures. This nonlinea operator responds only to symmetric structures,
overcoming the limitations of linea media operators which crede "side-lobe" responses for
symmetric structures and respondto edge structures. In addition, the spatia |ocdisation d the
medial axis and the identification o objed width is improved in the CMAT agorithm
compared with linea algorithms. The robustness of linea medial operators to ndse is
preserved in ou algorithm. The dfedivenessof the CMAT is acaedited to the concordance
property described in this paper. We demonstrate the performance of this method with test
figures used by other authors and medicd images that are relatively complex in structure. In
these complex images the benefit of the improved resporse of our nonlinea operator is

clealy visible.
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1 INTRODUCTION

Accurate and robust shape representation is important as a basis for image interpretation
in a wide range of computer vision applicaions. To be acarate and robust, a shape
representation shoud describe both locd and global fedures. The Medial Axis Transform
(MAT) [1] adhieves this by generating an axis that is the locus of the centres of the maximal
disks that can be inscribed within an ojed. These loci are dso labell ed with the radius of the
maximal disk. The MAT provides a dired encoding of locd properties of objed shape, such
as edge orientation and curvature, and d global properties, such as overal length and
orientation. Ancther attradive property of the MAT is that the branching structure of the
objed isrefleded by the branching of the ais. This yields a natural corresponcdence between
comporents of the objed and the shape description.

One problem with the MAT is that smal boundry variations can gredly disturb the
media axis gructure of the primary shape. There is aso no indicaion concerning the
relevance of these aial comporents to the structural description d the shape. Using
multiscde analysis to establish a hierarchicd MAT representation the relative importance of
the medial axis at eat scade can be described [12]. Descriptions of detail ed aspeds of form
(and nase) are provided in the higher resolution levels of the hierarchy and do na disturb the
description at lower resolution levels. Such a hierarchicd representation suppats model-
driven schemes of interpretation [15]. To perform multiscde analysis a series of smoaothing
steps must be taken. “Smoaothing” can be gplied to the locd curvature of an ojed contour
or to the image intensity. Koenderink [6] argued that filtering images to creae ascde-space

representation captures global relationships better than contour smoothing. Moreover, this



approach dces not need a prior segmentation and avoids important boundry information
being discarded at an ealy stage of processng. Pizer's Multiscde Media Axis (MMA) [13] is
arobust objed representation scheme [11] that has been applied in image registration [4].

The Multiscde Media Axis, referred to abowe, is identified as a ridge in medialness
gpace ad medianessas a measure of the likelihoodthat a given location is a symmetric point
at that scde. This definition d the MM A improves the multi-resolution graphicad scheme of
Crowley and Parker [2] by providing better ridge definition and guantitative representation.

Medianess can be computed by convdving gey-scde images with dfferent sizes of
DoG [2] or LoG kernels [4]. Axis-centred operator, such as these, respondwell at a scde and
pasition where the operator optimally engages two sides of an oljed. Mediahesscan also be
computed by acaimulating the resporse of diredional Gaussan derivatives arounda drcle,
with a radius propational to scde. One example of this approad is the Hough-like Medial
Axis Transform (HMAT) [8]. This boundry-centred operator is less ensitive to variations
within an ofjed, less ®nsitive to dfferences in boundry contrast and more alaptable than
axis-centred operators [9]. Once the medianess sde-spaceis obtained, the MMA can be
extraded using the definition d "maximum conwvexity ridge" [3][5] or "optimal scde ridge"
[4][12]. These two methods produce qualitatively similar results[14].

Both the HMAT and LoG agorithms use linea medialness operators which are data
independent and can be computed as a linea convdution d a radially symmetric kernel with
the image. They are nat only sensitive to symmetric structures, bu also respond to edge
structures. Even for symmetric structures, they generate two side lobes of oppdasite sign to the
main resporse. These aede "spurious’ medialnessresporses that are nat associated with any

structural symmetry. The result of linea operators is a mixture of boundry and medial



charaderistics. When multiple figures are present in an image processed using such linea
operators the aldtion o boundry related resporses to the medial resporses produces a
confused result. To overcome the limitation o linea filtering the boundry resporses of two
putative edges must be wmbined in a nonlinea way. In previous work this was performed
for multiscde line detedion wsing the minimum [7][15] and for fixed-scde MAT of grey-
level images using the product [18]. Morse [9][ 10] refined the result of the HMAT through an
iterative voting phase, cdled credit attribution. In this £heme boundxry votes were re-
alocaed in propation to the ayreement among weighted boundry votes in the previous
iteration. This is an enhancement processand canna overcome the fundamental faili ng of the
linear operator used. The iterative nature of the aedit attribution scheme dso makes it
computationally expensive.

In this paper, we propose aConcordance-based Medial Axis Transform (CMAT), which
considers bath the symmetry of boundry positions and the symmetry of boundiry strength.
The nortiterative CMAT agorithm avoids the spurious resporses generated by linea
operators, provides better locdisation d the medial axis and a resporse that more dealy
identifies objed width.

In Sedion 2, we describe the mmputation d the CMAT agorithm. In Sedion 3, the
concordance property which expresses the symmetry of boundiry strength is described and
discussed. In Sedion 4, we present quantitative results of the performance of the CMAT
algorithm and compare it with seleded linea medial operators; Results of the gplicaion o

the CMAT to synthetic and raetural images are dso presented and compared in this sdion.



2 THEORY AND COMPUTATION

2.1 Concordance-based Medial Axis Transform
2.1.1D¢€finition for continuouws co-ordinates

The boundriness sde-spaceof the original image, | (x) , isdefined as:
B(x,0) = 1 (x) * 0JG(x,0) Q)
where x = (x,,...,x,)" OR" denotes gatial positionin an n-dimensional superplane; G isthe

n-dimensional Gaussan kernel with unt volume;

1 -xTx/20?
G(X,O') :We /2

and o OR" isthe scde. The boundrinessresponse can be jointly represented by the gradient

magnitude:

b(x,0) = |B(x,0)| 2
and aunit gradient vedor:

N _ B(x,0)

" B0 )

For ead pant x in boundriness pace the initial contribution, b(x,o0), to medialness
spaceis made 4a:
y =x +rfi(x,0) 4
where y OR" isthe n-dimensional spatia positionin medialness gace and r =ko ( kisthe
ratio of radiusto scde, seeFig.1).

Theintegration d initial contributions in medialness paceprovides the initial medialness

resporse. Written as a Radon Transform [16], thisis:



Original Image I(x)

Boundariness Space B(x,0)
Alnnae

Medialness Space m(x ,0)
B

Figure 1. The medianess resporse is the integration o boundriness

ATTOX
=

contributions.
my(y,0) = [, b(x,0)d(y - x = rfi(x,0))dx (5)
where the Delta function is defined as J'Rn O(x)dx =1 and 4(x) =0 when x#0. In two

dimensional space the initial medialness a y is the integration d dirediona Gausdan
derivatives around a drcle ceitred at y with radius r; the orientation d the Gausgan
derivatives being towards the centre of the drcle, seeFig. 1. This definitionis close to Blum's
MAT [1] and the HMAT [8].

The initial medialnesshas high values for symmetric structures but also responds to edge
structures because the boundriness resporse, b(x,o), for an isolated edge results in the
medianess resporse, m,(y,0) =b(x,0). To oltain a medianess response that is snsitive
only to symmetric edges, the contribution to medialnessfrom boundrinessis constrained by a
weighting, p(x,o0), cdled contribution confidence. The requirements for contribution

confidence ae;



(1) The medialness resporse shoud na be greaer than the initial medialness resporse,
i.e. 0< p(x,0)<1.

(2) A single boundry produces no medialnessresporsg, i.e.:

p(x,0) =0 if my(y,o0) =b(x,0).

(3) The greder the initial medialness m,(y,o) , the more possbleit isfor x to contribute
to medianess provided my(y,o0) >b(x,0). Therefore p(x,0) increases with
my(y.0) .

The definition d contribution confidenceused hereis:

m,(y,0) —b(x,0)
my(y,0)

p(x,0) = (6)

This measure of contribution confidence ca be cnsidered to be an estimate of the extent
to which ore boundxriness point contributes to existing evidence of medialness Using this
confidence measure the boundirinesscontribution to true medialnessis:

C(x,0) =B(x,0) p(x,0) ()
The magnitude of such contributionsis:
o(x,0) =|C(x,0) ®)

The medialness resporse is the integration d boundiriness contributions to true

medianess
m(y,o) = fRn c(x,0)3(y —x —ri(x,0))dx ©)

The etimation o confidence in Eqg. (6) provides the "concordance' property of the
Concordance-based Media Axis Transform (CMAT), by which the medial resporse is high

only when multiple boundhries jointly provide esidence of a symmetric structure. With this



formulation an isolated boundry canna produce amedia resporse. This concordance
property is analysed in sedion 3.

The definition d A(x,o0) usedin Eq. (4), (5) and (9) determines the medial nessresporses
for dark objeds (low grey-level value) on a light badground (high grey-level value). The
same ejuations can be used to compute the medialness resporse for the inverse phase (light

objed onadark badkground by inverting the sign o the unit vedor fA(x,o) such that:

B(x,0)
[B(x.0)

A(x,0) = - (10)

It is relatively simple to combine the cmputation d both sets of medianess either by

summing absolute or signed values of medialness

2.1.2Computationin discrete space

For discrete spatial sampling, boundriness contributions to medianess gace ae
typicdly distributed between grids. In order to improve the locdisation d the medial axis, the
red-values of the m-ordinates of boundriness contributions are preserved throughou the
computation d medialness

Let mOI" and nOl" be the discrete m-ordinates of points in ndimensiond

boundriness and medianess paces, respedively. Let y=(y,,...,y,)  OR" be the

continuous co-ordinates of pointsin medialness pace Now we define apseudo \ersion d the

discrete Delta function with red argument comporents: '

" The discrete Delta functionis defined as: Om 01", 5(m) = 1if m = 0; otherwise 5(m) = 0.



1, -Y2<y <22, i=1...,n

%) = %) otherwise (D

To egtimate the @ntribution confidence of ead boundriness point, m, the initial
medianessat the arrespondng pasition, y, in Fig. 1 must be known. This contribution is the

summation o initial boundxrinesscontributions over the unit volume centred at vy, i.e. :
my(y,0) = ) b(m,0)d,(y ~m - rii(m,o)) (12

Likewise the boundiriness contribution, b(m,o), can be thought of as the acamulation o
boundrinessover a unit volume centred at m. The contribution confidence, p(m,o) , and the
boundriness contribution, ¢(m,o) , are mwmputed using Eq. (6) and Eq. (8). With dscrete
sampling, there ae few boundrinesspoints that contribute to medialnessvalue & exadly the

same position. To compensate for the sparseness of these ntributions, a weighted

summation over avolumeis used in the computation d medialnessresporse:

M(n,0) =) ¢(m,0)G(n —m-ri(m,o),s) (13

Here G is the Gaussan kernel with the standard deviation s. Thisis smilar to the procedure
adopted in ather medialnessalgorithms [10][ 19]. To construct the scde-spaceof the original
image we can either solve the diffusion equation a apply Gaussan filter kernels of increasing
size. The Gausdan filter is alinea diffusion processby which the resporse & a point in the
original image is distributed over an areg the size of which changes linealy with scde. The
standard deviation, s, of the Gaussan weighting functionin Eq. (13) ischosenas s= Ao (A is
a propationality constant). A Gausdan function is close to zero at a distance of more than
threetimes its gandard deviation. Therefore the radius of the volume influenced by a point is

limited to 3s. This is illustrated for the 2-D case in Fig. 2. Point B in boundriness pace



Figure 2: Point B in boundriness pace ontributes to medialnessat point A. All
smilar contributions within a radius of 3s of A are summed using a Gaussan
weighting.
contributes to a drcular area catred at A in medianess gace If we @nsider the weighted
acawmulation over an angular range 6, we have:
6 =2sin""(31 / k) (14)
and 6 iskept constant acoss sde.
The paosition argument in the Gausdan function d Eq. (13) is red-valued therefore it is
not pradicd to construct a Gausdan look-up table indexed by position to accéerate
computation. Instead, ead boundriness contribution is distributed linealy between the four

neaest neighbou grid padnts, in propartion to the distanceto ead neighbou, using:

m(n,0) =y c(m,aW(jn-m-ri(m,o)|) (15

Here the distance weighting function W is defined as W(d) = max(1-d, 0) ; Other weightings
are possble. The Gausgan weighting kernel is then applied to compute the final medialness
resporse:

M(n,o) =m(n,o)* G(n,9) (16)

10



2.1.3Algorithmic description @ CMAT

In the computation o the CMAT a look up table (LUT) is used to identify the
corresponcence between medialness and boundriness points. An ouline description d the
CMAT adgorithm is given in Fig. 3 and the computation d the LUT is described in the
following sedion. The LUT contains a series of groups of boundrinesspaints. The groups are

identified in aseand LUT.

1. For eat scdeo
1.1.For ead dscrete boundrinesspoint compute the boundrinessvalue
using Eq. (2).
1.2.For ead dscrete point in boundriness pace ompute the locaion o its
contribution in medialness paceusing Eq. (4).
1.3. Generate the asciation between eat discrete medialnesspoint and the
group d contributing discrete boundarinesspoints (seesedion 2.1.3.).
1.4.For ead dscrete boundrinesspoint
1.4.1 Compute initial medialness at the locaion d its contribution
using the LUT (Fig. 6) and Eq. (12).
1.4.2 Compute antribution confidence for eaty boundvriness point
using EqQ. (6) and Eq. (8).
1.5. For ead dscrete medialnesspoint acaimulate the revised contributions

using the LUT (Fig. 6) and Eq. (15).

Figure 3: Outline of CMAT algorithm

11



L: Index List LUT: Look Up Table

Boundariness Space 4
my m, O 4

n
] L[n]
/\/\_ﬂ
m 1

\ f C: Count List m2

/\/
n
n > C[n] __d/
/\J
Medialness Space T~

Figure 4: The structure of the look-up table for assciating medialnessand

boundrinesspaints.

2.1.3.1 Association d medialnessand bound@rinesspoints

Although medialness resporse is the acemulation d co-ordinated boundvriness
contributions, only a few boundriness points are relevant to the computation d eadh
medialness value. A look-up table (LUT) is used to identify the boundriness points that

satisfy &, ,(n-m - rai(m,o)) =1, and are therefore relevant at ead scde.

Suppcse that there ae N points in boundriness and medialness pace Then an N-
element LUT (see Fig. 4), organised into N groups and indexed by medialness paosition n
(n=1,...N) will describe the asciation ketween medianess and boundriness points. A
group, n,is the set of the boundriness points whose contributions are dosest to medialness
grid pant n. The content of the LUT is the pasition, m, of the boundxrinesspaints. The start
position and court of ead group are recorded in arrays L and C, respedively. If group nis
empty, its gart position coincides with that of the next medialnesspoint. The aedion d the

LUT isdescribed in Fig.5.

12



Definitions. m grid pdnt co-ordinatesin boundriness pace m=1, ...,N.
n grid pant co-ordinates in medialness gace n=1, ...,N
L[n] the start addressof group ninthe LUT.
C[n] the counter of group ninthe LUT
LUT[i] the content of LUT indexed by i; i=0,... N-1.
Y[m] the m-ordinates of the medianess point associated with

boundirinesspoint m.

1. For eah dscrete point, n (n=1,...N), in medialness gace set group courter
C[n]=0.
2. For ead dscrete paint, m, in boundriness pace
2.1 Compute the red-valued pasition, y, of its contribution in medialness pace
using Eq. (4).
2.2Findthegrid pant, n,in medialness pacethat is closest to y.
2.3Y[m]=n;
2.4C[n]=C[n]+1.
3.L[1]=O0.
4. For successve discrete paints, n,in medialness pace n=2, ...,N
L[n]=L[n-1]+C[n].
5. For eadh discrete point, m, in boundriness pace
5.1 r=Y[m].
5.2Fill i n bound@rinesspasition, m, into the LUT: LUT[L[n]+C[n]-1]=m.
5.3C[n]=C[n]-1.

Figure 5: Algorithm for cregion d LUT as®ciation ketween medialness and

boundirinesspaints.

13



A detail ed description o how the LUT isreadisgivenin Fig. 6.

1. For ead discrete paint, n,in the suppating region d medialness pace
1.1.Compute the size of group n wing C[n]=L[n+1]-L[n],
1.2.Reped
1.2.1 Red the boundiriness co-ordinates, m, of a member of group r
from the LUT as: m=LUT[L[n]+C[n]-1].
1.2.2 Accumulate the boundrinesscontribution from m.
Instep 1.4.1 6 the CMAT agorithm (Fig. 3) use Eq. (12).
In step 1.5 d the CMAT agorithm (Fig. 3) use Eq. (15).
1.2.3C[n]=C[n]-1.

Until C[n]=0.

Figure 6: Reading the LUT.

22TheHMAT-2 Transform

This transform is an adaptation d the HMAT. It is the same & the CMAT with the
concordance citeria omitted and dffers from the HMAT in using a drcular region for
distributing boundriness contributions, rather than an arc [8]. It is presented here to
demonstrate the role of the wncordance citeria The HMAT-2 medialness resporse is

computed as aweighted summation d initial boundrinesscontributions over aregion, that is:

Mo(n,0) =3 b(m,0)G(n—m -ri(m,o),s) (17)

The dgorithm for the HMAT-2 is the same as that for the CMAT but withou step 1.4.

14



3 THE CONCORDANCE PROPERTY

3.1 Concordance Factor

Suppcse N paints contribute to a medial point A; that the boundirinessresporses at these
pontsare by ,i =1,...,N ; the sum of these boundirinessvaluesis Sandthe averageis b .
The medialness estimate & point A, withou considering the relation among b, (as
computed inthe HMAT) is:
M war (Xa = S (18)

For the CMAT, the mnfidence of contributions to a true media structure is 1—%‘, for

ead pant b, . Therefore the medialnessresporseis:

N

M cpar (Xa 01 = Z b (l_%)
:s—§2b|2 (19

N
Examining b? , we have,
i=1

N N
2 _ 2 2
2 b —Zl(b. b)® + Nb

1=1 1

=§(b. =b)* +5 (20)

2

N
> b? has minimum value N when:
1=1

b.:B:%, i=1...,N (22)

15



N
For the maximum val ue of > h? , there aetwo casesto be mnsidered:
i=1

(2) More than ore boundry point contributes to the medialnessat A,

ieb<S i=1...,N,

(2) Only one boundry paoint contributes to the medialnessat A, i.e. :

b,=S b =0 i=1...,NandiZ#k (22

|:| %bIZZSZ

=1
N N
Therefore Zlq2 has maximum value S* when Eq. (22) is sttisfied; and Zlq2 is constrained
1=1 1=1

between:

82 N
NS zl b’ < S° (23

Combining Eq. (20) and Eq. (23), we have:

OSi(b. -_)ZsSZQ—%Q (24)
Let:
% S (b -b)’
-2 N>1
c= ) 1 (25
SREE: R
5 N=1

16



Then the medialnessresporse of the CMAT in Eq. (19) can be written as:

1 — S°C
M cyar (X .00 = S_gi(b. _b)z +WE

TS

Note that ¢ can aso be written as:;

> (o —5)2/(N—1)

0

c= %L— =1 N>1 (253)
0
EY

S?/N
N=1

N
The item Z (b - b)z/(N —1) isthe sample variance a measure of the dispersion, d the
1=1

N observations, b, namalised by S?/N, the largest value of the dispersion (see Eq. (24)).
Therefore ¢ measures the dispersion a variability of the cntributions. The smaller the
amourt of variability, the greder the value of ¢ and the more cncordance there is among the
contributions. Thus c is cdled the mncordance oefficient. We note that 0<c<1. When
c=0 Eq. (22 is stisfied, which is equivalent to there being only one boundiry point casting
its contribution to pant A and there being no concordance When ¢ =1 Eq. (21) is stisfied,
which corresponds to N equal-valued contributions combining to give the maximal degree of
concordance[19].

The CMAT medialness resporse in Eq. (26) is propationa to the sum of boundxriness
resporses and to the ancordance ®efficient among the boundiriness resporses. In addition
when c=1 the medialness resporses of the CMAT are smaller than those of HMAT by a

fador 1-(1/ N). This fador is related to the number of boundxry points invoved in a

17



symmetry. Therefore the CMAT medialness resporse & end pants and kranch pants is
enhanced. A similar behaviour is present in the HMAT medialness resporse. Morse [8]
pointed ou that such enhancement is beneficial because it more dealy identifies the end and

branch pants that best define the ais.

3.2 Boundariness Response ver sus Concor dance

The medianessresporse of the CMAT is propational to bah the sum of boundxriness
resporses and the mncordance between boundriness resporses. It is therefore important to
consider the interadion d these two fadors. Consider the idedi sed situation, shown in Fig. 7,
of Gausdan boundriness resporses for two step edges that differ in magnitude. The
boundiriness resporses at A and B are the locd maxima with the magnitudes of V and U
respedively (U>V). C is the position at which the boundary resporse due to the eldge & B is
equal to the maximum resporse of the alge & A. Suppase that positions E and D are the

midpants of AC and AB respedively, and that the half distances of AC and AB are ko, and

ko, , respedively. Herekistheratio of radiusto scde.

Since
Miar X, 0y) = B(X,,0,) + B(X¢,0;) =2V
Miar (Xp,0,) = B(X,,0,) + B(Xg,0,) =U +V
Then: M iyt (X5,0,) > My (Xg,07)

By inspedion it is clea that the HMAT will produce amaxima medianess resporse a
pasition D, the media position ketween the peaks of boundriness resporse, and give an
acarate identificaion d media position and ohea width. For the CMAT the cncordance

between the boundriness resporses at positions A and B (which determine the medialness

18
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A
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ko, ko,

A
Y.
A

Figure 7: Interadion d boundriness ¢rength and concordance in
estimating medialness resporse.
resporse & D) is wedker than the cncordance between the boundriness resporses at
paositions A and C (which determine the medialness resporse & E). However, the
boundriness sims at D and E bea the inverse relationship therefore it is difficult to compare,
in asimple manner, the relationship between the medialnessresporses at D and E.
In order to estimate how concordance influences the way in which boundriness
contributes to medialnesswe analyse incremental changes in CMAT medialness Suppase, as
in the previous edion, that N paints in boundriness pace ontribute to a media point; that

the boundry resporse & these pointsis b,i =1,...,N; and that the summation d these

resporsesis S. Thenthe CMAT medianessresporse is defined by Eq. (19).

If any one boundxiness resporse, b, is increased by Ab,, then the summation is

incressed to S+ Ab, andincrement in CMAT medialnessresporseis:

19



N
> b? -2+ Ab
_ 1=l k
AM CMAT (E[m_ S Ds_l_Abk (27)
N
Z b|2 _ ZSDk + SZ
. — 1=1
Let: T= S 29)
N N
usin 2=p>+ ) b?, then:
g |Zlh by Zlh
izk
N
th +(S_bk)2
1=1
T=1% (289)

S

Note that item T is not related to the increment Ab, . If we trea all initial boundary resporses

as constant then T is adso a nstant. Note dso that T=0 ony when

b =0,i=1...,Nandi #k, this corresponds to ore boundrinesspoint contributing to the

medianessvalue. In this case, NnoCMAT media nessresponse will be produced. In the case of
multiple boundxriness elements, T >0, will there be an incresse of boundriness resporse
resulting in an increase in medialnessresporse.

With the HMAT, the media nessincrement due to increased boundriness resporse, Ab,

AM yyyr (L= Ab, (29)

If the original boundiry resporses are treaed as constants, the increment of the HMAT

and CMAT media nessresponses change with the ratio:

B=—" (30

Here B may be mnsidered as the relative increment in boundriness With this definition, the
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Figure 8: B and B/(1+p) vs. B. Increment of HMAT and CMAT medianessrelated

to boundrinessincrement.

HMAT and CMAT medianessincrement can be written as;

AM s (CDI= SB (31
AM yar (=T 15'3 (32

Therefore the medialness increment for the HMAT and CMAT depend onthe behaviour of

the two coefficients 8 and B The relationship between 3 and B as afunction d

1+B° 1+
is shownin Fig. 8.1n summary:

1. The medianess of the CMAT, like that of the HMAT, increases monaonicdly with
boundriness The CMAT forms a maximal resporse & pasitions midway between
peeks of boundriness resporse and the magnitude of the medianess pe&k is in
propartion to the magnitude of the contributing boundxriness pe&s. Therefore medial
position and oljea width can be identified as acarately using the CMAT algorithm as
the HMAT agorithm.

2. While the HMAT medialness increases linealy with boundriness increment, the

increase in CMAT medialness is less than that for the HMAT and approacdhes the

21



limiti ng value of T. For example when 3 =1, acwrding to the definition in Eq. (30),
Ab, =S; In this case one boundxrinessresporse, b, , becomes much larger than any
other and therefore violates the previously computed concordance level; When =1
the wefficient B/ (1+ B), inthe CMAT medianessincrement of EQ. (32) is deaeased
to half the value of the wefficient, 3, used in the equation for the increase in HMAT.

This means that weegk concordance anong boundry resporses restrains the increase in

medial nessresponse that arises when the boundrinessresporseis grong.
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4 PERFORMANCE

4.1 Medialness Distribution in Scale Space

To oltain quantitative estimates of the performance of the CMAT algorithm we have
applied the LoG, HMAT and CMAT medianessagorithms to the 1-D objed profile, shown
in Fig. 9(a). This profile corresponds to a dark “objed” on a brighter badkground. The height
of the right edge is doule that of the left edge. Although the quantitative relation between the
heights of these two edges is arbitrary, the nation o varying boundxry strength in grey-level
images is represented. In these experiments gatia position is normalised by “objed radius’
(half-distance between edges). Each medialness resporse is gnsitive to bah pdarities of
boundiry transition and is normali sed by the maximum of the medialnessresporse over scade.

In nrdimensional co-ordinate space the LoG medialnessoperator can be expressed as:

K(x,0) = —0°0°G(x,0)
_ 1 ] _ XTXD _xTx/20° (33)
"~ (2ro?)™? EP o’

where x is the multi-dimensional co-ordinate vedor.

The positive portion d the LoG operator is within a distance of Jno from the centre of
this operator. At a given scde, o, the LoG operator gives the strongest resporse for objeds
with aradius of vno; The HMAT and CMAT give the strongest resporse for objeds with a
radius of ko . To compare these resporses over scde, the radius of the operator is used as a

base parameter. The radius of the LoG operator is defined as r = Jno . The radius of the
HMAT and CMAT operators is defined as r = ko . These medialnessoperators may respond

optimally to an ojed at different scaes (the standard deviation d the Gaussan), bu shoud
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Figure 9: A 1-D objea profile (a), and its sde-spacesurface of medialness from
the LoG (b), HMAT (c) and CMAT (d). The minimum operator radiusis 0.04.

respond opimally at the same operator radius. Here the scde fador that determines operator
radius, k, is st at 2. The Gaussan weighting in Eq. 13is not used becaise the sampling
interval of operator radiusis ®leded to multi ple the sampling interval of spatial paosition and
thereforein 1-D case eat bound@rinesscontributionislocated at a discrete medialnesspoint.
Figs. 9b)-(d) show the 2-D scde-space surface of the LoG, HMAT and CMAT
medialness resporses for the 1-D objed profile in Fig. 9(a). The increment and minimum
value of operator radius is 0.04. Each medianessresponse forms a maximum at the position
of the objed centre and at the radius of the objed. However, the medialiness €de-spaces of

the LoG and HMAT are a mixture of boundry and medial properties, while that of the
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CMAT refleds only media properties and therefore provides a deaer description.

Figs. 10@)-(f) show variation in LoG, HMAT and CMAT medialness resporse with
radius. The radius was increased geometricaly by a fador of 2 between eat evaluation and
the response for an operator radius of 0.64was added in Fig. 10(c). The evolution d the LoG
and HMAT medianessresporses at increasing radii i s the simple summation d boundriness
resporse from ead edge & the spread of boundriness increasses with radius. At small
operator radii, far from the objed radius, Fig. 10(a), the media hessresporses of the LoG and
HMAT, caused hy resporses to edges, are dready strong (67% of their maximum over scde)
while the CMAT produces no resporse. As operator radius increases, Fig. 1Q0(b), the
summation d the LoG and HMAT boundirinessresporses produces a resporse which peaks
away from the “objed” centre. Only the CMAT produces a medianessresporse a the objed
centre. When the operator radius increases to 646 of the objed radius, Fig. 10(c), the
summation d the LoG and HMAT boundariness resporses begins to combine into a single
main lobe avay from the objed centre, and the CMAT medialness cortinues to increases at
the wrred position. When the operator radius matches the objed radius, Fig. 10(d), al three
algorithms produce their maximal resporses at the objed centre, bu the LoG and HMAT
produce two additional side-lobe resporses. The airve of the CMAT medianess resporse
coincides with the main lobe of the HMAT medialness resporse. When operator radius is
larger than the objed radius, Figs. 10(e)-(f), the medialnessresporse of eat agorithm begins
to collapse and ceviate, in pasition, from the objed centre. The resporse of the CMAT is
always enveloped in that of the HMAT, and the resporse of the HMAT is enveloped in that of
the LoG, which shows that the sequence of seledivity to media position (best first) is:

CMAT, HMAT, and LoG. At an operator radius other than the objed radius, the pe&k position
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Figure 10: The LoG, HMAT, and CMAT medialnessresporses as a function d
paosition and at seleded operator radii.

of the CMAT medialnessis much closer to the objed centre than is the resporse for the

HMAT and LoG agorithms.
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Figure 11: The magnitude (a) and pasition (b) of medialness maxima, with resped to
pasition, at arange of operator radii for the LoG, HMAT, and CMAT algorithms.

Fig. 11(a) shows the maximal medialnessresporse & afunction d operator radius for the
LoG, HMAT and CMAT. Each transform gives a maximal resporse when the operator radius
matches the objed radius. Therefore we can acarately locdise the objed radius using any of
these dgorithms. The sequence of seledivity to the objed radius (best first) is. CMAT,
HMAT and LoG.

Fig. 11(b) shows the locus of medialness maxima with resped to pacsition at a range of
operator radii for the LoG, HMAT and CMAT. Ead trace cosss the objed centre when the
operator radius matches the objed radius, and deviates from the objed centre dmost linealy
as operator radius increases. Therefore we can acaurately locdise the objed centre using any
of these dgorithms. The sequence of predsion in spatial locdisation for these operators at a
range of operator radii (best first) is: CMAT, LoG and HMAT. When operator radius is four
times the objed radius, the locdisation bas of objed centre for the CMAT is 13% that for the
HMAT and 196 that for the LoG. The HMAT medialnessresporse is more readily moved to

one side by differences in boundry strength than the LoG medialness This result is contrary
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Figure 12: A 1-D objea profile (a) and loci of medialnessmaxima with resped to
radius at arange of positions (b).
to the observation in [8][9] concerning the behaviour of axis-centred medialness operators
(LoG) and boundry-centred operators (HMAT).

In order to identify “the optima scde ridge” for medial axis extradion, medialness
maxima with resped to scde a ead spatial position are located [4][13]. The set of these
maxima ae aset of curves for 1-D objeds and surfaces for 2-D objeds. Fig. 12b) shows the
loci of the LoG, HMAT and CMAT medialness maxima with resped to operator radius at a
range of positions along the 1-D objed of Fig. 12a@); The two edges of the objed have the
same height. At positions away from the objed centre, the LoG, HMAT and CMAT
medianessresporses exhibit maxima & an operator radius larger than the objed radius. The
sequence of locdisation d objed radius at a range of positions (best first) is: CMAT, LoG
and HMAT. When the position is within 80% of the objed radius, the locdisation hias of
objed radius for the CMAT is under 50% of that for the HMAT. At the boundry eadh
maxima locus occurs at an operator radius doule the objed radius. For positions nea to the

boundry, the LoG and HMAT resporses contain two maxima, while the CMAT resporse has
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Figure 13: A 1-D objed profile with nase alded (SNR=2) (a), and the scde-space
surfaceof medialnessfor the LoG (b), HMAT (c) and CMAT (d) agorithm.

only one maxima. Not all spatial positions have asingle medialnessmaxima & a function o
scde becaise asingle spatia position may be in dfferent media axes at multiple radii.
However for this sngle structure, the maxima locus of the LoG and HMAT resporses at

small er operator radii does not represent any symmetry andis an artefad.

4.2 Effect of Noise on Medialness Computation
We have tested the LoG, HMAT and CMAT agorithms using a 1-D objed profile with
added white Gausdan ndse to investigate the noise sensitivity of the locdisation o

medianessresporse in spatia paosition and scde. Fig. 13@) shows an oljed profile similar to
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Figure 14: The standard deviation in locdisation d objed centre (a) and ohjea

radius (b) under increasing noise levels.

that shown in Fig. 12@) but with zero-mean, Gaussan-distributed ndse alded. The standard
deviation d thisnoiseis 50% of the signal amplitude.

Figs. 13(b)-(d) show the 2-D scde-spacesurfaces of the medialnessresporse for the LoG,
HMAT and CMAT applied to the profile shown in Fig. 13a). Each medianess resporse
forms a maximum for the objed nea the position d the objed centre and at a radius close to
objed radius. At low noise levels, the medialnessresporse was dtered at small radii only. As
the level of noise was increased, the resporse & larger radii was affeded. The resporse
surfacefor the LoG is snoother than that of the HMAT and CMAT, Thisislikely to be dueto
the larger smoathing operator used in the LoG agorithm.

Figs. 14(a) and (b) show the standard deviation d locdisation errors of objed centre and
objed radius for the LoG, HMAT and CMAT, respedively, uncer increasing noise levels.
They are ommputed using 1,000 pofiles at eat nase level. The objed centre is redi sed as the
maximal medialness point with a spatial paosition in the range [-0.5,0.9 and a radius in the
range [0.7,1.3. The results siow that the standard deviation d locdisation error for objed

centre and obed radius for the LoG, HMAT and CMAT all increase linealy with the
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standard deviation d noise level. The arves for the CMAT coincide with those for the
HMAT, which shows again that these two algorithms perform similarly nea the paosition o
the objed centre and the objed radius. The HMAT and CMAT are 27% lower in oljed
centre locdisation error and 1%% lower in oljed radius locdisation error than the LoG. This
is consistent with Morse's conclusion [9] that axis-centred operators, like the LoG, are
sengitive to variations within the objed because they require integration ower the entire width

of the objea.

4.3 Application to 2-D Images

To assss the significance of the results presented above we evaluated the CMAT
algorithm using synthetic and retural images. We compared these results with the results that
we obtained using our own implementations of the LoG, HMAT and credit attribution
algorithm. The linea HMAT was used throughou this paper. The results for the HMAT-2,
the initial medialness resporse of the CMAT, is aso provided to demonstrate how the
improved CMAT resporses arises. The size of ead image is 128x128 pxels. Each
medialness operator is ensitive to bah pdarities of boundry transition. The medialness
images $ow the dsolute value of medialnessresporse. Therefore in the medialness results
for the LoG operator the zero-crossngs, which reflea boundry information, are replaced by
minimawith zero value. Asin the 1-D case, we use operator radius asa ommon parameter of
scde between the operators. Here the scde fador that determines operator radius, k, is %t at 2
andthe scde fador that determines the extent of the boundrinessdistribution, A, is st at 0.5.

Fig. 15shows the medialnessresporses for aredangle with a sawtocoth edge. For the LoG

(first row) and HMAT (seamnd row) operators, "spurious’ medial resporses appea as lines
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framing the shape; the brightest regions correspondto true medial resporses. At aradius of 5
and 10 pxels, the "spurious’ resporses are mainly caused by the sensitivity of a linea
operator to edges. At aradius of 20 pixels, the resporse of bath linea operators consists of a
central medial resporse the ridge of which provides a predse description d the overall shape,
and an ouer "spurious” structure due to the side-lobe dfed. The aedit attribution algorithm
makes the true medialness resporse more prominent (third row). The side-lobe resporse
present in Fig. 15d) and (g) are diminated. However, the aedit attribution algorithm has
little impaa on the way that edges generate a"medialness' resporse (at radii of 5 and 10
pixels). Thisis nat surprising becaise the enhancement of the aedit attribution depends on
the HMAT medialness contrast between the main and side lobes. The HMAT-2 agorithm
produces a result similar to that of the HMAT (fourth row) but the medial axes are more
strongly emphasised. Thisis due to the range of values for 8 in Eq. (14) being small er than the
correspondng effedive angle of distribution for the drcular arc used in the HMAT algorithm
[8]. With the CMAT agorithm (fifth row), only true medial resporses are generated at all
radii. The hierarchy and robustness of multiscde analysis are demonstrated in ead set of
results: the triangular sawteeth and end corners are refleded at small radii (Ieft column), the
redangular shape is refleded at medium radii (midde @lumn), and the dongated shape is
refleced at large radii (right column); The medialness of larger scade properties is little
affeded by fine detall.

Fig. 16 shows the medialness resporses for a teadrop shape. The radius of the drcular
arc & the bottom of the teadrop is 24 pxels. Therefore the radius at which the strongest
medianessresporse shoud occur for this circular arc is 24 pxels. However, we find that the

LoG (first row), HMAT (second row) and credit attribution algorithms (third row) begin to
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produce medialnessresporses for the ac a smallest radius used (5 pixels, seeFig. 16b) and
(e)). Further, these resporses are displacal from the ac centre by a relatively large distance
and resemble boundiry resporses (the left and middle @mlumns). With the CMAT agorithm,
the medialnessresporse for the drcular arc gopeas at a radius greder than 9 pgxelsand at a
pasition close to the ac centre (fifth row). Thisis consistent with the media nessperformance
demonstrated in Sedion 4.1 whereby the CMAT produced a medialness resporse only at
pasitions nea to the objed centre and at radii close to the objed radius.

Fig. 17 shows the medialnessresporse for alongitudina body MR image of a pair of legs
(an image from the Visible Human Projed, http://www.nim.nih.gov/research/visible). This
image was chosen as an example of natural image, in which the anplitude of the grey-level
boundry varies, the shapes are relatively complex and multiple "objeds' are in close
proximity. The medialnessresporses for the LoG (first row) and HMAT (second row) can be
seen to be amixture of medial and boundry resporses. The aedit attribution algorithm
gredly refines the result of the HMAT, bu the cntour of bath legsis gill visible (third row).
In the results of the CMAT (fifth row), only those resporses that refled true symmetry are
retained: the CMAT medianess refleds the bores and the fat layers (bright regions in the
inner side of legs) at small radius; at medium radius the knees are enphasised; at a large
radius only the major structure of the limbs is maintained. Note that the CMAT resporse
between the legs corredly refleds atriangul ar shape.

For eat medialness operator, the computational cost increases linealy with radius. The
times taken to compute the medialness resporse of a 128x128 pxel image & an operator
radius of 20 pxels on a SUN Ultra-2 workstation are shown in Table 1. Five iterations were

used in the aedit attribution (CA) algorithm. We used a LUT to compute the Gausdan and its
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derivatives in al agorithms, and another LUT to compute the weighting function in the

HMAT and credit attribution algorithms.

Table 1: The computation cost of medialnessalgorithms at one operator radius.

Algorithms LoG HMAT CA HMAT-2 | CMAT

Time (seconds) 10 40 365 11 13
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Figure 15: The medialnessresporses for aredangle with a sawtoath edge: (@) Origina
image; first row, (b)-(d), LoG operator; second row, (€)-(g), HMAT; third row, (h)-(j),
credit attribution algorithm after 5 iterations; fourth row, (k)-(m), HMAT-2; fifth row,
(n)-(0), CMAT. The mlumns from left to right are & operator radii of 5, 10and 20
pixels, respedively. Theradius of the shapeis 20 pxels.
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Figure 16: The medialnessresporses for ateadrop shape: (a) Original image; first row,
(b)-(d), LoG operator; second row, (e)-(g), HMAT; third row, (h)-(j), credit attribution
algorithm after 5 iterations; fourth row, (k)-(m), HMAT-2; fifth row, (n)-(p), CMAT.
The olumns from left to right are & operator radii of 6, 12and 24 pxels, respedively.
Theradius of the drcular arc & the bottom of the shapeis 24 pxels.
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Figure 17: The medialnessresporses for a pair of legs. (a) Original image; first row, (b)-
(d), LoG operator; seamnd row, (€)-(g), HMAT; third row, (h)-(j), credit attribution
algorithm after 5 iterations;, fourth row, (k)-(m), HMAT-2; fifth row, (n)-(p), CMAT.
The mlumns from left to right are & operator radii of 3, 6and 12 pxels, respedively.
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5 CONCLUSIONS

We have presented a nortlinea algorithm, CMAT, for computing the multiscde medial
resporse of grey-level images. For a symmetric structure, the resporse of this operator has
only one maximum aaoss sde-space ad this maximum is at the wrred scde for the width
of the objed. Therefore the CMAT provides a deaer description d shapes than the linea
LoG and HMAT medianess algorithms which are sensitive to edges and give multiple
resporses to symmetric structures. This method has improved the seledivity and locdi sation
of medial axis paosition and oljed width aadoss €de-space In addition, the robustnessof the
linea media transforms in the presence of noise is maintained. Compared with the relaxation
refinement of the linea operators [9], our agorithm is computationally more dficient. These
results sxow that the CMAT algorithm provides a robust and computationally efficient

description d symmetry in grey-level images.

APPENDI X

Alter native Definitions of Contribution Confidence

In Eqg. (6), we defined the antribution confidence function, p(x,o), in the form of
f(x) =1-x, where x =b(x,0)/m,(y,0). In general, p(x,o) isdefined as afunction d the
ratio b(x,0) / my(y,0),i.e.:

p(x,0) = f[b(x,0) [ my(y,0)] (A1)

The requirements for the function f (X) are:
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Fig. Al. Contribution confidence functions that strictly satisfy requirements of Eq. (A2).

D O0=sf(x)<1l, O<x=1l
@ f@=0 (A2)
3 f'(x<o0
Condtion (1) means that the medialness response shoud nd be greder than the initial
medialness resporse. Condtion (2) means that a single boundry point produces no
medianessresporse. Condtion (3) means that given a boundxriness contribution, the greaer
the initial medialness the more possbleit isfor this boundarinesspaint to contribute to atrue
symmetric structure. These condtions constrain the values of x and f (x) to the aeabetween
the wordinate aes and the dotted lines, shown in Fig. A1. Thisarea ca be divided into three
regions acarding to the value of x:
Region A (x<<1): This region corresponds to situations in which boundry points
cluster around an end-point, or a wesk boundriness resporse that
contributes to the initial medialnessjointly with ather much stronger

boundirinessresporses.
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RegionC (x - 1): This region corresponds to the situation in which a strong
boundiriness resporse @ntributes to the initial medianess jointly
with ather much weeker boundrinessresponses.

Region B: Thisregion, centred at x =1/2, corresponds to the situation in which
two compatible boundxries, paralel to eat ather, contribute to the
initial medialness

The ontribution confidence function defined in Eq. (6) corresponds to the function

f(x) =1-x represented by curve | in Fig. Al. Varying the shape of this function, withou

violating the requirements of Eq. (A2), will emphasise (or de-emphasise) end-point
medialness with resped to the medianess arising from paralel boundries. Curve I
suppresses and curve Il enhances the relative medialnessarising from parall el boundiries.

If the last requirement of Eq. (A2), f'(x) <0, is wegkened a relationship for f(x) can

be defined to give greaer emphasis to the medialnessarising from parallel boundiries and less

emphasis to the medialnessarising from endpants. Curve 1V in Fig. A2 is one such function.

v
x

0 1/2 1

Fig. A2. A contribution confidence function that satisfies the weekened requirements of EQ.
(A3).
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The function d curvelV is;

X ifO<x<1/2
f(x) =] _ (A3)
FRA-x) ifl/2<x<1

To understand haw this arises, consider the medialnessfor the “tube @wntour” shown in
Fig. A3. Inthisfigure the boundrinessat ead pant onthe wntour isb andthere ae N paints
onthe haf-circular arc (N >>2). Thus the medialnessat points O (N contributions) and B (2

contributions, letting N=2), using Eq. (6), are:

~ NbH- L= (N -
M.(XO,DJ—NbEL NE (N -1)b

(A4)
M, (Xxg,01=b
Using Eq. (A3) the medialnessat points O and B becomes:
M, (Xo,01= NbE =2b
N (A5)

M,, (Xz,00=2b

The resulting uniform-resporse medianess is no longer related to the number of
contributions and the medialness along the middle line of parallel boundxries is grealy
enhanced. The differencein the medialnessresulting from curves | and 1V is smilar in neture
to the difference between the “mean deviation from flatness' and the “principle deviation
from flatness’ [4], computation d medialness The “mean deviation from flatness’ is based
on the use of an isotropic convdution d a Lapladan with the image and the “principal
deviationfrom flatness’ is based onthe gplicaion o aLapladan convdutionin the diredion

which maximises the resporse.
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Fig. A3. Medialnessacamulation from end-points and perall el boundiries.

The analyses and results presented in this paper are based onthe contribution confidence

p(x,o0) defined in Eq. (6), intheformof f(x) =1- x(curvelinFig. Al).
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