

University of Birmingham

Competitive co-evolution of multi-layer perceptron
classifiers
Castellani, Marco

DOI:
10.1007/s00500-017-2587-6

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Castellani, M 2017, 'Competitive co-evolution of multi-layer perceptron classifiers', Soft Computing.
https://doi.org/10.1007/s00500-017-2587-6

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 10/04/2017

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.1007/s00500-017-2587-6
https://doi.org/10.1007/s00500-017-2587-6
https://birmingham.elsevierpure.com/en/publications/73c74e7a-c56f-4b9e-a18a-d81101456c59

Soft Comput
DOI 10.1007/s00500-017-2587-6

METHODOLOGIES AND APPLICATION

Competitive co-evolution of multi-layer perceptron classifiers

Marco Castellani1

© The Author(s) 2017. This article is an open access publication

Abstract This paper analyses the competitive approach
to the co-evolutionary training of multi-layer perceptron
classifiers. Two algorithms were tested: the first opposes a
population of classifiers to a population of training patterns;
the second pits a population of classifiers against a population
of subsets of training patterns. The classifiers are regarded as
predators that need to ‘capture’ (correctly categorise) the prey
(training patterns). Success for the predators is measured on
their ability to capture prey. Success for the prey is measured
on their ability to escape predation (be misclassified). The
aim of the procedure is to create an evolutionary tug-of-war
between the best classifiers and the most difficult data sam-
ples, increasing the efficiency and accuracy of the learning
process. The two co-evolutionary algorithms were tested on
a number of well-known benchmarks and on several artificial
data sets modelling different kinds of common classification
problems such as overlapping data categories, noisy train-
ing inputs, and unbalanced data classes. The performance
of the co-evolutionary methods was compared with that of
two traditional training techniques: the standard backpropa-
gation rule and a conventional evolutionary algorithm. The
co-evolutionary procedures achieved top accuracy in all clas-
sification problems. They particularly excelled on data sets
containing noisy training inputs, where they outperformed
the backpropagation rule, and on tasks involving unbalanced
data classes, where they outperformed both backpropaga-
tion and the conventional evolutionary algorithm. Compared
to the standard evolutionary algorithm, the co-evolutionary

Communicated by V. Loia.

B Marco Castellani
m.castellani@bham.ac.uk

1 School of Engineering, University of Birmingham,
Birmingham B15 2TT, UK

procedures were able to obtain similar or superior learning
accuracies, whilst needing considerably less presentations
of the training patterns. This economy in the use of training
patterns translated into significant savings in computational
overheads and algorithms running time.

Keywords Evolutionary algorithms · Co-evolution ·
Predator–prey systems · Competition · Multi-layer
perceptron · Learning

1 Introduction

The multi-layer perceptron (MLP) (Haykin 2009) is to date
one of themost popular and versatile artificial neural network
(ANN) models. Thanks to its capability of mapping arbitrar-
ily complex decision regions (Lippmann 1987), theMLP has
been extensively used for pattern classification. This kind of
ANN is trained to perform the desired categorisation task via
the repeated presentation of a set of instances of the various
classes. During the training process, the weights of the neu-
ron connections are adjusted so as to reduce the network’s
classification error.

Training an MLP is essentially a search problem in the
space of the ANNweights, where the solution is the configu-
ration thatminimises the overall classification error. Standard
gradient-based training algorithms like the backpropagation
(BP) rule (Rumelhart and McClelland 1986) are liable to
converge to suboptimal peaks of accuracy. For this reason,
evolutionary algorithms (EAs) (Fogel 2000) have been exten-
sively used to design and train MLP classifiers (Yao 1999;
Azzini and Tettamanzi 2011; Castellani 2013).

The main advantage of EAs is their global search
approach, which allows them to escape suboptimal weight
configurations. The main drawback is the computational

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2587-6&domain=pdf
http://orcid.org/0000-0002-5623-7491

M. Castellani

complexity of the procedure, which becomes problematic if
large ANNs and training sets are involved. Hence, the stan-
dard BP rule is often used to speed up the learning process
(Lamarckian evolution Aboitiz 1992). Yet, despite its ability
to descend quickly the ANN error surface, BP is computa-
tionally demanding and in some cases the overall training
process may be extremely lengthy.

One of themost computationally intensive tasks in an evo-
lutionaryMLP training procedure is the evaluation of the can-
didate solutions, which entails the presentation of the whole
training set of examples to every individual. Namely, each of
theM training patterns must be forward processed by each of
the N solutions. If Lamarckian learning is used, a further M
forward andM backward propagations are added. Randomly
sampling only a proportion of the training data at each evo-
lution cycle (Castellani 2013) alleviates the time complexity
of the EA, but may degrade the learning accuracy and speed.

Typical MLP evolutionary learning curves are charac-
terised by an exponentially decreasing behaviour, with an
initial rapid drop of the average classification error and a
long tail of slower improvement. That is, the solutions learn
quickly to classify the bulk of the examples and spend the rest
of the time learning to categorise the most ‘difficult’ cases
(Paredis 1995). Yet, in standard EAs the entire training set is
used throughout the whole procedure. If the training process
progressively focused on themost problematic examples, the
time complexity of the algorithm would be greatly reduced.

Paredis (1995) devised a co-evolutionary genetic algo-
rithm (CGA) mimicking predator–prey interaction, where a
population of MLP classifiers is opposed to a training set
of patterns. Classifiers (predators) and individual training
patterns (prey) are pitted one against the other in one-to-
one tournaments. The fitness of the predators is evaluated
on their capability to ‘capture’ (classify correctly) the prey.
The fitness of the prey is evaluated on their ability to escape
predation (i.e. how often it is misclassified by the MLPs).
Since the likelihood that a prey is selected for a tournament
is based on its fitness (i.e. difficulty), the learning procedure
focuses mostly on unsolved cases. In this way, CGA is able
to reduce considerably the computational effort.

Paredis proved the effectiveness and efficiency of co-
evolutionary ANN training (Paredis 1995). However, despite
the success and simplicity of CGA, competitive predator–
prey systems have seldom been used for ANN training.
Indeed, to date most co-evolutionary methods are based on
cooperative procedures, where separate populations of com-
ponents learn to collaborate like symbiotic organisms to solve
a task (Potter and Jong 2000; García-Pedrajas et al. 2003;
Gomez et al. 2008; Chandra 2013; Rivera et al. 2013).

This study investigates the effectiveness and efficacy of
the competitive approach to MLP classifier evolution, test-
ing two alternative methods on problems of different nature.
The literature on the subject is reviewed in Sect. 2. Aims

and objectives of the paper are stated in Sect. 3. The two
predator–prey algorithms are presented in Sect. 4, whilst the
experimental set-up is outlined in Sect. 5. Section 6 presents
the experimental results of the tests. Section 7 investigates
the use of predator–prey procedures on unbalanced data sets.
Section 8 discusses the experimental results, and Sect. 9 con-
cludes the paper.

2 Predator–prey algorithms

Popovici et al. (2012) divided competitive co-evolutionary
algorithms into single- andmulti-population procedures. The
first group pitches individuals belonging to the same popu-
lation against each other to evaluate their ability to perform
a given task. Typical examples are the evolution of game
players (tic-tac-toe Angeline and Pollack 1993; backgam-
mon Pollack and Blair 1998; checkers Fogel 2002) or robots
(football teams Uchibe and Asada 2006), where one individ-
ual or team is evaluated on the outcome of one ormore games
against one or more opponents.

The second group includes procedures featuring at least
two populations that co-evolve separately and found applica-
tion mostly in Artificial Life (Ray 1991; Nolfi and Floreano
1998; Rajagopalan et al. 2010; Nolfi 2012).Multi-population
methods are often modelled on predator–prey (sometimes
referred to as host–parasite) systems. Since biological co-
evolution is defined as the reciprocal influence of two (or
more) species on each other’s evolution (Popovici et al.
2012), some authors regard as ‘co-evolutionary’ only multi-
population procedures. Henceforth, unless explicitly stated,
the terms co-evolutionary and competitivewill be used exclu-
sively to refer to multi-population predator–prey algorithms.

Predator–prey interactions were recognised by Darwin as
a major factor in evolutionary change. Mitchell et al. (2006)
pointed out three main factors that determine the success of
competitive co-evolution: the mutual interactions that con-
stantly change the fitness landscape faced by each species,
the fostering of population diversity, and the evolutionary
arms races that develop between predators and prey. In detail,
predators and prey are always changing to target each other’s
weaknesses. In doing so, they continuously improve their
abilities in a never ending struggle for supremacy. They also
constantly modify the fitness landscape for the other species,
preventing its premature convergence and stagnation in local
fitness optima (Floreano and Nolfi 1997).

The primary scope of competitive co-evolution is to fos-
ter a successful arms race between opposed populations of
problems and solvers (de Boer and Hogeweg 2012). The first
example of co-evolutionary algorithm is due to Hillis (1990),
who simulated a host–parasite system to generate minimal
sorting networks. In his work, a population of sorting net-
works (the hosts, prey) competes against a population of

123

Competitive co-evolution of multi-layer perceptron classifiers

training problems, that is, sets of test cases (the parasites,
predators). In the evaluation phase, each host is paired to a
parasite, and the fitness of the first (how many test cases
it solves) is complementary to the fitness of the second
(how many test cases the host fails). Complementary fitness
is a fundamental element to promote competition amongst
species; the success of one is the failure of the other.

2.1 Predator–prey training of ANNs

In his co-evolutionary CGA, Paredis (1995) employs the
GENITOR (Whitley 1989) genetic algorithm to evolve
the predators (MLPs). The prey (training samples) do not
undergo evolution. However, their fitness is updated through-
out the algorithm and determines the frequency each prey
interacts with the predators. Predator–prey interactions take
place in one-to-one tournaments where a pattern is paired
to a classifier. The purpose of the tournaments is to update
the fitness of the individuals. The classifier is awarded a win
if it categorises correctly the training pattern; otherwise, the
latter is the winner (complementary fitness). The fitness of
a given predator or prey sums up the number of wins in the
last 20 tournaments attended (lifetime fitness evaluation).

The prey are picked for tournaments using a stochas-
tic selection procedure (proportional selection Fogel 2000)
which favours the fittest training patterns. Thus, CGA pro-
gressively focuses the learning process on the most prob-
lematic examples, whilst the bulk of the training set is rarely
used once it is learned. Using an artificial data set, Pare-
dis (1995) showed that after an initial phase, the examples
of highest fitness concentrate near the boundaries between
different classes. That is, the candidate solutions learn first
a broad partition of the decision space and then refine the
boundaries between classes.

By ignoring learned examples, CGA reduces substantially
the number of training data evaluations, thus addressing the
problem of the computational complexity of evolutionary
MLP learning procedures. Paredis used CGA to train MLPs
to solve classification (Paredis 1995) and process control
(Paredis 1998) problems. In the latter case, a population of
MLP controllers was pitched against a population of process
starting points in a bioreactor control task. Paredis (1995,
1996) proved the advantages of CGA over the traditional
GENITOR genetic algorithm in terms of learning accuracy
and speed (Paredis 1995).

To the best of the author’s knowledge, Paredis’ predator–
prey approach for MLP training has not been replicated in
the EA literature. A possible explanation may be the diffi-
culty of pairing up two competing evolutionary procedures.
Mitchell (2006) and Watson and Pollack (2001) pointed out
possible problems of competitive co-evolution procedures,
such as loss of gradients, over specialisation, and red queen
dynamics. Loss of gradients occurs when either the preda-

tors or the prey overpowers the other species, for example,
if a subpopulation of training patterns is able to defeat all
classifiers. Overspecialisation happens when predators and
prey get stuck into some partial solution to the problem. Red
queen dynamics develop when predators and prey transition
between stages where at turn one species defeats the other,
without overall progress towards a more general solution.

Other task-specific problemsmay affect competitiveMLP
training approaches like CGA. In particular, the patterns that
emerge as the most difficult may be statistical outliers, or
the result of some measurement error. The learning process
may thus be biased by a few noisy or atypical data samples,
and the MLP classifier may fail to generalise. Also, different
classes may have overlapping features, that is, they may not
be separable. In this latter case, there will always be training
patterns able to keep theMLP solutions under attack, and the
learning process may fail to converge.

3 Aims and objectives

The aim of this paper is to analyse the performance of
the co-evolutionary approach to MLP training in terms of
accuracy and computational complexity. Two alternative
predator–prey approaches are considered, the first pitching
a population of individual solutions against a population of
classifiers (Paredis’ original approach) and the second oppos-
ing a population of training data sets against a population of
classifiers (new approach).

The learning accuracy and computational complexity of
these two procedures will be compared to those obtained
by the standard backpropagation rule (baseline algorithm)
and a standard EA. This first set of experiments replicates
and expands Paredis’ studies on competitive co-evolution,
including more data sets and a more precise measure of com-
putational complexity.

In addition, the robustness of the competitive co-
evolutionary approach to noisy data sets and overlapping data
classes will be evaluated. As discussed in the previous sec-
tion, noisy or non-separable data patterns amount to hard or
impossible to capture prey, which may disrupt or bias the
MLP learning process. It is therefore important to evaluate
the viability of the co-evolutionary approach beyond Paredis’
clear-cut case of disjoint classes (Paredis 1995, 1996). This
second set of experiments represents an original contribution
of this paper.

The last set of experiments tests the hypothesis that
predator–prey algorithms may be particularly suited to deal
with unbalanced data classes. The idea is that competitive
co-evolution is able to prevent the members of the most
numerous class(es) from monopolising the inductive MLP
learning procedure. This hypothesis and its experimental ver-
ification are original contributions of this paper.

123

M. Castellani

It is important to underline that this paper does not aim
to endorse any particular kind of evolutionary algorithm, but
to investigate the strengths, shortcomings, and overall via-
bility of competitive co-evolution. For this reason, the two
co-evolutionary algorithms under comparison and the stan-
dard EA share the same predator evolution procedure. As
a consequence, the experimental results should reveal the
impact of the two prey evolution approaches tested. Other
evolutionary procedures can be used for MLP evolution. It
is out of the scope of this paper to investigate the impact of
the many instances of evolutionary optimisation methods for
ANN learning.

4 Training algorithms

This section introduces the twopredator–prey algorithms that
will be investigated in this study. The first is the Co-Adaptive
artificial Neural Network Training (CANNT) algorithm. It is
modelled on CGA and is based on an evolving population
of MLP classifiers and a co-adapting set of training data.
The second algorithm is theCo-Evolutionary artificialNeural
Network Training (CENNT) algorithm. It is based on two co-
evolving populations: classifiers and training subsets.

The two algorithms are composed of a module (Preda-
tor) for the evolution of the MLP classifiers, a module (Prey)
for the adaptation/evolution of the training patterns, and an
interface (Interactionmodule)where the classifiers and train-
ing patterns are paired up for evaluation and BP training.
The Predator and Prey modules act in parallel; the Interac-
tion module executes after the Predator and Prey modules.
An evolution cycle (generation) includes the execution of all
three modules. Both algorithms stop after a pre-fixed number
of generations have elapsed, and the best performing classi-
fier is taken as the final solution.

The two competitive algorithms share the same Preda-
tor module and have their own specific Prey and Interaction
modules. Their flow charts are shown in Fig. 1.

4.1 Co-Adaptive ANN Training algorithm (CANNT)

The CANNT algorithm uses the same co-evolutionary
scheme employed in CGA, featuring a population of MLP
classifiers (the predators) competing against the individual
training patterns (the preys). The main differences between
CGA and CANNT are the kind of evolutionary procedure
used and the fitness evaluation procedure.

The Predator module of the CANNT algorithm is an evo-
lutionary algorithm for MLP training. The Prey module of
the CANNT algorithm contains the population of training
data. The training data are not a truly evolving population,
since only the individual fitness values are updated.

Fig. 1 Flow charts of competitive MLP training algorithms. a Flow
chart of CANNT algorithm. b Flow chart of CENNT algorithm

4.1.1 CANNT predator module

In CGA, the MLP solutions are evolved using a genetic
algorithm based on floating point representation, steady-state
population replacement (Fogel 2000), proportional selection
(Fogel 2000), two-point crossover, and an adaptive mutation
operator (Whitley 1989).

Also in CANNT, the population is encoded using floating
point representation. Generational replacement (Fogel 2000)
is adopted in CANNT for the population of ANN classifiers,
in order to foster exploration of the solution space. That is,
instead of replacing at each generation the least fit individual
with a new individual of higher fitness (steady-state replace-
ment), the whole parent population is replaced with an equal
number of offspring (generational replacement). Only the
fittest solution survives into the next generation (elitismFogel
2000).

The selection scheme used in CANNT is fitness ranking
(Fogel 2000), which eliminates the fitness scaling problem,

123

Competitive co-evolution of multi-layer perceptron classifiers

and avoids premature convergence on suboptimal solutions
(Pham and Castellani 2010).

Genetic mutations in CANNT modify the weights of all
the nodes of a candidate MLP solution. For each weight, the
perturbation is randomly sampled with uniform probability
from a small interval [−δ, δ] of fixed width 2δ. To avoid
the competing conventions problem (Thierens et al. 1993),
genetic recombination is not featured in the evolution of the
ANN classifiers. Given the lack of genetic crossover and the
real-valued encoding of the solutions, the MLP training pro-
cedure is akin to Evolutionary Programming (Fogel 2000).

At the beginning of the search, the initialisation proce-
dure generates the starting population ofMLP solutions. The
structure of the ANN is pre-set by the user, whilst the weights
are randomly initialised.

4.1.2 CANNT prey module

The Prey module contains the set of training patterns. The
patterns do not evolve, their only feature is the individual
fitness which is calculated in the Interaction module. At
initialisation, all M training patterns v j (j ∈ [1, M]) are
assigned fitness f

(
v j , 0

) = 0.5.

4.1.3 CANNT interaction module

The new generation of predators (MLPs) is paired up with a
sample of prey (patterns) for training and evaluation.

For each of the N candidate MLP solutions pi (i ∈
[1, N]), the training set T is scanned. For each of the M
elements of the training set v j (j ∈ [1, M]), a random num-
ber rnd ∈ [0, 1] is drawn and v j is picked if rnd ≤ f

(
v j

)
,

where f
(
v j

) ∈ [0, 1] is the fitness of the j th pattern v j .
That is, for each predator the prey are selected with a prob-
ability that is proportional to their fitness. At the end of the
pairing process, each MLP pi is paired with a different sub-
set Ki ⊆ T of randomly picked training patterns. Different
training subsetsmay have a different number of data samples.

Each subset Ki is first used to train the associated pi , in
order to speed up the learning process (Lamarckian learning).
Since BP learning is computationally expensive, only one
cycle of the procedure is executed for each solution. Because
the probability of selection for the training data is propor-
tional to fitness, the Lamarckian learning process focuses
primarily on the most difficult examples.

Since the MLP population is almost completely renewed
at every generation, lifetime fitness evaluation (Paredis 1996)
cannot be used. In CANNT, the fitness of the predators and
prey is evaluated at once in the Interaction module. The fit-
ness f (pi) of a candidate MLP solution pi paired up to
subset Ki is equal to its classification accuracy:

f (pi) = ci (Ki)

Si
(1)

where ci (Ki) is the number of patterns in Ki correctly clas-
sified by pi , and Si is the size of the training subset Ki . A
training pattern v j can be included in several training subsets.
The fitness f

(
v j , t + 1

)
of training pattern v j at iteration

t+1 depends on its previous fitness f
(
v j , t

)
, and on the fre-

quency v j is not classified correctly by the MLP solutions in
the current iteration:

f
(
v j , t + 1

) = 0.8 · f
(
v j , t

) + 0.2 · m j (t)

Pj (t)
(2)

where m j (t) is the number of times v j was misclassified at
iteration t , and Pj (t) is the number of classification attempts
(the number of training subsets v j belongs to). That is, the
fitness of a predator corresponds to how many preys it cap-
tures out of a sample of the prey population; and the fitness
of a prey depends on how many times it escapes predation
out of the total number of predation attempts. Note that at
any time t , fitness f

(
v j , t

) ∈ [0, 1].
The first term at the right hand side of Eq. (2) represents

the trace of the past evaluations of the pattern. It simulates
Paredis’ lifetime fitness evaluation mechanism. It was found
experimentally that the trace helps to prevent excessive oscil-
lations in the co-evolution process. The 8:2 ratio between
the contributions of the trace and the last evaluation was
set experimentally. This ratio can be changed to increase or
decrease the speed at which the system forgets the result of
past fitness estimates.

4.2 Co-evolutionary ANN training algorithm (CENNT)

The CENNT algorithm features two co-evolving popula-
tions: MLP solutions and training subsets of examples.

4.2.1 CENNT predator module

CENNT uses the same Predator module used by CANNT
and described in Sect. 4.1.1.

4.2.2 CENNT prey module

The Prey module of the co-evolutionary CENNT algo-
rithm is an evolutionary algorithm for generation of train-
ing pattern subsets. The aim of the Prey module is to
evolve subsets Ki of training patterns that are difficult to
classify.

Each solutionv j is encoded as a bit stringof length equal to
the number M of training patterns. If the j th element (gene)
of the string (chromosome) is set to ‘1’ (allele), the corre-

123

M. Castellani

sponding training pattern v j is included in the training subset,
otherwise (‘0’ allele) is excluded.

The module employs generational replacement and the
fitness ranking selection routine. New individuals are gen-
erated through the standard bit flip mutation and two-point
crossover (Fogel 2000) operators. The mutation probability
depends on a predefined mutation rate mv . If an offspring
is selected for mutation, each of its genes is mutated with a
predefined probability mg .

If an offspring corresponding to the empty set is generated,
it is re-initialised with equal allele probability per each gene.

At initialisation, the solutions are randomly initialised
with equal allele probability per each gene.

Overall, the Prey module of CENNT is akin to a standard
genetic algorithm (Fogel 2000).

4.2.3 CENNT interaction module

Each offspring of the predator population (MLPs) is paired
up with one or more of the offspring of the prey population
(training subsets).

For each of the N predators (candidate MLP solutions) pi

(i ∈ [1, N]), one prey v j (training subset K j) is randomly
picked. All predators are paired up to at least one prey, and
vice versa. If the number of predators is equal to the number
of prey, each predator is paired up to one and just one prey. If
the predators (prey) are less numerous than the prey (preda-
tors), a predator (prey) can be paired up to more than one
prey (predator). To support the uniformity of the evaluation
procedure, no predator (prey) can be paired up to n + 1 prey
(predators) until all the other predators (prey) are paired up
to at least n prey (predators).

Once ANNs and training subsets are associated, one cycle
of ANN Lamarckian BP learning (Sect. 4.1.3) is executed
per each associated subset. Because the prey evolution pro-
cess favours the creation of subsets of difficult examples,
Lamarckian learning focuses primarily on the most difficult
examples.

The fitness f (pi) of a predator pi is equal to its classifi-
cation accuracy:

f (pi) = 1

n
·

n∑

j=1

ci
(
K j

)

S j
(3)

where ci
(
K j

)
is the number of patterns in K j correctly clas-

sified by the candidate MLP solution pi , S j is the size of K j

(i.e. the number of training patterns included in K j), and n
is the number of prey paired up to pi . The fitness of a prey
v j is equal to:

f
(
v j

) = 1 − 1

m
·

m∑

i=1

ci
(
K j

)

S j
(4)

wherem is the number of predators paired up to v j . Ifm = n,
then f (pi) = 1 − f

(
v j

)
(complementary fitness).

5 Methods

The main goal of this paper is to ascertain the viability and
effectiveness of the competitive approach through a series of
experimental tests. The aim of each test is to train an MLP to
solve a given classification problem. In all cases, the ANN is
composed of one hidden layer of neurons.

In all tests, the performance of the CANNT and CENNT
algorithms is compared with that of the standard BP rule
and a conventional EA algorithm. The conventional EA cor-
responds to the Predator module of CANNT and CENNT.
The only difference between this EA and the two competi-
tive algorithms is that the solutions are trained and evaluated
(see Interaction modules of CANNT and CENNT) using
the whole training set of examples. The conventional EA is
henceforth referred to as the ‘standard’ or ‘traditional’ EA.

The first set of experiments evaluates the effectiveness
and efficacy of the co-evolutionary approach on seven clas-
sification benchmarks. The first classification benchmark
is Paredis’ artificial classification problem (Paredis 1995,
1996). In its original formulation, Paredis’ test problem is
composed of 200 artificial data divided into four classes
defined in the R2 domain D = [−1, 1] × [−1, 1]. They are
partitioned as follows:

class =

⎧
⎪⎪⎨

⎪⎪⎩

1 if (x, y) ∈ D&x2 + y2 < 0.25
2 if (x, y) ∈ D& (y > 1 − x ||y < −1 − x)

3 if (x, y)∈ D& (x >0.5&y <0‖x >0&y < −0.5)
4 else

(5)

Since Paredis’ original set is not available, it was simulated
randomly generating 500 artificial data patterns in the domain
D, and labelling these data according to Eq. (5). This data
set is henceforth referred as N00 and is visualised in Fig. 2a.
The N00 set is split into a training set containing 80% of
the data patterns (400 elements), and a test set containing the
remaining 20% of the data patterns (100 elements).

In addition to Paredis’ artificial problem, the four test
algorithms (CANNT, CENNT, standard EA, and BP) were
evaluated on six well-known real-world classification bench-
marks taken from the UCI Machine Learning Repository
(Lichman 2013), namely Ionosphere, Iris, Musk “Clean2”
(henceforth Musk), Pen-Based Recognition of Handwritten
Digits (henceforth Pen), Image Segmentation (henceforth
Segmentation), and Vehicle Silhouettes (henceforth Vehi-
cles).

The four data classes featuring in the N00 data set are
disjoint. Unfortunately, many real-world problems are char-

123

Competitive co-evolution of multi-layer perceptron classifiers

Fig. 2 Artificial data sets: separable and overlapping classes. a N00, no noise (Paredis 1995, 1996). b N10, 10% noise. c N20, 20% noise. d N30,
30% noise

acterised by overlapping classes; a typical example being the
Iris data set where two of the three flower types have overlap-
ping features. As mentioned in Sects. 2 and 3, non-disjoint
data classes may be problematic for competitive approaches,
since 100% accuracy is not attainable, and there will always
be prey able to evade the predators. It is therefore impor-
tant to investigate the ability of co-evolutionary algorithms
to deal with such data sets. Although some of the real-world

benchmarks employed in this study are known for including
non-separable classes, the degree and nature of the overlap-
ping is not easily quantifiable.

In the second set of experiments, the four test algorithms
are evaluated on artificial data sets characterised by con-
trolled levels of class overlapping. Two cases are taken in
consideration: the data categories are intrinsically overlap-
ping (e.g. Iris data set), or the data categories are disjoint and

123

M. Castellani

Table 1 Data sets
Total examples Training examples Input features Output classes

N00-30, NT10-30 500 400 2 4

Iris 150 80% 4 3

Ionosphere 351 200 33 2

Musk 6598 80% 166 2

Pen 10, 992 7494 16 10

Segment 2310 80% 19 7

Vehicle 846 80% 18 4

Table 2 MLP structures

Data set Input-hidden-output nodes Transfer function-hidden nodes Transfer function—output nodes

N00-30, NT10-30 2–30–4 Hyper-tangent Sigmoidal

Iris 4–2–3 Hyper-tangent Sigmoidal

Ionosphere 33–2–2 Hyper-tangent Sigmoidal

Musk 166–20–2 Hyper-tangent Sigmoidal

Pen 16–60–10 Hyper-tangent Sigmoidal

Segment 19–30–7 Hyper-tangent Sigmoidal

Vehicle 18–30–4 Hyper-tangent Sigmoidal

the overlapping is due to random noise in the data acquisi-
tion process. In the former case, some degree of classification
inaccuracy is unavoidable. In the latter, it may be still possi-
ble to train the MLP to learn the correct partition of the input
space, and achieve 100% recall accuracy on ideally uncor-
rupted data. In this latter case, inaccuracy may occur if the
classifier learns to reproduce the noise in the training patterns
(data overfitting).

To represent intrinsically overlapping categories (first
case), three data sets were created using the partition
described in Eq. (5), and perturbing the (x, y) coordinates
of each data sample by some random noise

z′ + z + δ (6)

where z = x, y ∈ [−1, 1], and δ ∈ [−σ, σ] is a random
number sampled with uniform probability from the interval
[−σ, σ]. In the first case (N10 data set) σ = 0.1 (10%noise),
in the second (N20 data set) σ = 0.2 (20% noise), and in
the third (N30 data set) σ = 0.3 (30% noise). The N10,
N20, N30 sets represent partitions of increasing degree of
overlapping between classes, and are shown in Fig. 2b–d,
respectively. The data sets are composed of 400 training pat-
terns and 100 test patterns (500 total data).

To represent the noisy samples of intrinsically disjoint
classes (second case), three data sets were created using the
partition described in Eq. (5). The data sets were then split
into a training set containing 80% of the data patterns (400
elements), and a test set containing the remaining 20% of the
data patterns (100 elements). Only the coordinates of the data

patterns belonging to the training set were perturbed as in Eq.
(6), adding to the position coordinates of each training sam-
ple, respectively, 10% (σ = 0.1, NT10 data set), 20% (σ =
0.2, NT20 data set), and 30% (σ = 0.3, NT30 data set) noise.
The 100 patterns belonging to the test set were not perturbed.

For consistency of training, the input data of all sets (arti-
ficial and real-world benchmarks) are pre-processed using
the mean-variance procedure. In some cases (artificial sets,
Ionosphere, Pen) the data sets come pre-divided into training
and test set. In the remaining cases, before the algorithm is
run 80% of the data are randomly picked for training and the
remaining 20% are used for validation. The main features of
the data sets are given in Table 1. The population size of the
Predatormodule (CANNT, CENNT, and EA) is always fixed
to 100 individuals. The other parameters of the CANNT and
CENNT algorithms and the MLP structure were optimised
experimentally. They are given in Tables 2 and 3.

6 Experimental results

On each data set, each algorithm was run 10 times and
the descriptive statistics (minimum, maximum, median, and
10th and 90th percentiles) of the results are reported in
Table 4. The significance of the differences between the
results obtained by the four algorithms was pairwise anal-
ysed using Mann–Whitney U tests. For each benchmark, the
best learning result (highest MLP classification accuracy) is
highlighted in bold, and the table columns of the results that
are not significantly different from the best are shaded in grey.

123

Competitive co-evolution of multi-layer perceptron classifiers

Table 3 BP and EA parameters

Learning
algorithm
settings

BP Predator
module

Prey
module

Interaction
module

(a) Main parameters

Learning
coefficient

0.1 – – 0.1

Momentum term 0.01 – – 0.01

Initial range for
MLP weights

[−0.05, 0.05] [−0.05, 0.05] – –

MLP weights
mutation rate

– 0.05 – –

Amplitude MLP
weights
mutation

– 0.1 – –

Backpropagation
operator rate

– – – 1.0

Backpropagation
operator cycles

– – – 1

Crossover rate – – 1.0 –

Prey mutation
rate (mv)

– – 0.05 –

Gene mutation
rate mg

– – 0.1 –

‘–’ denotes not applicable

Data set Cycles

(b) Number of learning cycles

N00-30,
NT10-30

10,000

Iris 2000

Ionosphere 2000

Musk 2000

Pen 7000

Segmentation 7000

Vehicle 7000

Data set Predator module Prey module

(c) CENNT population sizes

N00 100 200

N10 100 100

N20 100 50

N30 100 100

NT10 100 100

NT20 100 200

NT30 100 200

Iris 100 100

Ionosphere 100 50

Musk 100 200

Pen 100 50

Segmentation 100 200

Vehicle 100 50

Table 4 Classification benchmarks—accuracy results

ARTIFICIAL SET N00
BP EA CENNT CANNT

min 92.08 94.06 94.06 91.09
10th percentile 92.97 94.95 94.06 93.76

median 95.05 96.53 95.05 95.54
90th percentile 97.03 97.13 99.11 99.01

max 97.03 98.02 100.00 99.01
IONOSPHERE

min 94.70 94.70 88.74 92.05
10th percentile 95.30 94.70 91.72 92.05

median 95.36 95.36 93.38 95.03
90th percentile 96.09 96.09 94.90 96.09

max 96.69 96.69 96.69 96.69
IRIS

min 93.33 83.33 90.00 90.00
10th percentile 93.33 89.33 93.00 90.00

median 96.67 93.33 96.67 93.33
90th percentile 100.00 97.00 100.00 100.00

max 100.00 100.00 100.00 100.00
MUSK

min 98.86 98.71 98.56 98.64
10th percentile 99.00 98.85 98.76 98.84

median 99.43 99.17 99.17 99.13
90th percentile 99.71 99.56 99.28 99.63

max 99.85 99.70 99.62 99.70
PEN

min 92.54 92.54 92.60 92.31
10th percentile 92.54 92.56 92.62 92.31

median 92.81 92.78 92.84 92.61
90th percentile 92.93 92.97 93.00 97.13

max 93.11 92.97 93.05 97.54
SEGMENTATION

min 96.10 94.37 96.32 96.10
10th percentile 96.49 96.13 96.71 96.30

median 96.97 97.08 97.51 97.73
90th percentile 97.84 97.62 98.05 98.29

max 97.84 97.62 98.05 98.48
VEHICLE

min 79.29 79.88 78.11 79.88
10th percentile 79.29 80.95 79.70 80.95

median 83.14 83.14 82.25 83.43
90th percentile 85.21 85.80 84.08 85.38

max 85.21 85.80 84.62 86.98

6.1 Classification accuracy

On the seven data sets (N00 and UCI benchmarks), there
are no significant differences in the average accuracy results
obtained by the four algorithms. Figure 3 compares the learn-
ing curves of the three evolutionary algorithms (EA,CENNT,
and CANNT) on the N00 benchmark problem. Also in this
case, the three algorithms appear to perform comparably and
the three plots show similar population histories.

Overall, the accuracy results one the UCI data sets are
comparable with the state-of-the-art in the literature (Castel-
lani 2013). Likewise, the accuracy obtained by the four
algorithms on the artificial N00 data set is in good agree-
ment with the 96.45% accuracy obtained by CGA (Paredis
1996).

6.2 Computational complexity

The most costly computational procedures in the evolution-
ary training of the MLP solutions are the forward processing
of the training patterns through the ANN structures (fitness
evaluation andLamarckian learning), and the backwardprop-

123

M. Castellani

Fig. 3 Artificial data set, N00 (no noise)—learning curves. Each plot
reports the average (avgF) classification accuracy of the population on
the training set and the accuracy of the best individual on the training
(maxF) and test set (TestF). a EA, b CENNT, c CANNT

agation of the output errors (Lamarckian learning).Hereafter,
the cost for passing once (forward or backward) one input
pattern through the MLP will be taken as the unit of compu-
tational cost. Table 5a reports for 10 runs of each algorithm,
the statistical median of the total number of training data
passes per run. The entry of the least computationally expen-
sive evolutionary procedure is highlighted in bold.

For ease of reference, the cost (number of passes) has been
normalised with respect to the cost of BP in Table 5b. That
is, for each algorithm, the value reported in each cell of the
table corresponds to the number of data passes performed by
that algorithm for one pass performed by the BP algorithm.

Table 5 Computational and time costs

BP EA CENNT CANNT

(a) Sum of forward and backward passes of the training set

Evaluations (×106)

Noise=0% (N00) 8 1200 405.76 155.25

Ionosphere 0.80 120 19.05 14.04

IRIS 0.48 72 6.41 3.74

Musk 21.11 3167 1833.91 158.81

Pen 104.92 15737 6770.58 1088.86

Segmentation 25.87 3881 1910.95 258.88

Vehicle 9.48 1422 326.34 177.76

(b) Sum of forward and backward passes of the training set. The values
have been normalised with respect to BP

Evaluations

NOISE=0% (N00)1 150 50.72 19.41

Ionosphere 1 150 23.81 17.55

IRIS 1 150 13.36 7.79

Musk 1 150 86.87 7.52

Pen 1 150 64.53 10.38

Segmentation 1 150 73.86 10.01

Vehicle 1 150 34.43 18.75

(c) Noise=0% (N00) data set, running time

Algorithm running time

Time (s) 18 2518 657 432

Normalised 1.00 139.86 36.47 23.97

(d) Noise=0% (N00) data set, ratio between normalised number of
evaluation and time

Evaluations versus time

Evaluations 1 150.00 50.72 19.41

Time 1 139.86 36.47 23.97

Evaluations/time 1 1.07 1.39 0.81

The entry of the least computationally expensive evolution-
ary procedure is highlighted in bold.

Table 5c gives an example of the running times of the
four algorithms on the N00 benchmark. The example refers
to the average running time of each procedure, calculated
as the statistical median of 10 independent runs. For ease
of reference, the running times are also normalised to the
running time of the BP algorithm.

Finally, Table 5d compares the total forward and backward
passes (Table 5b, normalised figure) and average running
time (Table 5c, normalised figure) totalled by the four algo-
rithms on N00 data set. The figures show that the sum of
forward and backward passes is a good proxy for the compu-
tational complexity andhence running timeof the algorithms.

Figure 4 shows the evolution of the training subset size
for the CENNT and CANNT algorithms on the N00 bench-
mark problem. The plots show that the adaptive CANNT
procedure is much faster than the co-evolutionary CENNT

123

Competitive co-evolution of multi-layer perceptron classifiers

Fig. 4 Artificial data set, N00 (no noise)—evolution of training subset
size. a CENNT. b CANNT

in reducing the training data set size.After less than 2000gen-
erations, CANNT has already restricted the training effort on
a number of patterns that is one-tenth of the size of the full
training set. In contrast, it takes nearly the whole training
procedure to CENNT to achieve a similarly small training
subset size. Manual inspection confirmed Paredis’s obser-
vation that the selected training patterns tend to lie at the
boundaries between classes (Paredis 1995).

Figure 5 visualises the trade-off between learning accu-
racy and computational costs of the four algorithms on the
N00 and UCI data sets. Overall, Table 5a–c and Figs. 4 and 5
demonstrate the ability of CANNT and to a lesser extent of
CENNT to focus quickly on the critical data samples. This
ability is reflected in considerable savings in computation
time with respect to the EA using the full training set.

6.3 Intrinsically overlapping data classes

Table 6 shows the results of the learning trials on intrinsically
non-disjoint (training and test set) data classes with the same
conventions as in Table 4. For ease of reference, the results on
the N00 data set have been duplicated. Also in this case, the
four algorithms give statistically undistinguishable training
results. As the data classes increasingly overlap, the perfor-
mance of the algorithms drops. Figure 6a plots the accuracy

of the four algorithms normalised to the accuracy obtained
on the uncorrupted N00 data set.

6.4 Noisy data, overfitting test

Table 7 shows the results of the learning trials on noisy train-
ing data (uncorrupted test set) with the same conventions as
in Table 4. For ease of reference, the results on the N00 data
set have been duplicated. Figure 6b shows the deterioration
of theMLP learning accuracy as the noise in the training set is
increased. Compared to the case of intrinsically non-disjoint
data categories, the case of noisy training patterns shows a
more graceful decrease of the learning accuracy. This result
highlights the generalisation capability of this kind of clas-
sifier.

The two co-evolutionary learning procedures (CANNT
and CENNT) appear the least affected by noise on the NT10-
30 benchmarks (Fig. 6b). The BP algorithm fails to perform
optimally on the noisy NT10-30 sets, obtaining statisti-
cally significantly worst learning accuracies than the three
evolutionary procedures. This result confirms the superior
robustness to noise of global optimisation procedures com-
pared to greedy gradient-based search, indicating that BP is
more liable to overfitting than the evolutionary methods.

7 Unbalanced data sets

A common problem in many classification tasks is that the
number of examples per data category is not uniform. That
is, some classes are over-represented with respect to others
in the training set. In this case, the inductive learning process
is monopolised by the largest classes, whilst the smallest
ones tend to be overlooked (Chawla et al. 2004). This bias
in the learning procedure leads to suboptimal classification
performance.

Class unbalance affects the learning process as well as the
evaluation of the classifier, since the overall accuracy mea-
sure is mostly determined by the most numerous categories.
In the specific case of EAs, class unbalance affects the effec-
tiveness of the fitness evaluation procedure and Lamarckian
learning operator.

In his overview on unbalanced data mining, Weiss (2004)
reviews the most common remedies to the problem, such
as under-sampling (representatives of the most numerous
classes are removed), oversampling (representatives of the
least numerous classes are artificially created, e.g. samples
are duplicated), cost-sensitive learning (the cost of false
positives and negatives depends on the class size), and
boosting (examples difficult to classify are weighted more
than easy ones). These methods alter the data distribution
either directly by adding or removing examples, or indirectly
by weighting differently the cost of errors. They generally

123

M. Castellani

Fig. 5 Classification benchmarks: accuracy versus number of forward and backward passes (normalised to BP). The number of passes is shown
using a logarithmic scale. a N00 data set. b Ionosphere data set. c Iris data set. d Musk data set. e Pen data set. f Image segmentation data set. g
Vehicle data set

123

Competitive co-evolution of multi-layer perceptron classifiers

Table 6 Intrinsically overlapping data classes (training and test set)—
accuracy results

ARTIFICIAL SET N00 (NOISE=0%)
BP EA CENNT CANNT

min 92.08 94.06 94.06 91.09
10th percentile 92.97 94.95 94.06 93.76

median 95.05 96.53 95.05 95.54
90th percentile 97.03 97.13 99.11 99.01

max 97.03 98.02 100.00 99.01
ARTIFICIAL SET N10 (NOISE=10%)

min 91.00 92.00 91.00 88.00
10th percentile 91.90 92.00 91.90 90.70

median 93.00 95.50 93.50 93.00
90th percentile 95.30 99.00 96.00 96.00

max 98.00 99.00 96.00 96.00
ARTIFICIAL SET N20 (NOISE=20%)

min 85.00 83.00 84.00 87.00
10th percentile 85.90 86.60 84.90 87.90

median 89.00 90.00 88.50 90.50
90th percentile 91.00 92.20 91.20 93.30

max 91.00 94.00 93.00 96.00
ARTIFICIAL SET N30 (NOISE=30%)

min 84.00 85.00 83.00 82.00
10th percentile 84.90 85.90 83.00 84.70

median 86.00 88.00 87.00 87.00
90th percentile 90.10 90.00 90.10 88.10

max 91.00 90.00 91.00 89.00

require ad-hoc decisions on how to readdress the data unbal-
ance (cost-sensitive and re-sampling methods), and may lead
to overfitting (all), large training sets (oversampling), or loss
of important data (under-sampling).

In this study, competitive co-evolution is evaluated as a
possible alternative method to deal with unbalanced data
classes. Similarly to boosting, co-evolutionary algorithms
adjust adaptively the fitness of the most difficult data sam-
ples (CANNT, CGA), or whole data subsets (CENNT). The
fittest elements are used more frequently by the Lamarckian
training and fitness evaluation procedures, and thus their con-
tribution to the evolutionary learning process is magnified.
At the same time co-evolutionary methods perform a sort of
adaptive under-sampling, avoiding repeated use of the easiest
samples. Compared to classical under-sampling techniques,
competitive EAs do not risk losing important data, since only
learned examples are disregarded, and no example is lost for-
ever.

A new data set (UB) composed of 1000 data samples was
created. The samples were labelled according to the partition
of Eq. (5), and divided into a training set of 800 elements and
a test set of 200. The training set comprises 250 examples of
classes 1, 2, and 4, and 50 examples of class 3. The test set
contains 50 examples per class. Figure 7 shows the two data
sets.

Ten independent learning trials were performed on theUB
data set for each of the four algorithms (BP, EA, CENNT,
CANNT). The descriptive statistics of the results are cal-
culated, and the significance of the differences is pairwise
evaluated using Mann–Whitney U tests. The results are
reported in Table 8a using the same conventions as in Table 4.
Table 8b presents a breakdown of the statistical median of

Fig. 6 Deterioration of accuracy with increase in noise. The accuracy
obtained on the uncorrupted data sets is normalised to 1. The accuracy
obtained on the noisy sets is expressed as a fraction of the accuracy
achieved on the uncorrupted sets. a N00-30 data sets. b NT00-30 data
sets

the classification accuracy, and visualises the results of the
significance tests. Table 9 shows the confusionmatrix (statis-
tical median of the classification results) for each algorithm.
The latter two tables detail the class distribution and nature
of the classification errors.

Table 8a reveals the inferior performance of BP compared
to the three EA procedures. This result confirms the superior-
ity of global EA methods over greedy BP search in presence
of unbalanced class distribution (Weiss 2004). Tables 8b
and 9 show that, on the smallest class 3, the traditional EA
does not perform better than BP. That is, the EA learns to
recognise the elements of the largest classes marginally bet-
ter than BP, but does not improve the classification accuracy
of BP on the smallest class. The superior learning accuracy of
the co-evolutionary methods on the smallest class is apparent
in both Tables 8b and 9, and is confirmed by the signifi-

123

M. Castellani

Table 7 Overlapping data classes (only training set), overfitting test—
accuracy results

ARTIFICIAL SET N00 (NOISE=0%)
BP EA CENNT CANNT

min 92.08 94.06 94.06 91.09
10th percentile 92.97 94.95 94.06 93.76

median 95.05 96.53 95.05 95.54
90th percentile 97.03 97.13 99.11 99.01

max 97.03 98.02 100.00 99.01
ARTIFICIAL SET NT10 (NOISE=10%)

min 88.00 92.50 90.00 93.50
10th percentile 90.70 93.40 92.25 93.50

median 92.50 95.75 95.00 95.00
90th percentile 94.15 96.05 96.60 96.05

max 95.50 96.50 97.50 96.50
ARTIFICIAL SET NT20 (NOISE=20%)

min 84.50 90.50 85.50 91.50
10th percentile 88.55 90.50 89.10 91.50

median 91.00 92.00 92.25 94.50
90th percentile 92.05 93.50 95.55 96.05

max 92.50 93.50 96.00 96.50
ARTIFICIAL SET NT30 (NOISE=30%)

min 82.50 88.50 85.50 88.50
10th percentile 83.40 88.95 87.30 88.50

median 87.25 90.00 90.50 92.75
90th percentile 89.50 92.05 93.10 94.10

max 89.50 92.50 94.00 95.00

cance tests. The results indicate that competitive evolutionary
learning is a promising alternative to tackle the problem of
unbalanced data distributions.

Thebest classification accuracy is obtainedby theCANNT
algorithm. Figure 8 shows a breakdownof the evolution of the
learning accuracy for the standardEAandCANNT.The plots
show that, compared to the standard EA, CANNT obtains a
more steady albeit irregular improvement of the accuracy on
the under-represented class 3.

8 Discussion

This study was inspired by Paredis’ work on co-evolutionary
MLP training, and made a number of contributions to the
understanding of this approach. Whilst Paredis applied CGA
to a number of test cases (Paredis 1995, 1998, 1996), he
never evaluated systematically the capabilities of competi-
tive co-evolution. In this study two alternative procedures
were tested: CANNT based on Paredis’ approach, and the
new CENNT procedure. The performance of the two co-
evolutionary algorithms was evaluated in terms of accuracy,
computational complexity, ability to deal with non-separable
data classes, and robustness to noise. A standard EA and the
customary BP rule were used as terms of comparison. This
systematic study of co-evolutionaryMLP training constitutes
the first contribution made in this paper.

Overall, the learning results of the four procedures are
comparable with the state-of-the-art in the literature. The BP
rule is clearly the least computationally intensive procedure.
However, the two co-evolutionary algorithms showed supe-
rior robustness to data overfitting. This superioritywas shared

Fig. 7 Artificial UB data set: unbalanced data classes. a Training set.
b Test set

with the standard EA, indicating that the discriminant was
the evolutionary search. Compared to the standard EA, the
two co-evolutionary algorithms obtained at least comparable
learning accuracies at much reduced computational costs.

The two co-evolutionary methods gave comparable learn-
ing accuracies on all classification benchmarks. However,
CANNT was faster than CENNT to reduce the size of the
training subsets, and this translated in lower computational
overheads. On the artificial N00 data set, the competitive

123

Competitive co-evolution of multi-layer perceptron classifiers

Table 8 Unbalanced data classes—accuracy results

ARTIFICIAL SET UB (UNBALANCED DATA SETS)
BP EA CENNT CANNT

min 91.50 94.50 94.50 94.00
10th percentile 93.30 94.50 94.95 94.45

median 94.50 95.00 95.75 96.25
90th percentile 95.00 95.50 98.10 98.00

max 95.00 95.50 99.00 98.00
(a) overall classification accuracy

ARTIFICIAL SET UB (UNBALANCED DATA SETS)
BP EA CENNT CANNT

Class1 98.00 100.00 98.00 98.00
Class2 99.00 100.00 100.00 100.00
Class3 82.00 82.00 89.00 87.00
Class4 99.00 98.00 98.00 100.00

(b) breakdown of classification accuracy

Table 9 Unbalanced data classes—confusion matrices, each class in
the test set is composed of 50 examples

Class 1 Class 2 Class 3 Class 4

(a) BP rule—confusion matrix

Class 1 49.00 0.00 0.00 1.00

Class 2 0.00 49.50 0.00 0.50

Class 3 0.00 0.00 41.00 9.00

Class 4 0.00 0.00 0.00 49.50

(b) Standard EA—confusion matrix

Class 1 50.00 0.00 0.00 0.00

Class 2 0.00 50.00 0.00 0.00

Class 3 0.00 0.00 41.00 9.00

Class 4 0.00 1.00 0.00 49.00

(c) CENNT—confusion matrix

Class 1 49.00 0.00 0.00 1.00

Class 2 0.00 50.00 0.00 0.00

Class 3 0.00 0.00 44.50 5.50

Class 4 0.00 1.00 0.00 49.00

(d) CANNT—confusion matrix

Class 1 49.00 0.00 0.00 1.00

Class 2 0.00 50.00 0.00 0.00

Class 3 0.00 0.00 43.50 6.50

Class 4 0.00 0.00 0.00 50.00

procedures were between three (CENNT) and six (CANNT)
times faster than the standard EA. Overall, the CANNT algo-
rithm appears to be preferable to CENNT due to the smaller
computational overheads.

A second contribution was made demonstrating the
promise of competitive co-evolution for the handling of
unbalanced data sets. In Sect. 7, the superior performance
of competitive learning over a standard EA and the BP rule
was demonstrated on an artificial data set. In particular, the
MLPs trained using the co-evolutionary algorithms learned
to categorise with superior accuracy the examples of the
under-represented class. It is hypothesised that the superior

Fig. 8 Unbalanced UB data sets, learning curves. a EA. b CANNT

performance of competitive learning is due to the combina-
tion of two strengths: the ability to reduce the contribution of
the least important training examples (cost-sensitive learn-
ing, boosting), and the ability to alter the data distribution by
removing examples (under-sampling).

The procedures used in this study were not customised
for the particular kinds of EA and ANN used. The results
should be therefore of general validity for the whole field of
co-evolutionary ANN classifier learning.

9 Conclusions

This paper discussed the application of co-evolutionary
predator–prey approaches for MLP classifier training. Two
alternatives evaluated were presented: the first procedure
(CANNT) features an evolving population of classifiers (the
predators) and a co-adapting population of training examples
(the prey) and the second procedure (CENNT) features two
true co-evolving populations of classifiers (the predators) and
training subsets (the prey).

Experimental evidence clearly indicates the advantages
of the competitive evolutionary approach to MLP training
in terms of classification accuracy and learning speed. It is
hoped that these results will foster the interest towards this
yet relatively unexplored approach.

123

M. Castellani

Acknowledgements This study was not funded by any research grant.

Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of inter-
est.

Human and animal rights This article does not contain any studies
with human or animal participants performed by the author.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Aboitiz F (1992) Mechanisms of adaptive evolution Darwinism and
Lamarckism restated. Med Hypotheses 38(3):194–202

Angeline PJ, Pollack JB (1993) Competitive environments evolve better
solutions for complex tasks. In: Forrest S (ed) Proceedings of the
5th international conference on genetic algorithms. San Francisco,
USA, pp 264–270

Lichman M (2013) UCI Machine Learning Repository [http://archive.
ics.uci.edu/ml]. University of California, School of Information
and Computer Science, Irvine, CA

Azzini A, Tettamanzi AGB (2011) Evolutionary ANNs: a state of the
art survey. Intell Artif 5(1):19–35

Castellani M (2013) Evolutionary generation of neural network classi-
fiers: an empirical comparison. Neurocomputing 99:214–229

Chandra R (2013)Memetic cooperative coevolution of Elman recurrent
neural networks. Soft Comput 18(8):1549–1559

Chawla NV, Japkowicz N, Kotcz A (2004) Editorial: special issue on
learning from imbalanced data sets. ACM SIGKDD Explor Newsl
6(1):1–6

de Boer FK, Hogeweg P (2012) Co-evolution and ecosystem based
problem solving. Ecol Inform 9:47–58

Floreano D, Nolfi S (1997) God save the red queen! Competition in
co-evolutionary robotics. In: Evolutionary computation, 5

Fogel DB (2000) Evolutionary computation: toward a new philosophy
of machine intelligence, 2nd edn. IEEE Press, New York

Fogel DB (2002) Blondie24: Playing at the Edge of AI. Morgan Kauf-
mann, San Francisco

García-Pedrajas N, Hervás-Martínez C, Muñoz-Pérez J (2003) COV-
NET: a cooperative coevolutionary model for evolving artificial
neural networks. IEEE Trans Neural Netw 14(3):575–596

Gomez F, Schmidhuber J, Miikkulainen R (2008) Accelerated neural
evolution through cooperatively coevolved synapses. JMachLearn
Res 9:937–965

Haykin S (2009)Neural networks and learningmachines, 3rd edn. Pren-
tice Hall, New York

Hillis WD (1990) Co-evolving parasites improve simulated evolution
as an optimization procedure. Phys D 42(1):228–234

Lippmann RP (1987) An introduction to computing with neural nets.
IEEE ASSP Mag 4(2):4–22

Mitchell M (2006) Coevolutionary learning with spatially distributed
populations. In: Yen GY, Fogel DB (eds) Computational intelli-
gence: principles andpractice. IEEEPress, Piscataway, pp 137-154

Mitchell M, ThomureMD,Williams NL (2006) The role of space in the
success of coevolutionary learning. In: Rocha LM (ed) Artificial
life X: proceedings of the tenth international conference on the

simulation and synthesis of living systems.MIT Press, Cambridge,
pp 118–124

Nolfi S (2012) Co-evolving predator and prey robots. Adapt Behav
20(1):10–15

Nolfi S, Floreano D (1998) Coevolving predator and prey robots: do
“arms races” arise in artificial evolution? Artif Life 4(4):311–335

Paredis J (1998) Coevolutionary process control. In: Artificial neural
nets and genetic algorithms. Springer, Vienna, pp 579–582

Paredis J (1995) Coevolutionary computation. Artif Life 2(4):355–375
Paredis J (1996) Coevolutionary life-time learning. In: Rechenberg I,

Schwefel HP (eds) Parallel problem solving from nature—PPSN
IV. Springer, Berlin, pp 72–80

Pham DT, Castellani M (2010) Adaptive selection routine for evolu-
tionary algorithms. J Syst Control Eng 224(16):623–633

Pollack JB, Blair AD (1998) Co-evolution in the successful learning of
backgammon strategy. Mach Learn 32(3):225–240

Popovici E, Bucci A, Wiegand RP, De Jong ED (2012) Coevolution-
ary principles. In: Rozenberg G et al (eds) Handbook of natural
computing. Springer, Berlin, pp 987–1033

Potter MA, De Jong KA (2000) Cooperative coevolution: an archi-
tecture for evolving coadapted subcomponents. Evolut Comput
8(1):1–29

Rajagopalan P, Rawal A,Miikkulainen R (2010) Emergence of compet-
itive and cooperative behavior using coevolution. In: Proceedings
of the 12th annual conference on genetic and evolutionary com-
putation (GECCO’10). USA, ACM Press, Portland, USA, pp
1073–1074

Ray T (1991) An approach to the synthesis of life. In: Langton C et al
(eds) Artificial life II, vol XI. Addison-Wesley Publishing Com-
pany Inc, Reading, pp 371–408

Rivera AJ, García-Domingo B, Del Jesus MJ, Aguilera J (2013) Char-
acterization of concentrating photovoltaic modules by cooperative
competitive radial basis function networks. Expert Syst Appl
40(5):1599–1608

Rumelhart D, McClelland J (1986) Parallel distributed processing:
exploration in the microstructure of cognition, 1–2. MIT Press,
Cambridge

Thierens D, Suykens J, Vanderwalle J, De Moor B (1993) Genetic
weight optimisation of a feedforward neural network controller.
In: Albrecht RF, Reeves CR, Steele NC (eds) Artificial neural net-
works and genetic algorithms. Springer, Wien, pp 658–663

Uchibe E, Asada M (2006) Incremental coevolution with competitive
and cooperative tasks in a multirobot environment. Proc IEEE
94(7):1412–1424

Watson RA, Pollack JB (2001) Coevolutionary dynamics in a minimal
substrate. In: Lee S (ed) Proceedings of the genetic and evolution-
ary computation conference (GECCO 2001), San Francisco, USA.
Morgan Kaufmann Publishers, San Francisco, pp 702–709

Weiss GM (2004) Mining with rarity: a unifying framework. ACM
SIGKDD Explor Newsl 6(1):7–19

Whitley D (1989) The genitor algorithm and selection pressure: why
rank-based allocation of reproductive trails is best. In: Schaffer JD
(ed) Proceedings of the third international conference on genetic
algorithms, San Mateo, CA. Morgan Kaufmann Publishers, San
Francisco, pp 116–123

Yao X (1999) Evolving artificial neural networks. Proc IEEE
87(9):1423–1447

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Competitive co-evolution of multi-layer perceptron classifiers
	Abstract
	1 Introduction
	2 Predator–prey algorithms
	2.1 Predator–prey training of ANNs

	3 Aims and objectives
	4 Training algorithms
	4.1 Co-Adaptive ANN Training algorithm (CANNT)
	4.1.1 CANNT predator module
	4.1.2 CANNT prey module
	4.1.3 CANNT interaction module

	4.2 Co-evolutionary ANN training algorithm (CENNT)
	4.2.1 CENNT predator module
	4.2.2 CENNT prey module
	4.2.3 CENNT interaction module

	5 Methods
	6 Experimental results
	6.1 Classification accuracy
	6.2 Computational complexity
	6.3 Intrinsically overlapping data classes
	6.4 Noisy data, overfitting test

	7 Unbalanced data sets
	8 Discussion
	9 Conclusions
	Acknowledgements
	References

