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Abstract Wepresent automated techniques for the verification and control of partially
observable, probabilistic systems for both discrete and dense models of time. For
the discrete-time case, we formally model these systems using partially observable
Markov decision processes; for dense time, we propose an extension of probabilistic
timed automata in which local states are partially visible to an observer or controller.
We give probabilistic temporal logics that can express a range of quantitative properties
of these models, relating to the probability of an event’s occurrence or the expected
value of a reward measure. We then propose techniques to either verify that such
a property holds or synthesise a controller for the model which makes it true. Our
approach is based on a grid-based abstraction of the uncountable belief space induced
by partial observability and, for dense-time models, an integer discretisation of real-
time behaviour. The former is necessarily approximate since the underlying problem is
undecidable, however we show how both lower and upper bounds on numerical results
can be generated. We illustrate the effectiveness of the approach by implementing it
in the PRISM model checker and applying it to several case studies from the domains
of task and network scheduling, computer security and planning.
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1 Introduction

Guaranteeing the correctness of complex computerised systems often needs to take
into account quantitative aspects of system behaviour. This includes the modelling of
probabilistic phenomena, such as failure rates for physical components, uncertainty
arising from unreliable sensing of a continuous environment, or the explicit use of
randomisation to break symmetry. It also includes timing characteristics, such as time-
outs or delays in communication or security protocols. To further complicate matters,
such systems are often nondeterministic because their behaviour depends on inputs or
instructions from some external entity such as a controller or scheduler.

Automated verification techniques such as probabilistic model checking have been
successfully used to analyse quantitative properties of probabilistic systems across a
variety of application domains, includingwireless communication protocols, computer
security and task scheduling. These systems are commonly modelled using Markov
decision processes (MDPs), if assuming a discrete notion of time, or probabilistic
timed automata (PTAs), if using a dense model of time. On these models, we can
consider two problems: verification that it satisfies some formally specified property
for any possible resolution of nondeterminism; or, dually, synthesis of a controller (i.e.,
a means to resolve nondeterminism) under which a property is guaranteed to hold.
For either case, an important consideration is the extent to which the system’s state is
observable to the entity controlling it. For example, to verify that a security protocol
is functioning correctly, it may be essential to model the fact that some data held by
a participant is not externally visible; or, when synthesising an optimal schedule for
sending packets over a network, a scheduler may not be implementable in practice if
it bases its decisions on information about the state of the network that is unavailable
due to the delays and costs associated with probing it.

Partially observableMDPs (POMDPs) are a natural way to extendMDPs in order to
tackle this problem. However, the analysis of POMDPs is considerably more difficult
than MDPs since key problems are undecidable (Madani et al. 2003). A variety of
verification problems have been studied for these models (see, e.g., de Alfaro 1999;
Baier et al. 2008; Chatterjee et al. 2013) and the use of POMDPs is common in
fields such as AI and planning (Cassandra 1998), but there is limited progress in
the development of practical techniques for probabilistic verification in this area, or
exploration of their applicability.

In this paper, we present novel techniques for verification and control of partially
observable, probabilistic systems under both discrete and dense models of time. We
use POMDPs in the case of discrete-time models and, for dense time, propose a model
called partially observable probabilistic timed automata (POPTAs), which extends
the existing model of PTAs with a notion of partial observability. The semantics of
a POPTA is an infinite-state POMDP. In order to specify verification and control
problems on POMDPs and POPTAs, we define temporal logics to express properties
of these models relating to the probability of an event (e.g., the probability of some
observation eventually being made) or the expected value of various reward measures
(e.g., the expected time until some observation). Nondeterminism in both a POMDP
and a POPTA is resolved by a strategy that decides which actions to take and when to
take them, based only on the history of observations (not states). The core problems
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we address are how to verify that a temporal logic property holds for all possible
strategies, and how to synthesise a strategy under which the property holds.

In order to achieve this, we use a combination of techniques. To analyse a POMDP,
we use grid-based techniques (Lovejoy et al. 1991; Yu and Bertsekas 2004), which
transform it to a fully observable but continuous-space MDP and then approximate its
solution based on a finite set of grid points.We use this to construct and solve a strategy
of the POMDP.The result is a pair of lower and upper bounds on the property of interest
for the POMDP. If this is not precise enough, we can refine the grid and repeat. In
the case of POPTAs, we develop a digital clocks discretisation, which extends the
existing notion for PTAs (Kwiatkowska et al. 2006). The discretisation reduces the
analysis to a finitePOMDP, and hencewe can use the techniqueswe have developed for
analysing POMDPs. We define the conditions under which temporal logic properties
are preserved by the discretisation step and prove the correctness of the reduction
under these conditions.

We implemented these methods in a prototype tool based on PRISM (Kwiatkowska
et al. 2011; PRISM), and investigated their applicability by developing a number of
case studies including: wireless network scheduling, a task scheduling problem, a
covert channel prevention device (the NRL pump) and a non-repudiation protocol.
Despite the undecidability of the POMDP problems we consider, we show that use-
ful results can be obtained, often with precise bounds. In each case study, partial
observability, nondeterminism, probability and, in the case of the dense-time models,
real-time behaviour are all crucial ingredients to the analysis. This is a combination
not supported by any existing techniques or tools.

A preliminary conference version of this paper, was published as Norman et al.
(2015).

1.1 Related work

POMDPs are common in fields such as AI and planning: they have many appli-
cations (Cassandra 1998) and tool support exists (Poupart 2005). However, unlike
verification, the focus in these fields is usually on finite-horizon and discounted reward
objectives. Early undecidability for key problems can be found in, e.g., Madani et al.
(2003). POMDPs have also been applied to problems such as scheduling in wireless
networks since, in practice, information about the state of wireless connections is often
unavailable and varies over time; see e.g. Johnston and Krishnamurthy (2006), Li and
Neely (2011), Yang et al. (2011), Jagannathan et al. (2013), and Gopalan et al. (2015).

POMDPs have also been studied by the formal verification community, see e.g. de
Alfaro (1999), Baier et al. (2008), and Chatterjee et al. (2013), establishing unde-
cidability and complexity results for various qualitative and quantitative verification
problems. In the case of qualitative analysis, Chatterjee et al. (2015) presents an
approach for the verification and synthesis of POMDPs against LTL properties when
restricting to finite-memory strategies. This has been implemented and applied to an
autonomous system (Svoren̂ová et al. 2015). For quantitative properties, the recent
work of Chatterjee (2016) extends approaches developed for finite-horizon objectives
to approximate the minimum expected reward of reaching a target (while ensuring
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the target is reached with probability 1), under the requirement that all rewards in the
POMDP are positive.

Work in this area often also studies related models such as Rabin’s probabilistic
automata (Baier et al. 2008), which can be seen as a special case of POMDPs, and
partially observable stochastic games (POSGs) (Chatterjee and Doyen 2014), which
generalise them.More practically orientedwork includes:Giro andRabe (2012),which
proposes a counter-example-driven refinement method to approximately solve MDPs
in which components have partial observability of each other; and Cerný et al. (2011),
which synthesises concurrent program constructs using a search over memoryless
strategies in a POSG.

Theoretical results (Bouyer et al. 2003) and algorithms (Cassez et al. 2007;
Finkbeiner and Peter 2012) have been developed for synthesis of partially observ-
able timed games. In Bouyer et al. (2003), it is shown that the synthesis problem is
undecidable and, if the resources of the controller are fixed, decidable but prohibitively
expensive. The algorithms require constraints on controllers: in Cassez et al. (2007),
controllers only respond to changes made by the environment and, in Finkbeiner and
Peter (2012), their structure must be fixed in advance. We are not aware of any work
for probabilistic real-time models in this area.

1.2 Outline

Section 2 describes the discrete-time models of MDPs and POMDPs, and Sect. 3
presents our approach for POMDP verification and strategy synthesis. In Sect. 4, we
introduce the dense-time models of PTAs and POPTAs, and then, in Sect. 5, give our
verification and strategy synthesis approach for POPTAs using digital clocks. Section 6
describes the implementation of our techniques for analysingPOMDPs andPOPTAs in
a prototype tool, and demonstrates its applicability using several case studies. Finally,
Sect. 7 concludes the paper.

2 Partially observable Markov decision processes

In this section, we consider systems exhibiting probabilistic, nondeterministic and
discrete-time behaviour. We first introduceMDPs, and then describe POMDPs, which
extend these to include partial observability. For amore detailed tutorial on verification
techniques for MDPs, we refer the reader to, for example, Forejt et al. (2011).

2.1 Markov decision processes

Let Dist(X) denote the set of discrete probability distributions over a set X , δx the
distribution that selects x ∈ X with probability 1, and R the set of non-negative real
numbers.

Definition 1 (MDP) An MDP is a tupleM = (S, s̄, A, P,R) where:

– S is a set of states;
– s̄ ∈ S is an initial state;
– A is a set of actions;
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– P : S × A → Dist(S) is a (partial) probabilistic transition function;
– R = (RS,RA) is a reward structure where RS : S → R is a state reward function
and RA : S × A → R an action reward function.

An MDP M represents the evolution of a system exhibiting both probabilistic and
nondeterministic behaviour through states from the set S. Each state s ∈ S of M has

a set A(s)
def={a ∈ A | P(s, a) is defined} of available actions. The choice between

which available action is chosen in a state is nondeterministic. In a state s, if action
a ∈ A(s) is selected, then the probability of moving to state s′ equals P(s, a)(s′).

A path of M is a finite or infinite sequence π = s0
a0−→ s1

a1−→ · · · , where si ∈ S,
ai ∈ A(si ) and P(si , ai )(si+1)>0 for all i ∈ N. The (i + 1)th state si of path π

is denoted π(i) and, if π is finite, last(π) denotes its final state. We write FPathsM
and IPathsM, respectively, for the set of all finite and infinite paths of M starting
in the initial state s̄. MDPs are also annotated with rewards, which can be used to
model a variety of quantitative measures of interest. A reward of R(s) is accumulated
when passing through state s and a reward of R(s, a) when taking action a from
state s.

A strategy ofM (also called a policy or scheduler) is a way of resolving the choice
of action in each state, based on the MDP’s execution so far.

Definition 2 (Strategy) A strategy of an MDP M = (S, s̄, A, P,R) is a function
σ : FPathsM→Dist(A) such that, for any π ∈ FPathsM, we have σ(π)(a)>0 only if
a ∈ A(last(π)). Let �M denote the set of all strategies of M.

A strategy is memoryless if its choices only depend on the current state, finite-
memory if it suffices to switch between a finite set of modes and deterministic if it
always selects an action with probability 1.

When M is under the control of a strategy σ , the resulting behaviour is captured
by a probability measure Prσ

M over the infinite paths of M (Kemeny et al. 1976).
Furthermore, given a random variable f : IPathsM→R over the infinite paths of M,
using the probability measure Prσ

M, we can define the expected value of the variable
f with respect to the strategy σ , denoted E

σ
M( f ).

2.2 Partially observable Markov decision processes

POMDPs extend MDPs by restricting the extent to which their current state can be
observed, in particular by strategies that control them. In this paper (as in, e.g., Baier
et al. 2008; Chatterjee et al. 2013), we adopt the following notion of observability.

Definition 3 (POMDP) A POMDP is a tuple M = (S, s̄, A, P,R,O, obs) where:

– (S, s̄, A, P,R) is an MDP;
– O is a finite set of observations;
– obs : S → O is a labelling of states with observations;

such that, for any states s, s′ ∈ S with obs(s) = obs(s′), their available actions must
be identical, i.e., A(s) = A(s′).

123



Real-Time Syst (2017) 53:354–402 359

The current state s of a POMDP cannot be directly determined, only the corresponding
observation obs(s) ∈ O. The requirement on available actions in Definition 3 follows
from the fact that, if states have different actions available, then they are not observa-
tionally equivalent as the available actions are not hidden, and hence should not have
the same observation.

More general notions of observations are sometime used, e.g., that depend also
on the previous action taken or are probabilistic. However, as demonstrated by Chat-
terjee (2016), given a POMDP with the most general notion of observations (both
probabilistic and dependent on the previous action), we can construct an equivalent
(polynomially larger) POMDP of the form given in Definition 3. In addition, our anal-
ysis of probabilistic verification case studies where partial observation is needed (see,
e.g., Sect. 6) suggests that this simpler notion of observability will often suffice in
practice. To ease presentation, we assume that the initial state is observable, i.e., there
exists ō ∈ O such that obs(s) = ō if and only if s = s̄.

The notions of paths, strategies and probability measures given above for MDPs
transfer directly to POMDPs. However, the set �M of all strategies for a POMDP M
only includes observation-based strategies.

Definition 4 (Observation-based strategy) A strategy of a POMDPM = (S, s̄, A, P,

R,O, obs) is a function σ : FPathsM→Dist(A) such that:

– σ is a strategy of the MDP (S, s̄, A, P, R);

– for any paths π = s0
a0−→ s1

a1−→ · · · sn and π ′ = s′
0

a′
0−→ s′

1

a′
1−→ · · · s′

n satisfying
obs(si ) = obs(s′

i ) and ai = a′
i for all i , we have σ(π) = σ(π ′).

Let �M denote the set of all (observation-based) strategies ofM.

Key properties for MDPs and POMDPs are the probability of reaching a target and
the expected reward cumulated until this occurs (where we assume that the expected
value is infinite if there is a non-zero probability of the target not being reached). Let
O denote the target (i.e., a set of states for an MDP and a set of observations for a
POMDP). Under a specific strategy σ of an MDP or POMDPM, we denote these two
properties by Prσ

M(F O) and E
σ
M(F O), respectively.

Usually, we are interested in the optimal (minimum or maximum) values
ProptM (F O) and E

opt
M (F O), where opt ∈ {min,max}. For MDP or POMDP M:

Prmin
M (F O)

def= infσ∈�M Prσ
M(F O) E

min
M (F O)

def= infσ∈�M E
σ
M(F O)

Prmax
M (F O)

def= supσ∈�M
Prσ

M(F O) E
max
M (F O)

def= supσ∈�M
E

σ
M(F O)

Note that the class of strategies �M analysed in the above is different depending on
whetherM is anMDP or POMDP (see Definitions 2 and 4, respectively). In the case of
MDPs, deterministic and memoryless strategies achieve optimal values. This allows
the use of efficient computational techniques such as policy iteration, which builds
a sequence of strategies until an optimal one is reached, and value iteration, which
computes increasingly precise approximations to the optimal probability or expected
value (see for example Puterman et al. 1994). However, in the case of POMDPs, this
no longer holds. In fact, determining the optimal probabilities and expected rewards
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Fig. 1 McCallum’s maze
problem (McCallum 1993)

defined above is undecidable (Madani et al. 2003), making exact solution intractable.
Instead, the optimal value can be approximated, for example via analysis of the belief
MDP, whose construction we will discuss shortly.

Example 1 As an example POMDP, we consider a maze, originally introduced by
McCallum (1993). The example concerns a robot being placed uniformly at random
in a maze and then trying to find its way to a certain target location. The maze is
presented in Fig. 1 and comprises 11 locations labelled from ‘0’ to ‘10’. There are
four actions that the robot can perform in each location, corresponding to the four
directions it can move: north, east, south and west. Performing such an action moves
the robot one location in that direction (if moving in that direction means hitting a
wall, the robot remains where it is). The robot cannot see its current location, but only
what walls surround it. Therefore, for example, the locations labelled ‘5’, ‘6’ and ‘7’
yield the same observation, since the robot can only observe that there are walls to the
east and west. The goal of the robot is to reach the target location labelled ‘10’, and
hence we associate a distinct observation with this location.

We find that the optimal (minimum) expected number of moves to reach the target
is 4.3. If we instead consider a fully observable model (i.e., an MDP), then the optimal
expected number of moves is 3.9. Considering a strategy of the POMDP that achieves
the optimal value, if the robot initially observes that the only walls are on the east and
west, then the strategy believes with equal probability that the robot is in one of the
locations labelled ‘5’, ‘6’ and ‘7’. The strategy moves the robot north which allows it
to learn which of these states the robot is actually in. More precisely, if the robot was
in the location labelled ‘5’, then, after moving north, it will observe walls to the north
and west, if it was in the location ‘6’ it will next observe only a wall to the north and,
for the location labelled ‘7’, next observe walls to the north and east.

Note that, if the strategy knew the robot was in the location labelled ‘6’, the optimal
move would be south as opposed to north. When the robot initially observes walls to
the north and south, the strategy does not know if it is in the location labelled ‘1’ or the
one labelled ‘3’. Here the strategy can either choose east or west. When performing
either action, the strategy will be able to learn the robot’s position, while moving the
robot closer to the target in one case and further away in the other. Once the strategy
knows the robot’s position, it can easily determine the optimal route for the robot to
reach the target.

Beliefs Given a POMDPM we can construct a corresponding belief MDP B(M): an
equivalent (fully observable) MDP, whose (continuous) state space comprises beliefs,
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which are probability distributions over the state space of M. Intuitively, although
we may not know which of several observationally-equivalent states we are currently
in, we can determine the likelihood of being in each one, based on the probabilistic
behaviour of M. The formal definition is given below, and we include details of the
construction in Appendix.

Definition 5 (Belief MDP) LetM = (S, s̄, A, P, R,O, obs) be a POMDP. The belief
MDP of M is given by B(M) = (Dist(S), δs̄, A, PB, RB) where, for any beliefs
b, b′ ∈ Dist(S) and action a ∈ A:

PB(b, a)(b′) =
∑

s∈S
b(s) ·

⎛

⎝
∑

o∈O∧ba,o=b′

∑

s′∈S∧obs(s′)=o

P(s, a)(s′)

⎞

⎠

RB
S (b) =

∑

s∈S
RS(s) · b(s)

RB
A (b, a) =

∑

s∈S
RA(s, a) · b(s)

and ba,o is the belief reached from b by performing action a and observing o, i.e.:

ba,o(s′) =
⎧
⎨

⎩

∑
s∈S P(s,a)(s′)·b(s)

∑
s∈S b(s)·

(∑
s′′∈S∧obs(s′′)=o P(s,a)(s′′)

) i f obs(s′) = o

0 otherwise.

The optimal values for the probability and expected reward to reach a target in the
belief MDP equal those for the POMDP, which is formally stated by the following
proposition.

Proposition 1 If M = (S, s̄, A, P,R,O, obs) is a POMDP and O ⊆ O a set of
observations, then:

ProptM (F O) = ProptB(M)
(F TO) and E

opt
M (F O) = E

opt
B(M)

(F TO)

where TO = {b ∈ Dist(S) | ∀s ∈ S. (b(s)>0→obs(s) ∈ O)} and opt ∈ {min,max}.

2.3 Parallel composition of POMDPs

To facilitate the modelling of complex systems, we introduce a notion of parallel
composition for POMDPs, which allows us to define a system as set of interacting
components. Our definition extends the standard definition forMDPs and probabilistic
automata (Segala and Lynch 1995). It is based on multi-way synchronisation over the
same action by several components, as used in the process algebra CSP (Roscoe 1997)
and the PRISMmodel checker (Kwiatkowska et al. 2011; PRISM), but this can easily
be generalised to incorporate more flexible definitions of synchronisation. We will use
parallel composition of POMDPs for modelling the case studies that we present in
Sect. 6.
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Definition 6 (Parallel composition of POMDPs) Consider any POMDPs Mi =
(Si , s̄i , Ai , Pi ,Ri ,Oi , obsi ), for i = 1, 2. The parallel composition of M1 and M2
is the POMDP:

M1‖M2 = (S1 × S2, (s̄1, s̄2), A1 ∪ A2,R,O1 × O2, obs)

where, for any s = (s1, s2) and a ∈ A1 ∪ A2, we have:

– if a ∈ A1 ∩ A2, then a ∈ A(s1, s2) if and only if a ∈ A(s1) ∩ A(s2) with

P(s, a)(s′) = P1(s1, a)(s′
1)·P2(s2, a)(s′

2)

for all s′ = (s′
1, s

′
2) ∈ S1 × S2 and RA(s, a) = RA,1(s1, a) + RA,2(s2, a);

– if a ∈ A1\A2, then a ∈ A(s1, s2) if and only if a ∈ A(s1) with

P(s, a)(s′) =
{
P1(s1, a)(s′

1) i f s2 = s′
2

0 otherwise

for all s′ = (s′
1, s

′
2) ∈ S1 × S2 and RA(s, a) = RA,1(s1, a1);

– if a ∈ A2\A1, then a ∈ A(s1, s2) if and only if a ∈ A(s2) with

P(s, a)(s′) =
{
P2(s2, a)(s′

2) i f s1 = s′
1

0 otherwise

for all s′ = (s′
1, s

′
2) ∈ S1 × S2 and RA(s, a) = RA,2(s2, a2);

– RS(s) = RS,1(s1) + RS,2(s2);
– obs(s) = (obs1(s1), obs2(s2)).

As is standard in CSP-style parallel composition (Roscoe 1997), an action which
is in the action set of both components can only be performed when both components
can perform it. Formally, using Definition 6, we see that, for any state s = (s1, s2) of
M1‖M2, we have A((s1, s2)) = (A(s1)∩A(s2))∪(A(s1)\A2)∪(A(s2\A1). It therefore
follows that, for any states s, s′ ofM1‖M2 with obs(s) = obs(s′), the available actions
A(s) and A(s′) are identical, thus satisfying the condition imposed on a POMDP’s
actions and observability in Definition 3.

InDefinition6wehaveused addition to combine the rewardvalues of the component
POMDPs. However, depending on the system being modelled and its context, it may
be more appropriate to combine the rewards in a different way, for example using
multiplication or taking the maximum.

3 Verification and strategy synthesis for POMDPs

We now present our approach for verification and strategy synthesis for POMDPs.
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3.1 Property specification

First, we define a temporal logic for the formal specification of quantitative properties
of POMDPs. This is based on a subset (we omit temporal operator nesting) of the
logic PCTL (Hansson and Jonsson 1994) and its reward-based extension in Forejt et
al. (2011).

Definition 7 (POMDP property syntax) The syntax of our temporal logic for
POMDPs is given by the grammar:

φ : := P��p[ψ] | R��q [ρ]
α : := true | o | ¬α | α∧α

ψ : := αU�k α | αU α

ρ : := I=k | C�k | F α

where o is an observation, �� ∈ {�,<,�,>}, p ∈ Q ∩ [0, 1], q ∈ Q�0 and k ∈ N.

A POMDP property φ is an instance of either the probabilistic operator P��p[·] or
the expected reward operator R��q [·]. Intuitively, a state satisfies a formula P��p[ψ] if
the probability of the path formula ψ being satisfied is ��p, and satisfies a formula
R��q [ρ] if the expected value of the reward formula ρ is ��q.

For path formulae, we allow time-bounded (αU�k α) and unbounded (αU α) until
formulae, and adopt the usual equivalences such as F α ≡ trueU α (“eventually α”).
For reward formulae, we allow I=k (state reward at k steps),C�k (reward accumulated
over the first k steps) and F α (the reward accumulated until α becomes true). The
propositional formulae (α) are Boolean combinations of observations of the POMDP.

We have omitted nesting of P and R operators in Definition 7 to allow consistent
property specification for either verification or strategy synthesis problems [the latter
is considerably more difficult in the context of nested formulae (Baier et al. 2004;
Brázdil et al. 2006)].

Definition 8 (POMDP property semantics) Let M = (S, s̄, A, P, R,O, obs) be a
POMDP. We define satisfaction of a property φ from Definition 7 with respect to a
strategy σ ∈ �M as follows:

M, σ |�P��p[ ψ ] ⇔ Prσ
M({π ∈ IPathsM | π |�ψ}) �� p

M, σ |�R��q [ρ] ⇔ E
σ
M(rew(ρ)) �� q

and, for any state s ∈ S and path π = s0
a0−→ s1

a1−→ · · · ∈ IPathsM:
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s |�true always
s |� o ⇔ o ∈ obs(s)

s |�¬α ⇔ s �|�α

s |�α1 ∧ α2 ⇔ s |�α1 and s |�α2

π |�α1U�k α2 ⇔ ∃i ∈ N. ( i � k ∧ si |�α2 ∧ ∀ j<i. (s j |�α1) )

π |�α1U α2 ⇔ ∃i ∈ N. ( si |� α2 ∧ ∀ j<i. (s j |�α1) )

rew(I=k)(π) = RS(sk)

rew(C�k)(π) =
k−1∑
j=0

(
RS(s j ) + RA(s j , a j )

)

rew(F α)(π) =

⎧
⎪⎨

⎪⎩

∞ i f ∀ j ∈ N. s j �|�α
mα−1∑
j=0

(
RS(s j ) + RA(s j , a j )

)
otherwise

where mα = min{ j | s j |�α}.

3.2 Verification and strategy synthesis for POMDPs

Given a POMDPM and property φ, we are interested in solving the dual problems of
verification and strategy synthesis.

Definition 9 (POMDP verification) The verification problem for a POMDP M is:
given a property φ, decide ifM, σ |�φ holds for all strategies σ∈�M.

Definition 10 (POMDP strategy synthesis) The strategy synthesis problem for a
POMDPM is: given a propertyφ, find, if it exists, a strategyσ∈�M such thatM, σ |�φ.

The verification and strategy synthesis problems for a POMDP M and property φ

can be solved similarly, by computing optimal values (i.e., minimum or maximum)
for either path or reward objectives:

Prmin
M (ψ)

def= infσ∈�M Prσ
M(ψ) E

min
M (ρ)

def= infσ∈�M E
σ
M(ρ)

Prmax
M (ψ)

def= supσ∈�M
Prσ

M(ψ) E
max
M (ρ)

def= supσ∈�M
E

σ
M(ρ)

and, where required, also synthesising an optimal strategy. For example, verifying
φ = P�p[ ψ ] requires computation of Prmin

M (ψ) since φ is satisfied by all strategies
if and only if Prmin

M (ψ) � p. Dually, consider synthesising a strategy for which φ′ =
P<p[ ψ ] holds. Such a strategy exists if and only if Prmin

M (ψ)<p and, if it does, we
can use a strategy that achieves a value less than p. A common practice in probabilistic
verification is to simply query the optimal values directly, by omitting the bounds ��p
(for P) or ��q (for R) using numerical properties.

Definition 11 (Numerical POMDP property) Let ψ and ρ be as specified in Def-
inition 7. A numerical POMDP property is of the form Pmin=?[ ψ ], Pmax=?[ ψ ],
Rmin=?[ρ] or Rmax=?[ρ] and yields the optimal value for the probability or reward
formula.
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As mentioned earlier, when solving a POMDP, we may only be able to
under- and over-approximate optimal values, which requires adapting the processes
sketched above. For example, if we have determined lower and upper bounds
p
 � Prmin

M (ψ) � p�. We can verify that φ = P�p[ ψ ] holds for every strategy if
p
 � p or ascertain that φ does not hold if p � p�. But, if p
 < p < p�, we need to
refine our approximation to produce tighter bounds. An analogous process can be fol-
lowed for the case of strategy synthesis. The remainder of this section therefore focuses
on how to (approximately) compute optimal values and strategies for POMDPs.

3.3 Numerical computation algorithms

Approximate numerical computation of either optimal probabilities ProptM (ψ) or

expected reward values E
opt
M (ρ) on a POMDP M = (S, s̄, A, P, R,O, obs) is per-

formed with the sequence of steps given below, each of which is described in more
detail subsequently. We compute both an under- and an over-approximation. For the
former, we also generate a strategy which achieves this value.

(A) We modify POMDPM, reducing the problem to computing optimal values for a
probabilistic reachability or expected cumulative reachability property;

(B) We build and solve a finite abstraction of the (infinite-state) belief MDP B(M)

yielding an over-approximation;
(C) We synthesise and analyse a strategy for M, giving an under-approximation;
(D) If required, we refine the abstraction’s precision and repeat (B) and (C).

(A) Property reduction Checking P��p[ψ] or R��q [ρ] properties of the logic from
Definition 7 can always be reduced to checking either a probabilistic reachability
(P��p[F α]) or expected cumulative reachability reward (R��q [F α]) property on a
modified POMDPM′ = (S′, s̄′, A′, P ′, R′,O′, obs′). For the reduction in the case of
MDPs, see for example Puterman et al. (1994).
(B) Over-approximation We solve the modified POMDPM′. For simplicity, here and
below, we describe the case of maximum reachability probabilities (the other cases
are very similar) and thus need to compute Prmax

M′ (F O). We first compute an over-
approximation, e.g., for maximum reachability probabilities Prmax

M′ (F O), we would
find an upper bound. This is computed from an approximate solution to the belief
MDP B(M′), whose construction we outlined in Sect. 2. This MDP has a continuous
state space: the set of beliefs Dist(S′), where S′ is the state space of M′.

To approximate its solution, we adopt the approach of Yu (2006) and Yu and Bert-
sekas (2004) which computes values for a finite set of representative beliefs G whose
convex hull isDist(S′). Value iteration is applied to the beliefMDP, using the computed
values for beliefs in G and interpolating to get values for those not in G. The result-
ing values give the required upper bound. We use Yu (2006) and Yu and Bertsekas
(2004) as it works with unbounded (infinite horizon) and undiscounted properties.
There are many other similar approaches (Shani et al. 2013), but these are formulated
for discounted or finite-horizon properties.

The representative beliefs can be chosen in a variety of ways. We follow Lovejoy et
al. (1991), where G = { 1

M v | v ∈ N
|S′| ∧ ∑|S′|

i=1 v(i) = M} ⊆ Dist(S′), i.e. a uniform
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grid with resolution M . A benefit is that interpolation is very efficient, using a process
called triangulation (Eaves 1984). A downside is that the grid size is exponential in
M . Efficiency might be improved with more complex grids that vary and adapt the
resolution (Shani et al. 2013), but we found that Lovejoy et al. (1991) worked well
enough for a prototype implementation.

(C) Under-approximation Since it is preferable to have two-sided bounds, we also
compute an under-approximation: here, a lower bound on Prmax

M′ (F O). To do so, we
first synthesise a finite-memory strategy σ ∗ for M′ (which is often a required output
anyway). The choices of this strategy are built by stepping through the belief MDP
and, for the current belief, choosing an action that achieves the values returned by
value iteration in (B) above—see for example Shani et al. (2013). We then compute,
by building and solving the finite discrete-time Markov chain induced by M′ and σ ∗,
the value Prσ ∗

M′ (F O) which is a lower bound for Prmax
M′ (F O).

(D) Refinement Finally, when the computed approximations do not suffice to verify
the required property (or, for strategy synthesis, σ ∗ does not satisfy the property), we
refine, by increasing the grid resolution M and repeating steps (B) and (C). We note
that no a priori bound can be given on the error between the generated under- and
over-approximations (recall that the basic problem is undecidable). Furthermore, just
incrementing the resolution is not guaranteed to yield tighter bounds and in fact can
yield worse bounds.

However, the abstraction approach that we use Yu (2006, Chap. 7), does provide an
asymptotic guarantee on convergence. More precisely, convergence is shown for the
case of expected total cumulative reward overmodels with non-negative rewards under
the assumption that the cumulative reward is always finite. The case of probabilistic
reachability can easily be reduced to the case of cumulative reward by assigning a
one-off reward of 1 once the target is reached. For probabilistic reachability, finiteness
of the cumulated reward is immediate. For expected cumulative reachability, reward
finiteness is achieved by performing qualitative reachability analysis to remove states
with infinite expected reward, i.e. the states that do not reach the target with probability
1. This is the standard approach for verifying MDPs against expected reachability
properties (Forejt et al. 2011) and is decidable for POMDPs (Baier et al. 2008).

Example 2 We return to the maze example from Example 1 and Fig. 1. We can
query the minimum expected number of steps to reach the target using the prop-
erty Rmin=?[F otarget], where otarget is the distinct observation corresponding to the
target location labelled ‘10’. Following the approach described above, we obtain a
precise answer (the bounds are [4.300, 4.300]) for grid resolution M = 2 (for which
the number of points in the grid is 19) and are able to synthesise the optimal strategy
described in Example 1.

Wenow increase the size of themazeby adding an additional location to the southern
end of each of the three north-south alignments of locations (i.e., to the locations
labelled ‘8’, ‘9’ and ‘10’) and keep the target as the southern most location of the
middle such alignment. The resulting POMDP has 14 states and the same observation
set as the original POMDP. Again considering the optimal expected number of steps
to reach the target, we obtain the following results as the grid resolution is refined
during the analysis:
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– M = 2 yields 34 grid points and the bounds [4.3846,∞];
– M = 3 yields 74 grid points and the bounds [4.8718, 5.3077];
– M = 4 yields 150 grid points and the bounds [4.8846, 5.3077];
– M = 5 yields 283 grid points and the bounds [5.0708, 5.3077];
– M = 6 yields 501 grid points and the bounds [5.3077, 5.3077].

The ∞ value for the case when M = 2 follows from the fact that the synthesised
strategy does not reach the target with probability 1, and hence the expected reward
for this strategy is infinite (see Definition 8). As can be seen, the under-approximation
(the upper bound, here), obtained from the value of the synthesised strategy in step
(C), yields the optimal value almost immediately, while the over-approximation (the
lower bound), obtained from the approximate solution to the belief MDP in step (B),
takes more time to converge to the optimal value.

The synthesised optimal strategy is essentially the same as the one for the maze
of Fig. 1. For example, if the robot observes only walls on the east and west sides, then
the strategy chooses to move the robot north until it reaches a location labelled either
‘0’, ‘2’ or ‘4’. Then it knows where the robot is and the strategy can easily determine
an optimal route to the target.

4 Partially observable probabilistic timed automata

In this section,we define partially observable probabilistic timed automata (POPTAs),
which generalise the existing model of probabilistic timed automata (PTAs) with the
notion of partial observability from POMDPs explained in Sect. 2. We define the
syntax of a POPTA, explain some syntactic restrictions that we impose and formally
define the semantics, which is given by a POMDP parameterised by a time domain
T. We also present a notion of parallel composition for POPTAs and give several
illustrative examples of the model. The section begins with some background on the
simpler model of PTAs and the notions used to define them. For more detailed tutorial
material on this topic, we refer the interested reader to Norman et al. (2013).

4.1 Time, clocks and clock constraints

Let T ∈ {R, N} be the time domain of either the non-negative reals or naturals. As
in classic timed automata (Alur and Dill 1994), we model real-time behaviour using
non-negative, T-valued variables called clocks, whose values increase at the same
rate as real time. Assuming a finite set of clocks X , a clock valuation v is a function
v : X→T and we write T

X for the set of all clock valuations over the time domain T.
Clock valuations obtained from v by incrementing all clocks by a delay t ∈ T and by
resetting a set X ⊆ X of clocks to zero are denoted v + t and v[X := 0], respectively,
and we write 0 if all clocks take the value 0. A (closed, diagonal-free) clock constraint
ζ is either a conjunction of inequalities of the form x � c or x � c, where x ∈ X and
c ∈ N, or true. We write v |� ζ if clock valuation v satisfies clock constraint ζ and
use CC(X ) for the set of all clock constraints over X .
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4.2 Syntax of POPTAs

To explain the syntax of POPTAs, we first consider the simpler model of PTAs and
then show how it extends to POPTAs.

Definition 12 (PTA syntax) A probabilistic timed automaton (PTA) is a tuple P =
(L, l,X ,A, inv, enab, prob, r) where:

– L is a finite set of locations and l ∈ L is an initial location;
– X is a finite set of clocks;
– A is a finite set of actions;
– inv : L→CC(X ) is an invariant condition;
– enab : L × A→CC(X ) is an enabling condition;
– prob : L × A→Dist(2X × L) is a probabilistic transition function;
– r = (rL, rA) is a reward structure where rL : L → R is a location reward function
and rA : L × A→R is an action reward function.

A state of a PTA is a pair (l, v) of location l ∈ L and clock valuation v ∈ T
X . Time

t ∈ T can elapse in the state only if the invariant inv(l) remains continuously satisfied
while time passes and the new state is then (l, v + t), which we denote (l, v) + t . An
action a is enabled in the state if v satisfies enab(l, a) and, if it is taken, then the PTA
moves to location l ′ and resets the clocks X ⊆ X with probability prob(l, a)(X, l ′).
PTAs have two kinds of rewards:

– location rewards, which are accumulated at rate rL(l) while in location l;
– action rewards rA(l, a), which are accumulated when taking action a in location l.

PTAs equipped with such reward structures are a probabilistic extension of linearly-
priced timed automata (Behrmann et al. 2001), also called weighted timed automata
(Behrmann et al. 2001; Alur et al. 2004).

We now introduce POPTAs which extend PTAs by the inclusion of an observation
function over locations.

Definition 13 (POPTA syntax) A partially observable PTA (POPTA) is a tuple P =
(L, l,X ,A, inv, enab, prob, r,OL, obsL) where:

– (L, l,X ,A, inv, enab, prob, r) is a PTA;
– OL is a finite set of observations;
– obsL : L → OL is a location observation function.

For any locations l, l ′ ∈ L with obsL(l) = obsL(l ′), we require that inv(l) = inv(l ′)
and enab(l, a) = enab(l ′, a) for all a ∈ A.

The final condition of Definition 13 ensures the semantics of a POPTA yields a
valid POMDP: recall states with the same observation are required to have identical
available actions. Like for POMDPs, for simplicity, we also assume that the initial
location is observable, i.e., there exists ō ∈ OL such that obsL(l) = ō if and only if
l = l.
The observability of clocks The notion of observability for POPTAs is similar to
the one for POMDPs, but applied to locations. Clocks, on the other hand, are
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always observable. The requirement that the same choices must be available in
any observationally-equivalent states, implies the same delays must be available in
observationally-equivalent states, and so unobservable clocks could not feature in
invariant or enabling conditions. The inclusion of unobservable clocks would there-
fore necessitate modelling the system as a game with the elapse of time being under
the control of a second (environment) player. The underlying semantic model would
then be a partially observable stochastic game (POSG), rather than a POMDP. How-
ever, unlike POMDPs, limited progress has been made on efficient computational
techniques for this model [belief space based techniques, for example, do not apply in
general (Chatterjee and Doyen 2014)]. Even in the simpler case of non-probabilistic
timed games, allowing unobservable clocks requires algorithmic analysis to restrict
the class of strategies considered (Cassez et al. 2007; Finkbeiner and Peter 2012).

Encouragingly, however, we will later show in Sect. 6 that POPTAswith observable
clocks were always sufficient for our modelling and analysis.
Restrictions on POPTAsAt this point, we need to highlight a few syntactic restrictions
on the POPTAs treated in this paper.

Assumption 1 For any POPTA P, all clock constraints appearing in P, i.e., in its
invariants and enabling conditions, are required to be closed (no strict inequalities,
e.g. x<c) and diagonal-free (no comparisons of clocks, e.g., x<y).

Assumption 2 For any POPTA P = (L, l,X ,A, inv, enab, prob, r,OL, obsL), resets
can only be applied to clocks that are non-zero. More precisely, for any l, l ′ ∈ L, a ∈ A
and X ⊆ X , if prob(l, a)(X, l ′)>0 then for any v ∈ R

X such that v(x) = 0 for some
x ∈ X we have either v �|� inv(l) or v �|� enab(l, a).

Assumption 1 is a standard restriction when using the digital clocks discretisa-
tion (Kwiatkowska et al. 2006) which we work with in this paper. The reasoning
behind Assumption 2 is demonstrated in Example 4. Checking both assumptions can
easily be done syntactically—see Sect. 5.

4.3 Semantics of POPTAs

We now formally define the semantics of a POPTA P, which is given in terms of a
POMDP. This extends the standard semantics of a PTA (Kwiatkowska et al. 2006)
with the same notion of observability we gave in Sect. 2 for POMDPs. The semantics,
[[P]]T, is parameterised by a time domainT, giving the possible values taken by clocks.
Before giving the semantics for POPTAs we consider the simpler case of PTAs.

Definition 14 (PTA semantics) Let P = (L, l,X ,A, inv, enab, prob, r) be a proba-
bilistic timed automaton. The semantics of P with respect to the time domain T is the
MDP [[P]]T = (S, s̄,A ∪ T, P, R) such that:

– S = {(l, v) ∈ L × T
X | v |� inv(l)} and s̄ = (l, 0);

– for any (l, v) ∈ S and a ∈ A ∪ T, we have P((l, v), a) = μ if and only if one of
the following conditions hold:
• (time transitions) a ∈ T, μ = δ(l,v+a) and v + a |� inv(l) for all 0 � t ′ � a;
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• (action transition) a ∈ A, v |� enab(l, a) and for (l ′, v′) ∈ S:

μ(l ′, v′) = ∑
X⊆X∧v′=v[X :=0]

prob(l, a)(X, l ′)

– for any (l, v) ∈ S and a ∈ A ∪ T:

RS(l, v) = rL(l)

RA((l, v), a) =
{
rL(l)·a i f a ∈ T

rA(l, a) i f a ∈ A.

For the standard (dense-time) semantics of a PTA, we take T = R. Since the seman-
tics of a PTA is an infinite-state model, for algorithmic analysis, we first need to
construct a finite representation. One approach for this is to use the digital clocks
semantics for PTAs (Kwiatkowska et al. 2006) which generalises the approach for
timed automata (Henzinger et al. 1992). This approach discretises a PTA model by
transforming its real-valued clocks to clocks taking values from a bounded set of
integers.

Before we give the definition we require the following notation. For any clock x
of a PTA, let kx denote the greatest constant to which x is compared in the clock
constraints of the PTA. If the value of x exceeds kx , its exact value will not affect the
satisfaction of any invariants or enabling conditions, and thus not affect the behaviour
of the PTA.

Definition 15 (Digital clocks semantics) The digital clocks semantics of a PTA P,
written [[P]]N, can be obtained from Definition 14, taking T to be N and redefining
the operation v + t such that for any clock valuation v ∈ N

X , delay t ∈ N and clock
x ∈ X we have (v + t)(x) = min{v(x) + t,kx + 1}.
We now extend Definition 14 and define the semantics of a POPTA.

Definition 16 (POPTA semantics) Let P = (L, l,X ,A, inv, enab, prob, r,OL, obsL)
be a POPTA. The semantics of P, with respect to the time domain T, is the POMDP
[[P]]T = (S, s̄,A ∪ T, P, R,OL × T

X , obs) such that:

– (S, s̄,A ∪ T, P, R) is the semantics of the PTA (L, l,X ,A, inv, enab, prob, r);
– for any (l, v) ∈ S, we have obs(l, v) = (obsL(l), v).

As for PTAs, we consider both the ‘standard’ dense-time semantics and the digital
clocks semantics of a POPTA, by taking T = R and T = N respectively. The fact
that the digital clocks semantics of a POPTA is finite, and the dense-time semantics
is generally uncountable, can be derived from the definitions. Under the restrictions
on POPTAs described above, as we will demonstrate in Sect. 5, the digital seman-
tics of a POPTA preserves the key properties required in this paper, namely optimal
probabilities and expected cumulative rewards for reaching a specified observation set.
Time divergenceAs for PTAs and classic timed automata we restrict attention to time-
divergent (or non-Zeno) strategies. Essentially this means that we restrict attention to
strategies under which there are no unrealisable executions in which time does not
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advance beyond a certain point. There are syntactic and compositional conditions for
PTAs for ensuring all strategies are time-divergent by construction (Norman et al.
2013). These are derived from analogous results on timed automata (Tripakis 1999;
Tripakis et al. 2005) and carry over to our setting of POPTAs.

4.4 Parallel composition of POPTAs

As we did for POMDPs in Sect. 2, to aid the modelling of complex system, we now
define a notion of parallel composition for POPTAs.

Definition 17 (Parallel composition of POPTAs) Consider any POPTAs Pi =
(Li , li ,Xi ,Ai , invi , enabi , probi , ri ,OL,i , obsL,i ) for i ∈ {1, 2} such that X1 ∩ X2 =
∅. The parallel composition of M1 and M2, denoted P1‖P2 is the POPTA:

P1‖P2 = (L1 × L2, (l1, l2),X1 ∪ X2,A1 ∪ A2, inv, enab, prob, r,OL,1 × OL,2, obsL)

where for any l = (l1, l2), l ′ = (l ′1, l ′2) ∈ L1 × L2, a ∈ A1 ∩ A2, a1 ∈ A1\A2,
a2 ∈ A2\A1 and X ⊆ X1 ∪ X2:

inv(l) = inv1(l1) ∧ inv2(l2)

enab(l, a) = enab1(l1, a) ∧ enab2(l2, a)

enab(l, a1) = enab1(l1, a1)

enab(l, a2) = enab2(l2, a2)

prob(l, a)(X, l ′) = prob1(l1, a)(X ∩ X1, l
′
1)·prob2(l2, a)(X ∩ X2, l

′
2)

prob(l, a1)(X, l ′) =
{
prob1(l1, a1)(X, l ′1) i f l2 = l ′2andX ⊆ X1
0 otherwise

prob(l, a2)(X, l ′) =
{
prob2(l2, a2)(X, l ′2) i f l1 = l ′1andX ⊆ X2
0 otherwise

rA(l, a) = rA,1(l1, a) + rA,2(l2, a)

rA(l, a1) = rA,1(l1, a1)

rA(l, a2) = rA,2(l2, a2)

rL(l) = rL,1(l1) + rL,2(l2)

obsL(l) = (obsL,1(l1), obsL,2(l2)).

For POPTAs, it follows from Definitions 17 and 13 that, for any locations l, l ′ of
P1‖P2 such that obsL(l) = obsL(l ′) and action a of P1‖P2 we have inv(l) = inv(l ′)
and enab(l, a) = enab(l ′, a). In addition the following lemma holds.

Lemma 1 If P1 and P2 are POPTAs satisfying Assumptions 1 and 2, then P1‖P2
satisfies Assumptions 1 and 2.

Proof Consider any POPTAs P1 andP2 which satisfy Assumptions 1 and 2. Since the
conjunction of closed and diagonal-free clock constraints are closed and diagonal-free,
it follows that P1‖P2 satisfies Assumption 1.
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Fig. 2 Example of a partially observable PTA (see Example 3)

For Assumption 2, consider any locations l = (l1, l2) and l ′ = (l ′1, l ′2), action a,
set of clocks X and clock valuation v of P1‖P2 such that prob(l, a)(X, l ′)>0 and
v(x) = 0 for some clock x ∈ X . We have the following cases to consider.

– If a ∈ A1 ∩ A2, then since X ⊆ X1 ∪ X2 either x ∈ X1 or x ∈ X2. When x ∈ X1,
since P1 satisfies Assumption 2, it follows that v �|� inv1(l1) or v �|� enab1(l1, a).
On the other hand, when x ∈ X2, since P2 satisfies Assumption 2, it follows that
v �|� inv2(l2) or v �|� enab2(l2, a). In either case, if follows from Definition 17
that v �|� inv(l) or v �|� enab(l, a).

– If a ∈ A1, then by Definition 17 and since prob(l, a)(X, l ′)>0 we have X ⊆
X1 and prob(l1, a)(X, l ′1)>0. Therefore x ∈ X1 using the fact that P1 satisfies
Assumption 2 it follows that v �|� inv1(l1) or v �|� enab1(l1, a). Again using
Definition 17 it follows that v �|� inv(l) or v �|� enab(l, a).

– If a ∈ A2, then using similar arguments to the case above and the fact P2 satisfies
Assumption 2 we have v �|� inv(l) or v �|� enab(l, a).

Since these are all the cases to consider, it follows that P1‖P2 satisfies Assumption 2
as required. ��

Similarly to POMDPs (see Sect. 2), the reward values of the component POP-
TAs can be combined using alternative arithmetic operators depending on the system
under study. As for PTAs (Kwiatkowska et al. 2006), the semantics of the parallel
composition of two POPTAs corresponds to the parallel composition of their indi-
vidual semantic POMDPs using Definition 6. Formally, for POPTAs P1,P2 and time
domain T, we have that [[P1‖P2]]T = [[P1]]T‖[[P2]]T.

Additional modelling constructs to aid higher level modelling for PTAs also carry
over to the case of POPTAs. These include discrete variables, urgent and committed
locations and urgent actions. For further details, see Norman et al. (2013).

4.5 Example POPTAs

Finally in this section, we present two example POPTAs. The second of these demon-
strates why we have imposed Assumption 2 on POPTAs when using the digital clocks
semantics.
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Fig. 3 Example POPTA for
only resetting non-zero clocks
(see Example 4)

l
x 1

l1
x 2

l2
x 2

l1
x 2

l2
x 2

l3
truex 1

a0

0.5

0.5
x:=0

rA(l1, a2)=1
a2

a1

a2

a1

rA(l2, a1)=1

ō

rL(l)=1

o1,2

o3

Example 3 Consider the POPTA in Fig. 2 with clocks x, y. Locations are grouped
according to their observations, and we omit enabling conditions equal to true. We
aim to maximise the probability of eventually observing o5. If the locations were
fully observable, i.e. the model was a PTA, we would leave the initial location l when
x = y = 1 and then, depending on whether the random choice resulted in a transition
to location l1 or l2, wait 0 or 1 time units, respectively, before leaving the location.
This would allow us to move immediately from the locations l3 or l4 to the location
l5, meaning we eventually observe o5 with probability 1. However, in the POPTA,
we need to make the same choice in l1 and l2 since they yield the same observation.
As a result, at most one of the transitions leaving locations l3 and l4 is enabled when
reaching these locations (the transition from l3 will be enabled if we wait 0 time units
before leaving both l1 and l2, while the transition from l4 will be enabled if we wait
1 time units before leaving both l1 and l2), and hence the maximum probability of
eventually observing o5 is 0.5.

Example 4 The POPTA P in Fig. 3 demonstrates why our digital clocks approach
(Theorem 1) is restricted to POPTAs which reset only non-zero clocks. We aim to
minimise the expected reward accumulated before observing o3 (the non-zero reward
values are shown in Fig. 3). If themodelwas a PTAand locationswere fully observable,
theminimum rewardwould be 0, achieved by leaving the initial location l immediately
and then choosing a1 in location l1 and a2 in location l2. However, in the POPTA
model, if we leave l immediately, the locations l1 and l2 are indistinguishable (we
observe (o1,2, (0)) when arriving in either), so we must choose the same action in
these locations. Since we must leave the locations l1 and l2 when the clock x reaches
the value 2, it follows that, when leaving the initial location immediately, the expected
reward equals 0.5.

Now consider the strategy that waits ε ∈ (0, 1) before leaving the initial location
l, accumulating a reward of ε. Clearly, since ε ∈ R\N, this is possible only in the
dense-time semantics. We then observe either (o1,2, (ε)) when entering the location
l1, or (o1,2, (0)) when entering the location l2. Thus, observing whether the clock x
was reset, allows a strategy to determine if the location reached is l1 or l2, and hence
which of the actions a1 or a2 needs to be taken to observe o3 without accumulating any
additional reward. This yields a strategy that accumulates a total reward of ε before
observing o3. Now, since ε can be arbitrarily small, it follows that the minimum
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(infimum) expected reward for [[P]]R is 0. On the other hand, for the digital clocks
semantics, we can only choose a delay of 0 or 1 before leaving the initial location l. In
the former case, the expected reward is 0.5, as described above; for the latter case, we
can again distinguish which of the locations l1 or l2 was reached by observing whether
the clock x was reset. Hence, we can choose either a1 or a2 such that no further reward
is accumulated, yielding a total expected reward of 1. Hence the minimum expected
reward for [[P]]N is 0.5, as opposed to 0 for [[P]]R.

5 Verification and strategy synthesis for POPTAs

We now present our approach for verification and strategy synthesis for POPTAs using
the digital clock semantics given in the previous section.

5.1 Property specification

Quantitative properties of POPTAs are specified using the following logic.

Definition 18 (POPTA property syntax) The syntax of our logic for POPTAs is given
by the grammar:

φ : := P��p[ψ] | R��q [ρ]
α : := true | ζ | o | ¬α | α∧α

ψ : := αU�k α | αU α

ρ : := I=k | C�k | F α

where ζ is a clock constraint, o is an observation, �� ∈ {�,<,�,>}, p ∈ Q ∩ [0, 1],
q ∈ Q�0 and k ∈ N.

This property specification language is similar to the one we proposed earlier for
POMDPs (see Definition 7), but we allow clock constraints to be included in propo-
sitional formulae. However, as for PTAs (Norman et al. 2013), the bound k in path
formulae (αU�k α) and reward formulae (I=k and C�k) corresponds to a time bound,
as opposed to a bound on the number of discrete steps.

In the case of POPTAs, omitting the nesting ofP andR operators is furthermotivated
by the fact that the digital clocks approach is not applicable to nested properties
(see Kwiatkowska et al. 2006 for details). Before we give the property semantics for
POPTAs, we define the duration and position of a path in a POPTA.

Definition 19 (Duration of a POPTA path) For a POPTA P, time domain T, path

π = s0
a0−→ s1

a1−→ · · · ∈ IPaths[[P]]T and i ∈ N, the duration of π up to the (i + 1)th
state is given by:

durπ (i) = ∑
0� j<i∧a j∈T

a j .
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Definition 20 (Position of a POPTA path) For a POPTA P, time domain T and path

π = s0
a0−→ s1

a1−→ · · · ∈ IPaths[[P]]T , a position of π is a pair (i, t) ∈ N × T such that
t � durπ (i +1)−durπ (i). We say that position ( j, t ′) precedes position (i, t), written
( j, t ′) ≺ (i, t), if j<i or j = i and t ′<t .

Definition 21 (POPTA property semantics) Let P be a POPTA and T a time domain.
We define satisfaction of a property φ from Definition 18 with respect to a strategy
σ ∈ �[[P]]T as follows:

[[P]]T, σ |�P��p[ ψ ] ⇔ Prσ
[[P]]T({π ∈ IPaths[[P]]T | π |�ψ}) �� p

[[P]]T, σ |�R��q [ρ] ⇔ E
σ
[[P]]T(rew(ρ)) �� q

and for any state (l, v) ∈ L × T
X and path π = s0

a0−→ s1
a1−→ · · · ∈ IPaths[[P]]T :

(l, v) |�true always
(l, v) |� o ⇔ o ∈ obsL(l)
(l, v) |� ζ ⇔ v |� ζ

(l, v) |� ¬α ⇔ (l, v) �|� α

(l, v) |� α1 ∧ α2 ⇔ (l, v) |� α1 and (l, v) |� α2

π |�α1U�k α2 ⇔ there exists a posi tion (i, t) of π such that π(i) + t |� α2,

durπ (i) + t � kandπ( j) + t ′ |� α1∨α2
f or all posi tions ( j, t ′) ≺ (i, t) of π

π |� α1U α2 ⇔ there exists a posi tion (i, t) of π such that π(i) + t |� α2
andπ( j) + t ′ |� α1∨α2 f or all posi tions ( j, t ′)≺(i, t)of π

rew(I=k)(π) = RS(smk )

rew(C�k)(π) =
mk−1∑
j=0

RA(s j , a j ) + RS(smk )·(k−durπ (mk))

rew(F α)(π) =
⎧
⎨

⎩

mα−1∑
j=0

RA(s j , a j ) + RS(smα )·tα i f (mα, tα) exists

∞ otherwise

where m0 = 0 and mk = max{ j | durπ (i)<k} if k>0 and, when it exists, (mα, tα) is
is the minimum position of the path π under the ordering ≺ for which smα + tα |�α.

In the case of the until operator, as for timed automata (Henzinger et al. 1994), due
to the dense nature of time we require that the disjunction α1 ∨ α2, as opposed to the
formula α1, holds at all positions preceding the first position at which α2 is satisfied.

For a POPTA P and time domain T, the action rewards of [[P]]T (see Definitions 16
and 14) encode both the accumulation of state rewards when a time transition is taken
and the action rewards of P. It follows that for cumulative reward properties, we only
need to consider the action rewards of [[P]]T together with the reward accumulated in
the location we are in when either the time bound or the goal is first reached.
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5.2 Verification and strategy synthesis

Given a POPTA P and property φ, as for POMDPs we are interested in solving the
dual problems of verification and strategy synthesis (see Definitions 9 and 10) for the
‘standard’ dense-time semantics of P:

– decide if [[P]]R, σ |�φ holds for all strategies σ∈�[[P]]R ;
– find, if it exists, a strategy σ∈�[[P]]R such that [[P]]R, σ |�φ.

Again, in similar fashion to POMDPs, these can be solved by computing optimal
values for either path or reward objectives:

Prmin
[[P]]R(ψ)

def= infσ∈�[[P]]R Prσ
[[P]]R(ψ) E

min
[[P]]R(ρ)

def= infσ∈�[[P]]R E
σ
[[P]]R(ρ)

Prmax
[[P]]R(ψ)

def= supσ∈�[[P]]R
Prσ

[[P]]R(ψ) E
max
[[P]]R(ρ)

def= supσ∈�[[P]]R
E

σ
[[P]]R(ρ)

and, where required, also synthesising an optimal strategy. The remainder of this
section therefore focuses on how to (approximately) compute optimal values and
strategies for POPTAs.

5.3 Numerical computation algorithms

Approximate numerical computation of either optimal probabilities or expected reward
values on a POPTA P is performed with the sequence of steps given below, As for
POMDPs we compute both an under- and an over-approximation. For the former, we
also generate a strategy which achieves this value.

(A) We modify POPTA P, reducing the problem to computing optimal values for a
probabilistic reachability or expected cumulative reward property (Norman et
al. 2013);

(B) We apply the digital clocks discretisation of Sect. 4 to reduce the infinite-state
semantics [[P]]R of P to a finite-state POMDP [[P]]N;

(C) We build and solve a finite abstraction of the (infinite-state) beliefMDPB([[P]]N)

of the POMDP from (B), yielding an over-approximation;
(D) We synthesise and analyse a strategy for [[P]]N, giving an under-approximation;
(E) If required, we refine the abstraction’s precision and repeat (C) and (D).

(A) Property reduction As discussed in Norman et al. (2013) (for PTAs), checking
P��p[ψ] or R��q [ρ] properties of the logic from Definition 18 can always be reduced
to checking either a probabilistic reachability (P��p[F α]) or expected cumulative
reachability reward (R��q [F α]) property on a modified model. For example, time-
bounded probabilistic reachability (P��p[F�t α]) can be transformed into probabilistic
reachability (P��p[F (α ∧ y � t)]) where y is a new clock added to P which is never
reset and does not appear in any invariant or enabling conditions. We refer to Norman
et al. (2013) for full details.
(B) Digital clocks Assuming the POPTA P satisfies Assumptions 1 and 2, we can
construct a finite POMDP [[P]]N representing P by treating clocks as bounded integer
variables. The correctness of this reduction is demonstrated below. The translation
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itself is relatively straightforward, involving a syntactic translation of the PTA (to
convert clocks), followed by a systematic exploration of its finite state space. At this
point, we also syntactically check satisfaction of the restrictions (Assumptions 1 and
2) that we require of POPTAs.
(C–E) POMDP analysis This follows the approach for analysing probabilistic and
expected cumulative reachability queries of POMDPs given in Sect. 3.

5.4 Correctness of the digital clocks reduction

We now prove that the digital clocks reduction preserves optimal probabilistic and
expected reachability values of POPTAs. A direct corollary of this is that, for the logic
presented in Definition 21, we can perform both verification and strategy synthesis
using the finite-state digital clocks semantics.

Theorem 1 If P is a POPTA satisfying Assumptions 1 and 2, then, for any set of
observations OL of P and opt ∈ {min,max}, we have:

Propt[[P]]R(F OL) = Propt[[P]]N(F OL) and E
opt
[[P]]R(F OL) = E

opt
[[P]]N(F OL).

Corollary 1 If P is a POPTA satisfying Assumptions 1 and 2, and φ is a property
from Definition 18, then:

– [[P]]R, σ |�φ holds for all strategies σ∈�[[P]]R if and only if [[P]]N, σ |�φ holds
for all strategies σ∈�[[P]]N ;

– there exists a strategy σ∈�[[P]]R such that [[P]]R, σ |�φ if and only if there exists
a strategy σ ′∈�[[P]]N such that [[P]]N, σ ′ |�φ;

– if a strategy σ∈�[[P]]N is such that [[P]]N, σ |�φ, then σ∈�[[P]]R and [[P]]R, σ |�φ.

Proof In each case, the proof follows straightforwardly from Norman et al. (2013)
which demonstrates that checking a property φ of the logic given in Definition 18
can always be reduced to checking either a probabilistic reachability (P��p[F α]) or
expected cumulative reachability reward (R��q [F α]) property and using Theorem 1.
The generalisation of results in Norman et al. (2013) from PTAs to POPTAs relies on
the fact that propositional formulae α in the logic are based on either observations or
clock valuations, both of which are observable. ��
Before we give the proof of Theorem 1 we require the following definitions and
preliminary result. Consider a POPTA P = (L, l,X ,A, inv, enab, prob, r,OL, obsL).
If v, v′ are clock valuations and X,Y sets of clocks such that X �=Y and v(x)>0 for any
x ∈ X ∪ Y , then v[X := 0]�=v[Y := 0]. Therefore, since we restrict our attention to
POPTAs which reset only non-zero clocks (see Assumption 2), for a time domainT, if
there exists a transition from (l, v) to (l ′, v′) in [[P]]T, then there is a unique (possibly
empty) set of clocks which are reset when this transition is taken. We formalise this
through the following definition. For any clock valuations v, v′ ∈ T

X , let:

X[v �→v′]
def={x ∈ X | v(x)>0 ∧ v′(x) = 0}. (1)
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Using (1), the probabilistic transition function of [[P]]T is such that, for any (l, v) ∈ S
and a ∈ A, we have P((l, v), a) = μ if and only if v |� enab(l, a) and for any
(l ′, v′) ∈ S:

μ(l ′, v′) =
{
prob(l, a)(X[v �→v′], l ′) i f v[X[v �→v′] := 0] = v′
0 otherwise.

We next introduce the concept of a belief PTA.

Definition 22 (Belief PTA) If P = (L, l,X ,A, inv, enab, prob, r,OL, obsL) is a
POPTA, the belief PTA of P is given by the tuple:

B(P) =
(
Dist(L, obsL), δl ,X ,A, invB, enabB, probB, rB

)

where:

– Dist(L, obsL) denotes the subset of Dist(L) where λ ∈ Dist(L, obsL) if and only
if, for l, l ′ ∈ L such that λ(l)>0 and λ(l ′)>0 we have obsL(l) = obsL(l ′);

– the invariant condition invB : Dist(L, obsL)→CC(X ) and enabling condition
enabB : Dist(L, obsL) × A→CC(X ) are such that, for λ ∈ Dist(L, obsL) and
a ∈ A, we have invB(λ) = inv(l) and enabB(λ, a) = enab(l, a) where l ∈ L and
λ(l)>0;

– the probabilistic transition function:

probB : Dist(L, obsL) × A→Dist(2X × Dist(L, obsL))

is such that, for any λ, λ′ ∈ Dist(L, obsL), a ∈ A and X ⊆ X we have:

probB(λ, a)(λ′, X) = ∑
l∈L

λ(l) ·
(

∑

o∈O∧λa,o,X=λ′

∑
l ′∈L∧obsL(l ′)=o

prob(l, a)(l ′, X)

)

and, for any l ′ ∈ L:

λa,o,X (l ′) =
⎧
⎨

⎩

∑
l∈L prob(l,a)(l ′,X)·λ(l)

∑
l∈L λ(l)·

(∑
l′∈L∧obsL (l′)=o prob(l,a)(l ′,X)

) i f obsL(l ′) = o

0 otherwise;

– the reward structure rB = (rBL , rBA ) consists of a location reward function rBL :
Dist(L, obsL)→R and action reward function rBA : Dist(L, obsL) × A → R such
that, for any λ ∈ Dist(L, obsL) and a ∈ A:
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rBL (λ) = ∑
l∈L λ(l) · rL(l) and rBA (λ, a) = ∑

l∈L λ(l) · rA(l, a).

For the above to be well defined, we require the conditions on the invariant condition
and observation function given in Definition 13 to hold. For any λ ∈ Dist(L, obsL),
we let oλ be the unique observation such that obsL(l) = oλ and λ(l)>0 for some l ∈ L.

We now show that, for a POPTA P, the semantics of its belief PTA is isomorphic
to the belief MDP of the semantics of P.

Proposition 2 For any POPTA P satisfying Assumption 2, time domain T we have
that the MDPs [[B(P)]]T and B([[P]]T) are isomorphic.

Proof Consider any POPTAP = (L, l,X ,A, inv, enab, prob, r,OL, obsL)which sat-
isfies Assumption 2, time domain T and let [[P]]T = (S, s̄,A∪ T, P, R). To show the
MDPs [[B(P)]]T and B([[P]]T) are isomorphic we first give a bijection between their
state spaces and then use this bijection to show that the probabilistic transition and
reward functions of [[B(P)]]T and B([[P]]T) are isomorphic.

Considering the belief MDP B([[P]]T), see Definitions 5 and 16, and using the fact
that obs(l, v) = (obsL(l), v), for any belief states b, b′ and action a:

PB(b, a)(b′) =
∑

(o,vo)∈O×T
X

ba,(o,vo)=b′

∑

(l,v)∈S
b(l, v) ·

⎛

⎝
∑

l ′∈L∧obsL(l ′)=o

P((l, v), a)(l ′, vo)

⎞

⎠

where, for any belief b, action a, observation (o, vo) and state (l ′, v′), we have
ba,(o,vo)(l ′, v′) equals:

⎧
⎪⎨

⎪⎩

∑
(l,v)∈S P((l,v),a)(l ′,v′)·b(l,v)

∑
(l,v)∈S b(l,v)·

(∑
l′′∈L∧obsL (l′′)=o P((l,v),a)(l ′′,v′)

) if obsL(l ′) = o and v′ = vo

0 otherwise

(2)

and RB(b, a) = ∑
(l,v)∈S R((l, v), a) · b(l, v). Furthermore, by Definition 16 and

since P satisfies Assumption 2, if a ∈ A:

P((l, v), a)(l ′, v′) =
{
prob(l, a)(X[v �→v′], l ′) if v[X[v �→v′] := 0] = v′
0 otherwise

(3)

while if a ∈ T:

P((l, v), a)(l ′, v′) =
{
1 if l ′ = landv′ = v + a
0 otherwise.

(4)

We see that ba,(o,vo)(l ′, v′) is zero if v′ �=vo, and therefore we can write the belief as
(λ, vo) where λ ∈ Dist(L) and λ(l) = ba,(o,vo)(l, vo) for all l ∈ L. In addition, for
any l ′ ∈ L, if λ(l ′)>0, then obsL(l ′) = o. Since the initial belief b̄ can be written
as (δl , 0) and we assume obsL(l) �=obsL(l) for any l �=l ∈ L, it follows that we can
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write each belief b of B([[P]]T) as a tuple (λ, v) ∈ Dist(L) × T
X such that for any

l, l ′ ∈ L, if λ(l)>0 and λ(l ′)>0, then obsL(l) = obsL(l ′). Hence, it follows from
Definitions 22 and 14 that there is a bijection between the states of B([[P]]T) and the
states of [[B(P)]]T.

We now use this bijection between the states to show that the probabilistic transi-
tion function and reward functions of [[B(P)]]T and B([[P]]T) are isomorphic. Using
Definitions 5 and 16, for the probabilistic transition and the action reward functions
we have the following two cases to consider.

– For any belief states (λ, v) and (λ′, v′) and action a ∈ A:

PB((λ, v), a)(λ′, v′)

=
∑

o∈OL

λa,(o,v′)=λ′

∑

l∈L
λ(l) ·

⎛

⎜⎜⎝
∑

l ′∈L
O(l ′)=o

P((l, v), a)(l ′, v′)

⎞

⎟⎟⎠

=
∑

o∈OL

λa,(o,v′)=λ′

∑

l∈L
λ(l) ·

⎛

⎜⎜⎝
∑

l ′∈L
O(l ′)=o

prob(l, a)(X[v �→v′], l ′)

⎞

⎟⎟⎠ by(3)

=
∑

l∈L
λ(l) ·

⎛

⎜⎜⎜⎝
∑

o∈OL

λa,(o,v′)=λ′

∑

l ′∈L
O(l ′)=o

prob(l, a)(X[v �→v′], l ′)

⎞

⎟⎟⎟⎠ rearranging

where for any l ′ ∈ L:

λa,(o,v′)(l ′)

=
⎧
⎨

⎩

∑
l∈L P((l,v),a)(l ′,v′)·λ(l)

∑
l∈L λ(l)·

(∑
l′′∈L∧obsL (l′′)=o P((l,v),a)(l ′′,v′)

) i f obsL(l ′) = o

0 otherwise

=

⎧
⎪⎪⎨

⎪⎪⎩

∑
l∈L prob(l,a)(X[v �→v′],l ′)·λ(l)

∑
l∈L

λ(l)·
⎛

⎝ ∑

l′′∈L∧obsL (l′′)=o

prob(l,a)(X[v �→v′],l ′)
⎞

⎠
i f obsL(l ′) = o

0 otherwise

by(3)

= λa,o,X[v �→v′] by Definition (22).

Using this result, together with Definitions 22 and 14, it follows that the probabilis-
tic transition functions are isomorphic in the case. For the action reward functions,
we have:

RBA((λ, v), a) = ∑
l∈L

rA(l, a)·λ(l)
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which, again from Definitions 22 and 14, shows that the reward functions are
isomorphic in this case.

– For any belief states (λ, v) and (λ′, v′) and time duration t ∈ T:

PB((λ, v), t)(λ′, v′) =
{ ∑

l∈L
λ(l) · P((l, v), a)(l, v′) i f λt,(oλ,v′) = λ′

0 otherwise

where for any l ′ ∈ L:

λt,(oλ,v′)(l ′) =
⎧
⎨

⎩

λ(l ′)∑
l∈L

λ(l) i f v′ = v + t

0 otherwise

=
{

λ(l ′) i f v′ = v + t
0 otherwise

since λ is a distribution.

Substituting this expression for λt,(oλ,v′) into that of PB((λ, v), t) we have:

PB((λ, v), t)(λ′, v′)

=

⎧
⎪⎨

⎪⎩

∑
l∈L

λ(l) ·
(

∑
l ′∈L

P((l, v), a)(l ′, v′)
)

if λ = λ′ and v′ = v + t

0 otherwise

=
{ ∑

l∈L
λ(l) if λ = λ′ and v′ = v + t

0 otherwise
by(4)

=
{
1 if λ = λ′ and v′ = v + t
0 otherwise

since λ is a distribution

which, fromDefinitions 22 and 14, shows the probabilistic transition functions are
isomorphic. For the action reward function of B([[P]]T), we have RBA((λ, v), t) =∑

l∈L(rL(l)·t)·λ(l) and, from Definitions 22 and 14, this implies that the action
reward functions are isomorphic.

Since these are the only cases to consider, both the probabilistic transition and action
reward functions of B([[P]]T) and [[B(P)]]T are isomorphic.

To complete the proof it remains to show that the state reward functions are iso-
morphic. Since, by Definition 5, for any belief state (λ, v), we have RBS (λ, v) =∑

l∈L rL(l)·λ(l), the result follows from Definitions 22 and 14. ��
We are now in a position to present the proof of Theorem 1.

Proof of Theorem 1 Consider any POPTA P satisfying Assumptions 1 and 2 and set
of observables OL of P. Since the PTA B(P) satisfies Assumption 1, using results
presented in Kwiatkowska et al. (2006), we have that:

Propt[[B(P)]]R(F TOL ) = Propt[[B(P)]]N(F TOL ) (5)
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E
opt
[[B(P)]]R(F TOL ) = E

opt
[[B(P)]]N(F TOL ) (6)

for opt ∈ {min,max} and where TOL = {(l, v) ∈ L × T
X | obs(l) ∈ OL}. Note that,

although Kwiatkowska et al. (2006) considers only PTAs with a finite set of locations,
the proofs corresponding to the above results do not rely this fact, and hence the results
carry over to B(P) which has an uncountable number of locations.

Due to the relationship we have given between the optimal probabilistic and
expected reachability values of a POMDP and its belief MDP (see Proposition 1),
it follows that:

Propt[[P]]T(F OL) = ProptB([[P]]T)
(F TOL ) and E

opt
[[P]]T(F OL) = E

opt
B([[P]]T)

(F TOL ). (7)

Using Proposition 2 and, since P satisfies Assumption 2, it follows therefore that
[[B(P)]]T = B([[P]]T) for T ∈ {R, N}. Combining this result with (5), (6) and (7), the
theorem follows. ��

6 Implementation and case studies

We have built a prototype tool for verification and strategy synthesis of POMDPs and
POPTAs as an extension of the PRISM model checker (Kwiatkowska et al. 2011;
PRISM). Models are described in an extension of the existing PRISM modelling
language, described inSect. 6.1 below.For a specifiedPOMDPorPOPTAandproperty,
the tool performs the steps outlined in Sects. 3 and 5, computing a pair of bounds for
a given property and synthesising a corresponding strategy.

We have developed a number of POMDP and POPTA case studies, from a variety
of different application domains, to evaluate the tool and techniques. In each case,
partial observability, nondeterminism, probability and, in the case of POPTAs, real-
time behaviour are all essential aspects required for the analysis. The case studies are
described in detail in Sects. 6.2–6.7, and we summarise the experimental results from
these examples in Sect. 6.8.

The software, details of all case studies, parameters and properties are available
from www.prismmodelchecker.org/files/rts-poptas/. Also available through this link
are the details for the POMDPs in Examples 1 and 2 and the POPTAs in Examples 3
and 4.

6.1 Modelling POMDPs and POPTAs in PRISM

Models in PRISM are specified in a high-level language based on guarded commands,
which is a variant of Reactive Modules (Alur and Henzinger 1999). A model is con-
structed as a set of modules which can interact with each other. A module contains
a number of finite-valued variables which define the module’s state. It’s behaviour is
described by a set of guarded commands containing an (optional) action label, a guard
and a probabilistic choice between updates:

[<action>] <guard> → <prob> : <update> + · · · + <prob> : <update>;
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A guard is a predicate over the variables of all modules and an update specifies,
using primed variables, how the module’s own variables are updated. Interaction is
both through the guards (guards can refer to variables of other modules) and the action
labels (which allowmodules to synchronise over commands). PRISM includes support
for reward structures through reward items of the form:

<guard> : <reward>; or [<action>] <guard> : <reward>;

representing state and action rewards respectively. In the case of real-time models,
modules can also contain clock variables which can appear in guards and be reset
by updates. In addition, theinvariant keyword is used to allow for the specification
of location invariants.

We have extended the existing modelling language for MDPs and PTAs to allow
specification of which variables are observables (the unspecified variables are consid-
ered hidden) through the keyword observables.

6.2 Wireless network scheduling

Our first case study is based on Yang et al. (2011) and concerns the wireless downlink
scheduling of traffic to a number of different users with hard deadlines and where
packets have priorities. The system is time-slotted: time is divided into periods and
each period is divided into an equal number of slots. The system is parameterised by
the total number of time periods (K ) and the number of slots (T ) per time period. At
the start of each time period, a new packet is generated for each user with a priority
assigned randomly. The goal of scheduling is to, in each period, deliver the packets
to each user before the period ends. Packets not delivered by the end of a period are
dropped.

There are c users and each one has a separate channel which can be in two states:
one in which it is able to decode packets and one where it cannot. The state of each
channel remains fixedwithin a time slot and between slots isMarkovian, i.e., it changes
randomly based only on the state in the previous slot. It is assumed that the conditions of
the channels are unavailable to the system when scheduling packets. This corresponds
to the real world situation where perfect channel information is not normally available
since it requires non-negligible network resources.

The system is modelled in PRISM as a POMDP through the parallel composition
of 3·c + 1 modules (one module for the packet, priority and status of each channel
and one module representing the scheduler). We show here the PRISM code for the
case of c = 3 users (and hence 3 channels). Figure 4 presents the first parts of the
corresponding PRISM model. This defines the model type (POMDP), states which
variables are observable and defines some constants used to describe the model. All
variables except those representing the status of the channels are defined as observable,
and hence the scheduler can observe the elapsed time, which packets need to be sent
and their priorities. The constants include the numbers of time periods (K ), of slots
per period (T ), and the probabilities that the channels change state after each time
slot.
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pomdp

observables
sched, k , t, pack1 , pack2 , pack3 , prio1 , prio2 , prio3

endobservables

// timing constants
const int K ; // total number of time periods
const int T ; // number of slots per time period

// probabilities that channels change status
// channel of user 1
const double p1 = 0.8; // probability channel remains on
const double r1 = 0.2; // probability channel moves from off to on
// channel of user 2
const double p2 = 0.6; // probability channel remains on
const double r2 = 0.4; // probability channel moves from off to on
// channel of user 3
const double p3 = 0.7; // probability channel remains on
const double r3 = 0.3; // probability channel moves from off to on

Fig. 4 Initial fragment of the PRISM model for the network scheduling case study

module scheduler

k : [0..K−1]; // current time period
t : [0..T−1]; // correct slot
sched : [0..1]; // local state

// next slot/time period
[slot] sched=0 & t<T−1 → (sched =1) & (t =t+1);
[slot] sched=0 & t=T−1 & k<K−1 → (sched =1) & (t =0) & (k =k+1);

// make scheduling choice
[idle] sched=1 → (sched =0);
[send1 ] sched=1 → (sched =0);
[send2 ] sched=1 → (sched =0);
[send3 ] sched=1 → (sched =0);

// loop when finished
[] sched=0 & t=T−1 & k=K−1 → true;

endmodule

Fig. 5 PRISM module for the scheduler in the network scheduling case study

The module for the scheduler is presented in Fig. 5. The scheduler has two local
states: in the first (when sched = 0), it updates the timing variables, i.e., either moves
to the next slot or to the next period; in the second local state (when sched = 1), it
decides which packet to schedule for delivery in the current time slot by (nondeter-
ministically) selecting one of the actions send1, send2 and send3 corresponding to the
three channels. The scheduler can also choose not to try and send a packet by instead
choosing the action idle.

The modules for the channels are presented in Fig. 6. Each channel has three
modules representing:

– if the packet for the current time period has been sent;
– the priority of the current packet to be sent;
– the status of the channel.
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// packets for channel 1
module packet1

pack1 : [0..1]; // packet to send in current period

// next slot
[slot] t=0 → (pack1 =1); // new period so new packet
[slot] t>0 → true;
// sending
[send1 ] pack1=1 & chan1=1 → (pack1 =0); // channel up
[send1 ] pack1=1 & chan1=0 → true; // channel down

endmodule

// construct further channels’ packets through renaming
module packet2=packet1 [pack1=pack2 , send1=send2 , chan1=chan2 ] endmodule
module packet3=packet1 [pack1=pack3 , send1=send3 , chan1=chan3 ] endmodule

// priority of the packets for channel 1
module priority1

prio1 : [0..3]; // three priority values

// new period so new packet and randomly assign priority
[slot] t=0 → 0.1 : (prio1 =1) + 0.3 : (prio1 =2) + 0.6 : (prio1 =3);
// priority already assigned for this period
[slot] t>0 → true;

// reset priority when packet has been sent
[send1 ] chan1=0 → true;
[send1 ] chan1=1 → (prio1 =0);

endmodule

// construct further priorities through renaming
module priority2 = priority1 [prio1=prio2 , chan1=chan2 , send1=send2 ] endmodule
module priority3 = priority1 [prio1=prio3 , chan1=chan3 , send1=send3 ] endmodule

// channel 1 status
module channel1

chan1 : [0..1]; // status of channel (off/on)

// initialise
[slot] t=0 & k=0 → 0.5 : (chan1 =0) + 0.5 : (chan1 =1);
// next slot
[slot] chan1=0 & !(t=0 & k=0) → 1−r1 : (chan1 =0) + r1 : (chan1 =1);
[slot] chan1=1 & !(t=0 & k=0) → 1−p1 : (chan1 =0) + p1 : (chan1 =1);

endmodule

// construct further channels through renaming
module channel2=channel1 [chan1=chan2 , p1=p2 , r1=r2 ] endmodule
module channel3=channel1 [chan1=chan3 , p1=p3 , r1=r3 ] endmodule

Fig. 6 PRISM modules for the channels in the network scheduling case study

As can be seen in Fig. 6, we only give the full specification of the modules for the
first channel; the modules for the remaining channels are defined through renaming.
In the module packet1, commands labelled by the action send1 are only enabled when
pack1 = 1, and hence, as the modules synchronise, the scheduler can only choose
to send a packet if it has not yet been delivered. This module also specifies that, if a
packet is sent and the channel is down (chan1 = 0), the packet does not get delivered
and still needs to be sent. In the modules packet1 and priority1, we can see that at the
start of each period there is a new packet to send on each channel and the priority of
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// reward structure for number of dropped packs
rewards “dropped packets”

[slot] t=0 & k>0 : ((pack1=0)?0:1) + ((pack2=0)?0:1) + ((pack3=0)?0:1);
[idle] t=T−1 & k=K−1 : ((pack1=0)?0:1) + ((pack2=0)?0:1) + ((pack3=0)?0:1);
[send1 ] t=T−1 & k=K−1 & chan1=0 : ((pack1=0)?0:1) + ((pack2=0)?0:1) + ((pack3=0)?0:1);
[send2 ] t=T−1 & k=K−1 & chan2=0 : ((pack1=0)?0:1) + ((pack2=0)?0:1) + ((pack3=0)?0:1);
[send3 ] t=T−1 & k=K−1 & chan3=0 : ((pack1=0)?0:1) + ((pack2=0)?0:1) + ((pack3=0)?0:1);
[send1 ] t=T−1 & k=K−1 & chan1=1 : ((pack2=0)?0:1) + ((pack3=0)?0:1);
[send2 ] t=T−1 & k=K−1 & chan2=1 : ((pack1=0)?0:1) + ((pack3=0)?0:1);
[send3 ] t=T−1 & k=K−1 & chan3=1 : ((pack1=0)?0:1) + ((pack2=0)?0:1);

endrewards

// reward structure based on priorities
rewards “priority”

[send1 ] chan1=1 & prio1=1 : 1;
[send2 ] chan2=1 & prio2=1 : 1;
[send3 ] chan3=1 & prio3=1 : 1;
[send1 ] chan1=1 & prio1=2 : 10;
[send2 ] chan2=1 & prio2=2 : 10;
[send3 ] chan3=1 & prio3=2 : 10;
[send1 ] chan1=1 & prio1=3 : 20;
[send2 ] chan2=1 & prio2=3 : 20;
[send3 ] chan3=1 & prio3=3 : 20;

endrewards

Fig. 7 PRISM specification of reward structures for the network scheduling case study

these packets is chosen at random. The module channel1 specifies that in the initial
state the status of the channel is selected uniformly at random and after this the status
of the channel follows the probabilities given in Fig. 4.

Finally, the reward structures for the model are presented in Fig. 7. The first reward
structure is used to count the number of dropped packets, i.e., the number of packets
that remain to be sent at the end of each period. This is achieved by counting the
number of the variables pack1, pack2 and pack3 that equal 1 when a time period ends.
The second reward structure is used to accumulate the priorities of delivered packets,
and therefore each time a packet gets delivered we assign an action reward equal to
the corresponding priority.

For this case study, we synthesise strategies that maximise the expected cumulative
reward based on the priorities of the packets using the reward structure of Yang et al.
(2011) and, for a simpler model where the priorities of packets are not considered (by
removing the modules priority1, priority2 and priority3 and related reward structure),
that minimise the expected number of dropped packets. These requirements can be
specified in PRISM as follows:

– R{“priority′′}max =?[F (sched = 0 & t = T−1 & k = K−1) ];
– R{“dropped_packets′′}min =?[F (sched = 0 & t = T−1 & k = K−1) ].

In Yang et al. (2011) the analysis is through handwritten proofs while here we con-
struct a formal model and perform automated analysis, in addition in Yang et al.
(2011) discounted objectives are considered while we analyse undiscounted reacha-
bility objectives.

In Yang et al. (2011) it is demonstrated that, due to hard deadlines and unknown
channel status, idling, i.e. not sending a packet in certain slots even when there is
a packet to send, is the optimal choice in certain situations. The reasoning given is
that this allows the scheduler to learn the status of the channels and then improve
the success of future transmissions of packets. Our analysis confirms this to be the
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Fig. 8 Processor task graph for
computing D × (C × (A +
B)) + ((A + B) + (C × D)) +++
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case when priorities are considered. For example, when T = 3 and K = 2 which are
the parameter values (Yang et al. 2011) use, we find that disallowing the scheduler
to idle causes the maximum expected accumulated reward interval to decrease from
[36.322, 36.324] to [36.316, 36.318] when the grid resolution is 48.

Our results also demonstrate that, when priorities of packets are not considered,
idling is not an optimal choice. By using the presented approach this analysis was easy
to perform as we only needed to make a simple change to the PRISMmodel removing
the option for the scheduler to idle unless all packets in the current slot have been
delivered, i.e. in the module for the scheduler (see Fig. 5) the command labelled by
the action idle becomes:

[idle]sched = 1 & pack1 = 0 & pack2 = 0 & pack3 = 0 → (sched′ = 0);

6.3 Task-graph scheduler

Next, we consider a task-graph scheduling problem adapted fromBouyer et al. (2011),
where the goal is to minimise the time or energy consumption required to evaluate the
arithmetic expression D×(C×(A+B))+((A+B)+(C×D)) using two processors
(P1 and P2) that have different speed and energy requirements. Figure 8 presents a
task graph for this computation showing the tasks that need to be performed and
the dependencies between the tasks. The specification of the processors, as given in
Bouyer et al. (2011), is as follows:

– time for addition 2 and 5 picoseconds for processors P1 and P2;
– time for multiplication 3 and 7 picoseconds for processors P1 and P2;
– idle energy usage 10 and 20 Watts for processors P1 and P2;
– active energy usage 90 and 30 Watts for processors P1 and P2.

The system is formed as the parallel composition of three timed automata: one for
each processor and one for the scheduler. In Fig. 9 we give the timed automaton
representing P1. The labels p1_add and p1_mult on the transitions represent an addition
and multiplication task being scheduled on P1 respectively, while the label p1_done
indicates that the current task has been completed. The timed automaton includes the
clock x1 which is used to keep track of the time that a task has been running. It is
reset when a task starts and the invariants and guards correspond to the time required
to complete the tasks of addition and multiplication for P1. The reward structure for
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add
x1 2

stby
true

mult
x1 3

p1 done

x1=2

p1 addx1:= 0
true

p1 done

x1=3

p1 mult x1:= 0
true

Fig. 9 Original timed automaton of processor P1 from Bouyer et al. (2011)
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Fig. 10 POPTA of processor P1 with a low power state

computing the expected energy consumption associates a reward of 10 with the stdby
location and reward 90 with the locations add and mult (corresponding to the energy
usage of process P1 when idle and active respectively) and all action rewards are 0.

The timed automaton and reward structure for processor P2 are similar except
that the names of the labels, invariants, guards and reward values correspond to the
specification of P2. The automata for the scheduler keeps track of the tasks that have
been completed and nondeterministically decides how tasks get allocated to processes,
subject to meeting the dependencies between tasks. After forming the parallel com-
position, the reward structure for the expected energy consumption then includes the
addition of the reward structures for energy consumption of P1 and P2. The reward
structure for computing the expected time associates a reward of 1 with all locations
of the composed system.

We extend both the basic model of Bouyer et al. (2011) described above and the
extension fromNorman et al. (2013) which uses PTAs to model probabilistic task exe-
cution times. In both models we extend the processor P1 with a new ‘low power’ state
allowing it to save energy when not in use, but which incurs a delay of 4 picoseconds
when waking up to execute a new task. This state is entered with probability sleep
after each task is completed.We assume that the scheduler cannot observe whether the
processor enters this lower power state, and hence the model is a POPTA. The POPTA
for P1 including this lower power state (labelled low) is given in Fig. 10.Wemodel the
scheduler inability to observe if the processor is in the standby or lower power state
by assigning the same observation (oidle) to the locations labelled stdby and low. To
model the 4 picosecond delay when waking from the low power state, we introduce
the locations wake1 and wake2 corresponding to waking up to perform an add and a
multiplication operation respectively. Not included in Fig. 10 is the initial location,
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module P1

p1 : [0..5];
// 0 - initial location
// 1 - inactive (idle or sleep)
// 2,3 - waking (adding and multiplying)
// 4 - adding
// 5 - multiplying
sleep1 : [0..1]; // 0 - idle and 1 - sleep
x1 : clock; // local clock

invariant
(p1=0 ⇒ x1 0) &
(p1=1 ⇒ true) &
(p1=2 ⇒ x1 4) &
(p1=3 ⇒ x1 4) &
(p1=4 ⇒ x1 2) &
(p1=5 ⇒ x1 3)

endinvariant

// initialise
[start] p1=0 → 0.5 : (p1 =1) & (sleep1 =0) + 0.5 : (p1 =1) & (sleep1 =1);

// start from sleep state
[p1 add] p1=1 & sleep1=1 → (p1 =2) & (x1 =0) & (sleep1 =0); // add
[p1 mult] p1=1 & sleep1=1 → (p1 =3) & (x1 =0) & (sleep1 =0); // multiply

// start from idle state
[p1 add] p1=1 & sleep1=0 → (p1 =4) & (x1 =0); // add
[p1 mult] p1=1 & sleep1=0 → (p1 =5) & (x1 =0); // multiply

// wake from sleep
[] p1=2 & x1=4 → (p1 =4) & (x1 =0); // add
[] p1=3 & x1=4 → (p1 =5) & (x1 =0); // multiply

// finish
[p1 done] p1=4 & x1=2 → (1−sleep) : (p1 =1) + sleep : (p1 =1) & (sleep1 =1); // add
[p1 done] p1=5 & x1=3 → (1−sleep) : (p1 =1) + sleep : (p1 =1) & (sleep1 =1); // multiply

endmodule

Fig. 11 PRISM module of processor P1 with a low power state

from which we immediately move, by adding the guard x = 0 to this location, to
either the location low or stby each with probability 0.5. The PRISM module repre-
senting P1 is given in Fig. 11 with the variable sleep1 specified as unobservable. The
PTA model with probabilistic task execution times given in Norman et al. (2013) can
be extended similarly. For both models, we generate optimal schedulers (minimising
expected execution time or energy usage) using strategy synthesis.

6.4 The NRL pump

TheNRL (Naval Research Laboratory) pump (Kang et al. 1998) is designed to provide
reliable and secure communication over networks of nodes with ‘high’ and ‘low’
security levels. It prevents a covert channel leaking information from ‘high’ to ‘low’
through the timing of messages and acknowledgements. Communication is buffered
and probabilistic delays are added to acknowledgements from ‘high’ in such a way
that the potential for information leakage is minimised, while maintaining network
performance. A PTA model is considered in Lanotte et al. (2014).

Wemodel the pump as a POPTAusing a hidden variable for a secret value z ∈ {0, 1}
(initially set uniformly at random)which ‘high’ tries to covertly communicate to ‘low’.
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Fig. 12 Analysing security/performance of the NRL pump: a maximum probability of covert channel
success; b maximum expected transmission time

The model is the parallel composition of three POPTAs representing ‘high’, ‘low’ and
the pump. This communication is attempted by adding a delay of h0 or h1, depending
on the value of z, whenever sending an acknowledgement to ‘low’. In the model,
‘low’ sends N messages to ‘high’ and tries to guess z based on the time taken for
its messages to be acknowledged. We consider the maximum probability ‘low’ can
(either eventually or within some time frame) correctly guess z. We also study the
expected time to send all messages and acknowledgements. These properties measure
the security and performance aspects of the pump. Results are presented in Fig. 12
varying h1 and N (we fix h0 = 2). They show that increasing either the difference
between h0 and h1 (i.e., increasing h1) or the number N of messages sent improve the
chance of ‘low’ correctly guessing the secret z, at the cost of a decrease in network
performance. On the other hand, when h0 = h1, however many messages are sent,
‘low’, as expected, learns nothing of the value being sent and at best can guess correctly
with probability 0.5.

6.5 Non-repudiation protocol

The next case study is a non-repudiation protocol for information transfer due to
Markowitch and Roggeman (1999). It is designed to allow an originator O to send
information to a recipient R while guaranteeing non-repudiation, that is, neither party
can deny having participated in the information transfer. The initialisation step of the
protocol requires O to randomly select an integer N in the range 1, . . . , K that is never
revealed to R during execution.

In previous analyses (Lanotte et al. 2005; Norman et al. 2013), modelling this step
was not possible since no notion of (non-)observability was used. We resolve this by
building aPOPTAmodel of the protocol including this step, thusmatchingMarkowitch
and Roggeman’s original specification. In particular, we include a hidden variable to
store the random value N . The model is the parallel composition of two component
POPTAs representing the originator and the recipient.
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We build two POPTA models: a basic model, where R’s only malicious behaviour
corresponds to stopping early; and a more complex model, where R also has access
to a decoder. We also consider a simpler discrete-time POMDP model where the
timing information is abstracted and R’s only malicious behaviour corresponds to
stopping early.We compute themaximum probability that R gains an unfair advantage
(obtains the information from O while being able to deny participating). Our results
(see Tables 1, 2) show that, for the basic models, this probability equals 1/K when
convergence is achieved and that R is more powerful in the complex model.

6.6 The dining cryptographers protocol

This protocol, due to Chaum (1988), solves the following problem. A group of N
cryptographers are having dinner at their favourite restaurant. The waiter informs
them that arrangements have been made for the bill to be paid anonymously: one of
the cryptographers might be paying for the dinner, or it might be their master. The
cryptographers respect each other’s privacy, but would like to know if the master is
paying for dinner. The protocol proceeds as follows.

– Each cryptographer flips an unbiased coin and only informs the cryptographer on
the right of the outcome.

– Each cryptographer states whether the two coins that it can see (the one it flipped
and the one the left-hand neighbour flipped) are the same (‘agree’) or different
(‘disagree’). However, if a cryptographer actually paid for dinner, then the cryp-
tographer instead states the opposite (‘disagree’ if the coins are the same and
‘agree’ if the coins are different).

An even number of ‘agrees’ indicates the master paid, an odd number that a cryptog-
rapher paid. But this provides no additional information as to which cryptographer
actually paid.

We model the protocol as a parallel composition of POMDPs: one for each cryp-
tographer and one representing the master. The observable behaviour of the POMDP
is with respect to a specific cryptographer. In particular, all the ‘agree’ and ‘disagree’
announcements are visible to this cryptographer, but only the values of its own and its
left-hand neighbour’s coins are visible.

In the model we do not impose any requirement on the ordering in which the cryp-
tographers state ‘agree’ or ‘disagree’, in case this can be used to provide information
to the specific cryptographer as to who actually pays. In the initialisation phase, we
assume that the master selects, uniformly at random, one of the other cryptographers
to pay.

We analyse both the minimum and maximum probability that the specified cryp-
tographer can guess which of the other cryptographers actually pays. We find that,
when the approach converges, the maximum probability that the cryptographer can
correctly guess which of the other cryptographers pays is the same both before and
after the protocol is run, i.e., by selecting one of the other cryptographers uniformly at
random. Hence we have demonstrated that the protocol does indeed satisfy the privacy
requirement in these cases. Privacy had previously been analysed with PRISM using
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MDPs (see PRISM), however in this work an exponential number of properties needed
to be verified, as opposed to the single maximum probabilistic reachability property
required when modelling the protocol as a POMDP.

6.7 Grid-world robot

The final case study is based on the POMDP example given in Littman et al. (1995).
There is a robot placed randomly an n × n grid and its goal is to reach the south east
corner location. All locations of the grid look identical, i.e., have the same observation,
except the target. The robot can perform four different actions corresponding tomoving
in the four compass directions. There is no change in location if the chosen actionwould
take the robot off the grid. We have constructed POMDP models for the cases when
n equals 3 and 4. For both models we have synthesised a controller that optimises
(i.e., minimises) the expected number of steps to reach the target and a controller that
optimises (i.e., maximises) the probability of reaching the target within k steps.

6.8 Experimental results

Tables 1 and 2 summarise a representative set of experimental results from the analy-
sis of the POMDP and POPTA case studies, respectively. All were run on a 2.8 GHz
PC with 8GB RAM. The table shows the parameters used for each model (see www.
prismmodelchecker.org/files/rts-poptas/ for details), the property analysed and vari-
ous statistics from the analysis: the size of the POMDP (in the case of POPTAs this is
the POMDP that is obtained through the digital clocks semantics); number of obser-
vations; number of hidden values (i.e., the maximum number of states with the same
observation); the grid size (resolution M and total number of points); the time taken;
and the results obtained. For comparison, in the rightmost column, we show what
result is obtained if the POMDP or POPTA is treated as an MDP or PTA (by making
everything observable).

On the whole, we find that the performance of our prototype is good, especially
considering the complexity of the POMDP solution methods and the fact that we use
a relatively simple grid mechanism. We are able to analyse POPTAs whose integer
semantics yields POMDPs of up to 60,000 states, with experiments usually taking
just a few seconds and, at worst, 20 minutes. These are, of course, smaller than the
standard PTA or MDP models that can be verified, but we were still able to obtain
useful results for several case studies.

The values in the rightmost column of Tables 1 and 2 illustrate that the results
obtained with POMDPs and POPTAs would not have been possible using an MDP or
PTA model, i.e., where all states of the model are observable. In the wireless network
case study in the MDP model the scheduler can see the status of the channels, and
hence use this information to decrease the number of dropped packets and increase the
cumulate reward based on the priorities of packets. In the crypt and pump case studies,
the MDP and PTA give probability 1 of guessing correctly (e.g., in the pump example,
‘low’ can simply read the value of the secret). Similarly, for the nrp models, the PTA
gives probability 1 of unfairness because the recipient can read the random value the

123

www.prismmodelchecker.org/files/rts-poptas/
www.prismmodelchecker.org/files/rts-poptas/


Real-Time Syst (2017) 53:354–402 397

originator selects. For the scheduler example, the PTA model gives a scheduler with
better time/energy consumption but which cannot be implemented in practice since
the power state is not visible. In similar fashion, for the grid example, we see that
optimal strategy is improved if the precise location on the grid is available.

Another positive aspect is that, in many cases, the bounds generated are very close
(or even equal, in which case the results are exact). For the pump and scheduler case
studies, we included results for the smallest grid resolution M required to ensure the
difference between the bounds is at most 0.001. In many cases, this is achieved with
relatively small values (for the scheduler case study, in particular, M is at most 4). For
the cases we were unable to do this we have instead included the results for the largest
grid resolution for which POMDP solution was possible: higher values could not be
handled within the memory constraints of our test machine. We anticipate being able
to improve this in the future by adapting more advanced approximation methods for
POMDPs (Shani et al. 2013). For the crypt case study, as we increase the number of
cryptographers, we find that the over approximations obtained through the approxi-
mate solution of the belief MDP are coarse (0.0 and 1.0 for minimum and maximum
probabilities, respectively) while the under approximations obtained through synthe-
sis are precise. This appears to be the due to large number of hidden values in the
POMDP compared to the other case studies and our prototype implementation using
only a basic approximation method.

7 Conclusions

We have proposed novel methods for the verification and control of partially observ-
able, probabilistic systems for both discrete and dense models of time. We have used
temporal logics to define probabilistic, timed properties and reward measures. For
discrete-timemodels, the techniques developed are based on a belief space approxima-
tion. For dense-timemodels we have demonstrated that the digital clocks discretisation
preserves the properties of interest, which allows us to employ the techniques devel-
oped for the discrete-time case. We have implemented this work in an extension of
the probabilistic model checker PRISM and demonstrated the effectiveness on several
case studies.

Future directions include more efficient approximation schemes, zone-based
implementations and development of the theory for unobservable clocks. Allowing
unobservable clocks, as mentioned previously, will require moving to partially observ-
able stochastic games and restricting the class of strategies.
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Appendix: Construction of the belief MDP

For the convenience of the reader, we have included below, the construction of the
belief MDP for a POMDPM = (S, s̄, A, P,R,O, obs) (see Definition 5). We use the
standard notation from the POMDP literature, for example Pr[ s′, a, b ] denotes the
probability that the next state is s′, the action a is performed and the current belief
is b and Pr[ o | a, b ] denote the probability of observing o conditioned on the action
being a is performed and that the current belief state is b.

First, let us suppose we are in a belief state b, perform action a and observe o.
Based on this new informationwemove to a new belief state ba,o using the observation
function of M. Let us now construct this new belief state. First, by construction, we
have for any s′ ∈ S:

ba,o(s′) = Pr[ s′ | o, a, b ]
= Pr[ s′, o, a, b ]

Pr[ o, a, b ] by definition of conditional probabilities

=
⎧
⎨

⎩

Pr[ s′, a, b ]
Pr[ o, a, b ] if obs(s′) = o

0 otherwise
by definition of obs.

Now considering the numerator in the first case, since the value of s′ is dependent on
the other values:

Pr[ s′, a, b ] = Pr[ s′ | a, b ] · Pr[ a, b ]
= Pr[ s′ | a, b ] · 1 since b and a are fixed

=
∑

s∈S
Pr[ s′ | a, s ] · b(s) definition of b

=
∑

s∈S
P(s, a)(s′) · b(s) definition of P.

For the denominator since o is dependent on b and a we have:

Pr[ o, a, b ] = Pr[ o | a, b ] · Pr[ a, b ]
= Pr[ o | a, b ] · 1 since b and a are fixed

=
∑

s∈S
Pr[ o | a, s ] · b(s) by definition of b

=
∑

s∈S

(
∑

s′∈S
Pr[ o | s′, a ] · P(s, a)(s′)

)
· b(s) by definition of P

=
∑

s∈S

⎛

⎝
∑

s′∈S∧obs(s′)=o

P(s, a)(s′)

⎞

⎠ · b(s) by definition of obs.

123



Real-Time Syst (2017) 53:354–402 399

Combining these results (and rearranging) we have:

ba,o(s′) =
⎧
⎨

⎩

∑
s∈S P(s,a)(s′)·b(s)

∑
s∈S b(s)·

(∑
s′′∈S∧obs(s′′)=o P(s,a)(s′′)

) if obs(s′) = o

0 otherwise.

Now using this we can define the probabilistic transition function of the belief MDP
B(M). Suppose we are in a belief state b and we perform action a. Now the probability
we move to belief b′ is given by:

PB
T (b, a)(b′) = Pr[ b′ | a, b ] =

∑

o∈O
Pr[ b′ | o, a, b ] · Pr[ o | a, b ].

The first term in the summation (Pr[ b′ | o, a, b ]) is the probability of being in belief
b′ after being in belief b, performing action a and observing o. Therefore by definition
of ba,o, this probability will equal 1 if b′ equals ba,o and 0 otherwise.

For the second term, as in the derivation of the denominator above, we have:

Pr[ o | a, b ] =
∑

s∈S
b(s) ·

⎛

⎝
∑

s′∈S∧obs(s′)=o

P(s, a)(s′)

⎞

⎠

This completes the construction of the transition function of the belief MDP.
It remains to construct the reward structure RB of the belief MDP. In this case, we

just have to take the expectation of the state and action reward functions with respect
to the current belief, i.e. for any belief state b and action a:

RB
S (b) =

∑

s∈S
RS(s) · b(s)

RB
A (b, a) =

∑

s∈S
RA(s, a) · b(s).
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