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Learning Kinematic Structure Correspondences
Using Multi-Order Similarities

Hyung Jin Chang, Member, IEEE, Tobias Fischer, Student Member, IEEE, Maxime Petit, Member, IEEE,
Martina Zambelli, Student Member, IEEE, and Yiannis Demiris, Senior Member, IEEE

Abstract—In this paper, we present a novel framework for finding the kinematic structure correspondences between two articulated
objects in videos via hypergraph matching. In contrast to appearance and graph alignment based matching methods, which have been
applied among two similar static images, the proposed method finds correspondences between two dynamic kinematic structures of
heterogeneous objects in videos. Thus our method allows matching the structure of objects which have similar topologies or motions, or a
combination of the two. Our main contributions can be summarised as follows: (i) casting the kinematic structure correspondence problem
into a hypergraph matching problem by incorporating multi-order similarities with normalising weights, (ii) introducing a structural topology
similarity measure by aggregating topology constrained subgraph isomorphisms, (iii) measuring kinematic correlations between pairwise
nodes, and (iv) proposing a combinatorial local motion similarity measure using geodesic distance on the Riemannian manifold. We
demonstrate the robustness and accuracy of our method through a number of experiments on synthetic and real data, outperforming
various other state of the art methods. Our method is not limited to a specific application nor sensor, and can be used as building block in
applications such as action recognition, human motion retargeting to robots, and articulated object manipulation amongst others.

Index Terms—Articulated kinematic structure correspondences, hypergraph matching, subgraph isomorphism aggregation, kinematic
correlation, combinatorial local motion similarity, humanoid robotics.

F

1 INTRODUCTION

A kinematic structure represents motion properties as well as
shape information of an object in a topological manner [2], [3].
The encoded relationship between rigid body parts connected by
kinematic joints can be considered as a mid-level representation of
general objects. In this paper, we focus on finding correspondences
between two kinematic structures extracted from different objects’
image sequences using a new hypergraph matching framework.
Such accurate and efficient estimation of kinematic correspon-
dences of heterogeneous objects is beneficial in the computer
vision and robotics fields. Some application areas are learning by
imitation [4], human motion retargeting to robots [5], [6], human
action recognition from different sensors [7], behaviour discovery
and alignment [8], affordance based object/tool categorisation [9],
body scheme learning for robotic manipulators [10], and articulated
object manipulation [11], [12]. Although our framework can
be applied to generic objects, we mainly focus on sequences
containing humans and various robots as they are involved in
the aforementioned applications (see Fig. 1).

As building kinematic structures of articulated objects from
visual input data is an active research topic both in computer vision
and robotics, various approaches to generate accurate kinematic
structures have been presented [2], [13], [14], [15]. However, there
are few works utilising the generated kinematic structures for the
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Fig. 1. The proposed framework reliably builds up kinematic structure
correspondence matches across heterogeneous objects captured with
different sensors. Our method can for example find correspondences
between a upper-body dancing human in a 2D grey image sequence,
the iCub and NAO humanoid robots in 2D RGB videos, and a dancing
human in depth image sequences.

aforementioned high level tasks. For instance, Fayad et al. [15]
used the kinematic structure as a basis of 3D reconstruction. Sturm
et al. [16] and Katz et al. [12] applied kinematic structures to
robot manipulations, but their methods are restricted to relatively
simple objects. We propose a new way of utilising the kinematic
structure for matching kinematic correspondences between complex
articulated objects belonging to different categories, such as human
bodies, robots, and animals. We also extend our framework to
applications with heterogeneous sensory data including RGB
and RGB-D sequences. A key application lies in the robotics
field, where the correspondence between a human teacher and a
humanoid robot can be established, which allows imitation learning
without a pre-defined model of the human.

Most conventional correspondence finding methods in the
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computer vision area are restricted to two static images of the
same category [17], [18], [19] or the same object with different
poses or views [20], [21], [22], [23]. Local shape feature and graph
matching based methods [24], [25], [26] have been researched
actively for decades. However, most of these approaches are based
on object appearance and local shape features applied to two static
images, which do not include dynamic information.

Graph matching methods have been widely used for the
correspondence matching problem [27], [28]. Hypergraph matching
is an extension of traditional graph matching which is limited to
pairwise relationships, whereas a hypergraph permits higher-order
relationships (three or more nodes), achieving robust matches even
under large variations [25], [26], [29], [30], [31]. Hypergraph
matching has a wide potential for finding matches among various
applications, but not many applications use this method because
of the difficulty in designing the high-order similarity. Most
conventional similarity measures for graph matching are based on
informative and discriminative local descriptors and their geometric
relations, which are not suitable for our framework as our image
sequences can potentially have very different appearances while
still having clearly defined kinematic correspondences.

In this paper, we present a novel hypergraph matching method
capable of finding correspondences between articulated kinematic
structures estimated from two different image sequences. We
assume that an articulated object is composed of a set of rigid
segments and the structure represents the connections between
segments. We propose new measures in order to simultaneously
consider structural topology (first order), kinematic correlation
(second order), and combinatorial motion (third order). We incor-
porate these measures into the hypergraph matching framework
with weight normalisation. Our experiments show that the proposed
method outperforms state-of-the-art appearance based and skeleton
graph alignment based methods quantitatively and qualitatively on
both synthetic and real data.

In Section 2, we discuss approaches to estimate articulated struc-
tures and other correspondence matching methods. In Section 3,
we present a framework for estimating the kinematic structure
correspondences via hypergraph matching. In Section 4, we provide
a new dataset and compare the framework with other methods
in various aspects. In the final section we discuss new research
directions which can emerge from our work, with a focus on
possible computer vision and robotics applications.

2 RELATED WORK

Kinematic structure building: A kinematic structure looks
similar to its corresponding skeleton (a framework of bones),
but also incorporates kinematic properties between rigid body
parts. A general approach for the kinematic structure estimation
from visual data has been segmenting rigid body parts based
on motion and subsequently building connections between the
segments. For example, factorisation based articulated motion
segmentation methods [32], [33] were presented showing that the
rank of the feature trajectory matrix can indicate the kinematic joint
type. However, these methods cannot deal with a high number of
articulations because the factorization is generally sensitive to non-
Gaussian noise, so that few tracking errors can harm the result [34].
Yan and Pollefeys [13] estimated a kinematic chain based on
intersecting motion subspaces with kinematic joints placed at the
intersections. However, such accurate matrix rank detection based
approaches are highly vulnerable to noisy feature trajectories. Also,

critical parameters need to be tuned at each step, for example
the rank estimation parameter, the local sampling size, and the
highest dimension size. Moreover, these approaches have shown
poor structure estimation results on complex articulations [2].

Ross et al. [14] proposed a probabilistic graphical model
learning method that adaptively learned the number of joints and
their connections. However, as the number of articulations increases,
the computation time grows exponentially. Applying this method
to complex articulations is hard, as it is prone to local minima.
An energy based multiple model fitting approach was proposed by
Fayad et al. [15], which simultaneously performs segmentation and
3D reconstruction. The benefits of this approach are that neither
assumptions about the skeleton structure of the object, nor the
number of motion segments are required in advance. The set of
2D feature points is decomposed into overlapping rigid-bodies,
and the kinematic structure joints are derived from the regions
of the overlap. This method has shown impressive 3D articulated
shape reconstruction performances even for complex structures.
However, the focus is on full 3D reconstruction of articulated
objects requiring overlaps between motion segments in order to
resolve the depth scale ambiguity in 3D reconstruction. Recently,
Chang and Demiris [3] presented a complex structure estimation
method by combining motion and skeleton information, showing
state-of-the-art estimation performance even for complex objects.

Structure correspondence matching: A path similarity based
skeleton graph matching was developed by Bai and Latecki [35]
and was applied for shape recognition based on object silhouettes
[36]. Although performing well among clean silhouette images, the
method requires noiseless skeletons as input, and cannot be applied
to noisy images with background clutter.

The structure correspondence matching is similar to the graph
alignment problem in the bioinformatics field for the alignment of
protein-protein interactions networks [37]. However, the general
graph alignment data are quite different, as very large graphs
(thousands of nodes) are used in conjunction with node similarity
based on chemical properties. In our case, the kinematic structure
graphs are much smaller and no characteristic information about
nodes is available. Moreover, we are interested in one-to-one
mapping for every node of one graph to exactly one node of the
other. Thus the network alignment has to be global.

One of the earliest implementations of a global network
alignment algorithms is called IsoRank [38]. It is not only
based on topological similarities, as sequence similarities between
nodes are also taken into account. Graph aligner [39] and its
variants [40] are algorithms for global network alignment based
only on the network topology, using a highly constrained measure
of topological similarity between two networks called “graphlet
degree vector” [41].

Recently, other global alignment methods that do not neces-
sarily rely on node similarity information have been presented.
NETAL [42] and MAGNA++ [43] are among the best existing
global network alignment methods relying on topological align-
ment [44], and they have outperformed graph aligner [39] and its
variants [40]. NETAL [42] constructs global alignments greedily,
and can optionally take node similarity into account. It can also
be used to focus solely on topological similarities for fast network
alignment. MAGNA++ [43] is based on a genetic algorithm that
simultaneously optimises node and edge conservation to improve
the quality of the alignment, compared to conserving nodes or edges
individually. It has been extended to multiMagna++ [45] to allow
multiple instead of pairwise network alignments. However, these
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Fig. 2. Overall pipeline of the proposed method. First, features are extracted from the two image sequences, and the motion segments are estimated.
Based on this, we generate the kinematic structures of the object within each image sequence. We use hypergraph matching with normalised weight
terms to simultaneously consider structural topology, kinematic correlation and combinatorial motion. The resulting correspondences are robust to
noise and outliers, and can be used in various computer vision and robotics applications.

methods failed to detect proper and consistent correspondences
where graphs present symmetries (see Section 4).

Motion describing methods: Several approaches are con-
cerned with describing characteristic motion patterns. Del Pero
et al. [20] found correspondences between objects of the same
class based purely on their characteristic motions. This is used for
the discovery of behaviours such as walking and running, rather
than matching of rigid segments as in our case. Jacquet et al. [46]
presented a relative transformation analysis method based on linear
subspaces, but they focused on detecting the type of articulated
motion between two restricted motion parts.

A common issue when describing motions is to find rep-
resentations which are translation, scale and rotation invariant.
Hadfield et al. [47] extracted 3D motion descriptors for action
recognition based on the scene flow for a set of interest points, and
describe their motions using spherical histograms. They achieve
scale invariance by normalising the histograms, and rotational
invariance by applying principal components analysis to find the
roll, pitch and yaw of the rotation.

A popular approach to achieve invariance in scale, translation
and rotation is to use the geodesic distance on the Riemannian
manifold. This is due to the fact that the geodesic distance on the
Riemannian submanifold between two rotation matrices is more
meaningful than other metrics from a geometric point of view,
while being boundedly equivalent to other metrics [48]. Hartley
et al. [49] analyse the problem of rotation averaging from the
theoretical side, again emphasizing the importance of the geodesic
distance. Schulz et al. introduced a framework which employs the
geodesic distance to find deformations within 3D models of real
objects [50]. In addition, the geodesic distance has been proven
to be effective in practical applications, e.g. for video trajectory
estimation and smoothing [51]. In contrast to our work, the authors
find a rotation matrix which minimises the distance between the
original (noisy) trajectory and the new trajectory, which is also
smoothed at the same time. We go in the opposite direction and
find the minimum and maximum rotation which can be caused by
a joint. A method for separating objects based on their motions
has been presented by Ochs and Brox [52]. They construct a
hypergraph from triplets of trajectories, but argue that transferring
the hypergraph to an ordinary graph is required to achieve scale
and rotational invariance.

Hypergraph matching: Graph matching has been used in
a variety of computer science applications, such as computer
vision and machine learning, to find correspondences between
two feature sets [53]. Classical first order methods consider node-

wise unary correspondences. They are based, for example, on
local descriptions, and are thus prone to ambiguities due to similar
patterns or non-discriminative local appearance [30]. In second
order graph matching, both nodes and edges are involved, allowing
the enforcement of geometric consistency but, at the same time,
making the matching problem essentially a quadratic assignment
problem known to be NP hard [54]. Stochastic sampling was used in
[55] to solve the graph matching problem, whereas a random walk
view was proposed in [24]. Other second order methods include
the work on matching between deformable graphs as proposed in
[28].

Hypergraph matching is defined as taking higher order rela-
tionships between graphs into account, which allows incorporating
more complex features and representations [29], [30], [56]. Zass
and Shashua [29] addressed the problem in a probabilistic way and
solved it using convex optimisation. Formulations of the hypergraph
matching as a third order tensor optimisation problem were
presented in [30], [56], which showed significant improvements
over second order graph matching methods. Shashua et al. [57],
Leordeanu and Sminchisescu [58], and Bulò and Pelillo [59]
presented hypergraph clustering methods which can take the higher
order relationships among sets of data points into account. The
main limitation of the aforementioned methods is that they cannot
model mixed higher order relationships, as each hyperedge should
contain the same number of nodes [60]. Recently, a pure discrete
method has been devised [61], accounting for both unary and
higher order affinity terms. Lee et al. [25] present the reweighted
random walk hypergraph matching method (RRWHM) which is an
extension of the reweighted random walk [24] to the third order
term. RRWHM generalises the hypergraph matching formulation
to cover relations of features in arbitrary orders. Nguyen et al. [26]
present one of the most recent methods and show that their tensor
block coordinate ascent method is particularly robust to a large
number of outliers.

3 METHODOLOGY

Our goal is to find corresponding joint matches between two artic-
ulated kinematic structures via hypergraph matching, whilst being
accurate and plausible under appearance and motion variations. To
this end, we mainly use 2D feature trajectories from two image
sequences assuming that 1) one target object exists in each scene,
and 2) the features are extracted from every part of the object. To
build the kinematic structure from 2D image sequences, we adopt
a state-of-the-art kinematic structure generation method [2]. We
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Fig. 3. Conceptual illustration of hypergraph edges showing the three different orders κ(e) = 1, κ(e) = 2 and κ(e) = 3.

also show an extension to the 3D case by employing the Kinect
skeleton tracker.

In Section 3.1 we define the notations needed in the kinematic
structure formulation. In Section 3.2, we outline the hypergraph
matching and the similarity functions. Specifically, we introduce
a new similarity term based on 2D kinematic structure topology
in Section 3.2.1, followed by a pairwise term which measures
kinematic correlation in Section 3.2.2, and we present a new third
order combinatorial local motion term using the logarithm of
rotation matrices in Section 3.2.3. In Section 3.3, we extend our
framework to RGB-D sequences. An overview of our method is
shown in Fig. 2.

3.1 Kinematic Structure Formulation
The 2D feature point trajectories of each image sequence are
represented as xfp , with p as feature point index and f ∈ {1, ..., F}
as sequence index, where F indicates the number of frames for each
sequence. To indicate motion segments, we use Si for the disjoint
set of points belonging to the ith segment where i ∈ {1, ..., N},
and N as the total number of segments. We denote yfi as the centre
position of segment Si obtained by averaging its points at frame f .

In this work, we adopt the same way of representing the
kinematic structure as [2], [13], i.e. we utilise 2D kinematic
structures rather than 3D reconstructed structures. They use a
non-cyclic graph model G = (V,E) to indicate the topological
connections between rigid body parts, which generally covers most
articulated objects. Each node vi ∈ V is assigned to the respective
motion segment centre yi, and the edgeEij represents a connection
between nodes vi and vj . We also assume that all kinematic
joints are revolute joints, as prismatic joints are less common and
spherical joints can be easily decomposed into orthogonal revolute
joints.

3.2 Hypergraph Matching for Kinematic Structure Cor-
respondence
Hypergraph matching is particularly suitable for our setting
due to various reasons. Firstly, hypergraph matching does not
require any pre-training, which is a requirement in our one-
shot correspondence finding setting. Secondly, it allows merging
heterogeneous similarity measures of varying orders, which leads
to improved robustness and higher accuracy. Finally, the merging
process is computationally efficient, such that the computational
time is mainly dependent on the calculation of the individual terms
rather than the merging.

A general hypergraph G = (V, E) consists of nodes vi ∈ V ,
and hyperedges e ∈ E . Unlike usual graph edges, hyperedges
enclose a subset of nodes from V with size κ(e), referred to
as the order of each hyperedge. A representative illustration of
hyperedges is shown in Fig. 3. In this work, we generate the

hypergraphs based on the two kinematic structures G and G′. We
consider the hypergraph nodes vi ∈ V as the kinematic structure
nodes vi ∈ V (i.e. V = V), so that each e ∈ E can represent any
tuple of nodes (see Fig. 3).

The hypergraph matching problem is to find mappings between
nodes of two hypergraphs. Given two hypergraphs G = (V, E)
and G′ = (V ′, E ′), the goal is to find a subset in the set of
correspondences V × V ′. Without loss of generality, we assume
that N ≤ N ′ where N = |V| and N ′ = |V ′|. The subset of
correspondences can be represented by the one-to-one binary
assignment matrix X ∈ {0, 1}N×N ′

, where X(i, i′) = 1 if
vi ∈ V matches v′i′ ∈ V ′ and X(i, i′) = 0 otherwise. We
then define the similarity function F of a matching subset as
the weighted sum of the first (structural topology, F1), second
(kinematic correlation, F2) and third order (combinatorial motion,
F3) similarity terms, as follows:

F(X) = w1

N∑
i

N ′∑
i′

F1
(i,i′)X(i, i′) (1)

+w2

N∑
i,j
i 6=j

N ′∑
i′,j′

i′ 6=j′

F2
(i,i′)(j,j′)X(i, i′)X(j, j′)

+w3

N∑
i,j,k
i 6=j
j 6=k
i 6=k

N ′∑
i′,j′,k′

i′ 6=j′
j′ 6=k′
i′ 6=k′

F3
(i,i′)(j,j′)(k,k′)X(i, i′)X(j, j′)X(k, k′).

The normalising weights w1, w2, and w3 play an important role
in balancing the effects of the similarity terms. Previous hypergraph
matching works [25], [26], [62] did not consider weights for the
summation of different order terms. However, the similarity terms
are not well-balanced, as the corresponding number of summation
elements increases exponentially with the order. It is important to
note that in our framework each similarity term itself is already
normalised to take values between 0 and 1 (see Eq.(5), Eq.(9) and
Eq.(14)). As it can be seen from Eq.(1), the element set of each
summation term is the same as the ordered arrangements in which
no element occurs more than once, i.e. κ(e)-permutations of N ,
denoted as PNκ(e):

PNκ(e) =
N !(

N − κ(e)
)
!

for G; PN
′

κ(e) =
N ′!(

N ′ − κ(e)
)
!

for G′,

(2)
where κ(e) = 1, κ(e) = 2 and κ(e) = 3 for the first, sec-
ond and third order similarities, that is e = (vi), e = (vi, vj),
e = (vi, vj , vk), respectively. The total number of elements for
each similarity term is the multiplication of PNκ(e) and PN

′

κ(e).
Consequently, if not normalised, higher order similarity terms
have more impact to the matching result than lower order terms.
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node removal) G′ are used to produce the correspondence matrixM (illustrated in a cyan background region). Using a node removal process,
we generate the subset G′ composed of all valid graph variations G′k. Note that the variation G′ \ v′

2′ is not added to G′ as deg(v′
2′ ) = 3,

and thus v′
2′ cannot be removed (illustrated in a yellow background region). Top right: Example of a possible subgraph isomorphism Xl of G

into G′. Note that A∗l (1, 1
′) = |deg(v1) − deg(v′1′ )| = |1 − 4| = 3 triggers the local constraint θ. The global constraint τ is checked against∑

i,i′ A
∗
l (i, i

′) = 3 + 0 + 0 + 0 + 1 = 4. The subgraph isomorphism is only kept if both the local and the global constraint are validated.

Therefore, we propose multi-order similarities with normalising
weights wκ(e) which are inverse proportional to the number of
elements, such that:

wκ(e) =
1

PNκ(e)

× 1

PN
′

κ(e)

=

(
N − κ(e)

)
!

N !
×
(
N ′ − κ(e)

)
!

N ′!
. (3)

The well-balanced combination of the three similarity functions
through the weights w1, w2, and w3 allows us to effectively merge
the three different pieces of information and obtain a more accurate
and meaningful correspondence between kinematic structures.

3.2.1 First Order Similarity: Structure Topology
As the aim of our framework is to find correspondences between
objects of different appearance, we cannot employ classical feature
point descriptors such as SIFT [63]. Instead, the first order similarity
is a measure of structural topology, i.e. the relations of nodes which
form an object. This measure allows to find matches between
objects which have similar properties in terms of their underlying
structure, while being invariant to their appearance, shape and
size. One way of representing kinematic structures to study their
topological structure is by assimilating them as undirected graphs,
where the centre of body-parts yi are the nodes vi ∈ V of the
network. The first order similarity can be reformulated as a graph
alignment problem based solely on topological structure, i.e. how
edges connect nodes, whereby the edges do not have any attribute
or weight associated.

The general idea is as follows. We find substructures of
a graph G′ = (V ′, E′) which topographically match a graph
G = (V,E) which has less nodes than G′, i.e. N ′ ≥ N without
loss of generality (see 3.2.1.A). We then apply constraints on these
matches, as we want to avoid matches which are topographically
unlikely (see 3.2.1.B). More specifically, we discard matches
including nodes with largely differing number of neighbours (called
local constraint), and matches where the number of neighbouring
nodes overall differs significantly between the graphs (called global
constraint). In fact, higher weights are given to graph matches
which only slightly differ in the overall number of neighbouring
nodes (see 3.2.1.C). We also consider the case that the bigger
graph G′ contains more nodes than the actual kinematic structure

represented by G′, and thus vary this graph by systematically
removing nodes and performing the same matching strategy on
the varied graphs (see 3.2.1.D). The overall measure F1 is then
found as the mean of the quality measures with and without graph
variations (see 3.2.1.E).

A. Subgraph isomorphism: We define the subgraph isomor-
phism following Valiente [64]. Remember that N ≤ N ′ without
loss of generality, that is G′ contains more nodes than G.

Definition 3.1 (Subgraph isomorphism).
A subgraph isomorphism from a graph G = (V,E) into a
graph G′ = (V ′, E′) is an injection φ : V → V ′ such that if

(vi, vj) ∈ E, then
(
φ(vi), φ(vj)

)
∈ E′.

The top-right part of Fig. 4 represents an example of a subgraph
isomorphism of G to G′. To find the subgraph isomorphisms,
we use the VF2 algorithm [65]1, which is one of the most
recent methods and has shown a clear superiority in different
scenarios [66]. The output of VF2 is a set of binary assignment
matrices X = {X1, · · · , XL}, with each assignment matrix
Xl = {0, 1}N×N ′

(l = {1, · · · , L}) representing one subgraph
isomorphism. Following the notation introduced in Section 3.2,
the entry Xl(i, i

′) equals 1 if vi is matched with v′i′ in the lth

subgraph isomorphism, and 0 otherwise.
Note that a subgraph of G′ which is isomorphic to G may not

have the same number of edges per node as G, but may contain
more edges; in other words, a subgraph isomorphism might not be
a perfect match.

B. Local and global constraints: We thus introduce additional
constraints to eliminate subgraph isomorphisms which are likely
to be a bad match. The local constraint is based on a threshold
θ for the edge degree difference of individual node pairs, and
the global constraint introduces a threshold τ over the sum of all
edge degree differences. We introduce the edge degree difference
matrix A with entries A(i, i′) = |deg(vi) − deg(v′i′)|, where
deg(·) denotes the number of edges of this node. The matrix
A∗l = A ◦Xl (with ◦ denoting the Hadamard product) contains

1. Implemented in the R package ‘igraph’: igraph.org
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the edge degree differences for all node pairs which are matched
in Xl. Then, we discard all subgraph isomorphisms Xl for which
∃A∗l (i, i′) > θ (local constraint) or

∑
i,i′ A

∗
l (i, i

′) > τ (global
constraint). The threshold parameters θ and τ are experimentally
determined, and their impact on the performance is discussed in
Section 4.6.

C. Quality measure: To measure the quality of the
subgraph isomorphisms, we introduce the set Xd =
{Xl |

∑
i,i′ A

∗
l (i, i

′) = d}, which contains subgraph isomor-
phisms Xd

m with the same edge degree difference d. The smaller
the difference d, the higher is the expected quality. We generate the
probabilistic correspondence matrixM as a weighted sum, where
subgraph isomorphisms with a low difference d are given a higher
weight:

M =
τ∑
d=0

1

d+ 1

|Xd|∑
m=1

1

|Xd|
Xd
m, (4)

where |Xd| denotes the number of subgraph isomorphisms in Xd.
We normalise M such that the sum over all entries in one row
equals 1. Therefore, the entry M(i, i′) contains the probability
that vi matches v′i′ considering the structural topology of G and
G′, originating from various subgraph isomorphisms after applying
local and global constraints.

D. Node removal process: In order to cope with imperfections
in the estimated kinematic structure, we also consider possible
variations G′ \ v′i′ of G′, which indicates that node v′i′ is removed
from G′ along with the respective edges. The node removal process
depends on the degree deg(v′i′) as follows:

Case 1: if deg(v′i′) = 1, remove v′i′ .
Case 2: if deg(v′i′) = 2, where v′i′ is linked with v′j′ and

v′k′ , an edge is created to link v′j′ and v′k′ , and v′i′ is
removed.

Case 3: if deg(v′i′) ≥ 3, this node was unlikely extracted
incorrectly, as it has a large number of edges. Thus
the node is not removed.

The valid variation set, denoted by G′, contains all graph
variations G′ \ v′i′ whose corresponding node v′i′ falls in case
1 or 2. Examples of such successive graph variations and their
corresponding subgraph isomorphisms can be found in Fig. 4. For
each element G′k ∈ G′, we calculate the correspondence matrix
M′k using Eq.(4) by substituting G′ with G′k.

The proposed procedure is described in Algorithm 1.

Algorithm 1: Generating the first order similarity function
using structural topology

Input :G, G′

Output :F1

X← VF2(G, G′)
M← calculate by Eq.(4) based on X
G′ ← generated according to node removal process
for k ∈ [1 : |G′|] do

X′k ← VF2
(
G,G′k

)
M′k ← calculate by Eq.(4) based on X′k

F1 ← 1
|G′|

∑|G′|
k=1

M+M′
k

2

E. First order correspondence matrix: The first order
similarity matrix F1 based on structural topology is then calculated

as the mean between the probabilistic correspondence matrices
with and without node removal as shown in Eq.(5):

F1
(i,i′) =

1

|G′|

|G′|∑
k=1

(M(i, i′) +M′k(i, i′)

2

)
. (5)

3.2.2 Second Order Similarity: Kinematic Correlation
The motivation for the second order similarity is as follows. We
hypothesise that node pairs (vi, vj) ∈ G and (v′i′ , v

′
j′) ∈ G′

should be matched together if the nodes within each pair move
similarly and are located nearby. In order to do so, we first
calculate the kinematic correlation proximities between in-body
nodes for both G and G′ separately, where in the following we
use the calculations of G as example. Following [2], the kinematic
proximity P(i,j) between node vi and node vj (with segment centre
points yi and yj) can be effectively measured by considering both
relative moving velocity difference ‖(yfi −y

f−1
i )− (yfj −y

f−1
j )‖

and geodesic distance ζ(·) along the skeleton:

P(i,j) = median
f∈F

{∥∥(yfi −yf−1
i )−(yfj−y

f−1
j )

∥∥·ζ(yfi , y
f
j ; Ψf )

}
.

(6)
The median value over all frames F is taken in order to be robust to
outliers. A large distance value of P(i,j) implies that the pairwise
nodes vi and vj are skeletally apart and move with different
velocities. ζ(·) is measured by the shortest path connecting the two
node points within the skeleton distance map Ψ as was presented
in [2]2:

ζ(yfi , y
f
j ; Ψf ) = min

Γ∈P
y
f
i
,y

f
j

l(Γ)∑
n=1

1

Ψf (pn)
, (7)

where Γ is a path connecting the two node points, Pyi,yj is the set
of all possible paths, and l(Γ) indicates the length of the connecting
path. In [2] the skeleton distance map Ψf is generated within the
object region Ωf and its shape boundary δΩf (also known as a
silhouette) for each frame f , and pn is a point inside of the object
region Ωf and lying on the path Γ. The skeleton contains both,
shape features and topological structures of the original objects.
As a good representation of the skeleton, a distance transform [67]
is defined as a function that returns the closest distance to the
silhouette for each internal point p. The distance function Ψf (p)
of δΩf is defined as proposed in [68]:

Ψf (p) = min
q∈δΩf

(
dist(p, q)

)
, ∀p ∈ Ωf . (8)

The distance metric is usually the Euclidean distance dist(p, q) =
‖p− q‖.

Finally, based on our hypothesis that node pairs should be
matched if the contained nodes have close kinematic proximities,
the second order similarity function is calculated as:

F2
(i,i′)(j,j′) = exp

(
− ‖P(i,j) −P(i′,j′)‖

)
. (9)

3.2.3 Third Order Similarity: Combinatorial Motion
We consider characteristic combinatorial local motions, which are
shared between different kinematic structures. As discussed in [25],
[30], third order feature combination leads to geometric invariances
(scale, rotation, translation) and better represents local information.
Similarly, we consider the combinatorial kinematic rotation ranges

2. We use the code available at http://www.imperial.ac.uk/PersonalRobotics
to calculate each distance term.
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of three nodes and match node triplets with similar kinematic
rotation ranges. As widely used in mechanical kinematics, we
utilise joint limits to describe the kinematic rotation range of a
joint [69], [70], i.e. the minimum and maximum rotation angle with
respect to another joint.

To build the combinatorial motion range descriptor, we first
need to find the joint positions3. The location of a joint between
two motion segments can be approximated as the point where two
segments Si and Sj encounter each other, as shown in the left half
of Fig. 5. For each frame f , we find the M nearest points of Si
to the segment centre yfj , and denote them as neighbouring points
N f
i→j . The joint position Jfi−j is then defined by:

Jfi−j =
1

2M

M∑
m=1

(
N f
i→j(m) +N f

j→i(m)
)
. (10)

Note that N f
i→j 6= N

f
j→i, but Jfi−j = Jfj−i for i 6= j.

Our novel combinatorial motion range descriptor is then built
as follows. We consider three body parts (i, j, k) at frame f with
segment centres yfi , yfj , yfk and their respective revolute joint
positions Jfi−j , J

f
j−k and Jfi−k. We find the vectors between all

joints and their respective centre points, i.e. vfi,i−j = yfi − J
f
i−j ,

vfj,i−j = yfj − Jfi−j . Then, we find the directed angle αfi−j
between the two vectors (see also right half of Fig. 5):

αfi−j = ∠(vfi,i−j ,v
f
j,i−j) = arctan

‖vfi,i−j × vfj,i−j
T
‖

vfi,i−j · v
f
j,i−j

T

 .
(11)

Finally, we build the rotation matrix Rfi−j based on αfi−j .
In the next step, we calculate the geodesic distance on the

Riemannian manifold between all pairwise rotation matrices
which describe combinatorial movements of three body parts.
The geodesic distance measure has been shown to be a highly
meaningful metric to describe 3D rotations [48], [51]. It is invariant
to the absolute rotation, as only the relative rotation between the
body parts is captured [72]. It is also invariant to scale, as the
translation between the body parts is not considered in the geodesic
distance. A more detailed investigation of the scale, rotational, and
translational invariance can be found in [73], and its application
to surface alignment which is somewhat similar to our problem
in [74]. Thus for combinatorial body parts (i, j, k), we define the
geodesic distance of pairwise rotation matrices as:

df(i,j,k) = ‖logm(Rfi−j
T
Rfj−k)‖F (12)

where logm is the principal matrix logarithm, and ‖ · ‖F is the
Frobenius norm.

We then merge the sequence of geodesic distances df(i,j,k) and
form a 6-dimensional feature vector Υ(i,j,k). The entries of the
vector are the minimum and maximum distances found over all
frames for body parts (i, j, k). This corresponds to the minimum
and maximum range of all possible combinatorial motions of

3. There have been many works trying to find joint positions as part of
kinematic structure estimation [13], [14], [15], [71]. Yan and Pollefeys [13]
estimate joint positions as the intersection of two motion subspaces, but their
method is vulnerable to noise. The estimate in [14] is based on probabilistic
inference which can find the number of joints and their connections adaptively,
but the method is sensitive to the prior and has difficulty in recovering from a
poor initialisation. In [71] a SVM based method which is conceptually similar
to our proposal is presented, but ours is simpler than theirs. We tested these
methods, and have found that their joint estimates are similar or worse compared
to ours.

Neighbouring 
Points

Neighbouring 
Points

Fig. 5. Visualization of the joint estimates and motion range descriptor.
The left half shows the segment centre positions y, and the neighbouring
points N to find the joint positions J (Eq.(10)). The right half visualises
the vectors v which are used to calculate the angles α (Eq.(11)). Best
viewed in colour.

body parts i, j and k. Thus, the feature vector to describe the
combinatorial local motion is built as:

Υ(i,j,k) =[min
f∈F

df(i,j,k),max
f∈F

df(i,j,k),

min
f∈F

df(j,k,i),max
f∈F

df(j,k,i),

min
f∈F

df(k,i,j),max
f∈F

df(k,i,j)]. (13)

To compare two feature vectors Υ(i,j,k) and Υ(i′,j′,k′), we
define the third order similarity measure as:

F3
(i,i′)(j,j′)(k,k′) = exp

(
− ‖Υ(i,j,k) −Υ(i′,j′,k′)‖

)
. (14)

The presented metric is a super-symmetric tensor, whose entries
remain unchanged under any permutation of its indices [75], and
thus can be represented as a tensor product which is a requirement
for applying the metric in the hypergraph matching framework
[30].

3.3 Correspondences using heterogeneous sensors
In order to compare 2D and 3D structures within one framework,
we define the following properties for 3D structures. As the first
order term describes the structural topology, it does not differ from
the 2D case for 3D structures. The second order similarity term
Eq.(6) in 3D space is calculated based on the joint’s movement
velocity in two consecutive frames. As geodesic distance measure
Eq.(7) we use the length of the shortest path on the skeleton which
connects the joints. For the third term calculation, we manually
categorised the skeleton nodes found using the RGB-D camera into
body part joints (e.g. head node) and revolute joints (e.g. shoulder)
considering its location. If there is no body part node between two
revolute joints (e.g. between elbow and shoulder), we introduce
a body part node located in the centre of the line connecting the
two revolute joints. Then, we define the directed angles and their
corresponding rotational matrices in the same framework of the 2D
structure, and the geodesic distance of pairwise rotation matrices is
calculated by Eq.(12).

4 EXPERIMENTS

We evaluated our method on synthetic benchmarks and real
image sequences generated from various objects by comparing
it with state-of-the-art structure alignment methods and appearance
based correspondence matching methods. In particular, we used
the following graphical structure alignment approaches with
their default parameters: NETAL [42] and MAGNA++ [43].
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(a) Outlier test in 2D (N = 10)
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(b) Kinematic deformation test in 2D (N = 10)
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(d) Outlier test in 3D (N = 10)
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(e) Kinematic deformation test in 3D (N = 10)
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(f) Symmetry test in 3D

Fig. 6. Performance according to outlier tests (left), kinematic deformation ratio (centre) and symmetry order changes (right). The kinematic structures
in the top row are generated in 2D and the bottom row’s results are from 3D structures. It can be observed that our method achieves the best
performance over all other algorithms in most cases.

For the appearance based approaches, we used Agglomerative
Correspondence Clustering (ACC) [17], Reweighted Random
Walks for Graph Matching (RRWM) [24], and Progressive Graph
Matching (PGM) [18]. For all comparisons, the authors’ original
implementations were used. For our implementation, we set τ = 3
and θ = 1, and we validate this choice of parameters in Section 4.6.
As the ground truth matches are known, the accuracy is measured
by the ratio of correct node matches in graph G divided by N (N
is the total number of nodes in G and we assume that each node
of G has a matching node in G′). To encourage future work from
other researchers on this newly proposed problem we release our
code along with our new dataset4. All experiments were performed
using a PC with an Intel Core i7-4770 CPU @ 3.40GHz (x8) and
32GB of RAM.

4.1 Synthetic Dataset
In this experiment we performed various comparative evaluations
on synthetically generated kinematic structures in both 2D and
3D. For each trial, we randomly constructed a kinematic structure
graph G and created a second graph G′ by perturbing G. Then,
we compared state-of-the-art graph alignment algorithms [42], [43]
trying to find correspondences between the two structures. Each
quantitative result in these experiments is acquired by averaging
100 random trials.

For the first structure G, we randomly generated node positions,
their movements and kinematic correlations, and the kinematic
structure is built based on them. The kinematic range of each node
is assigned by a uniform random distribution U(0, σm) and used
to simulate dynamic movements. The kinematic joints are located
in the middle of the connected nodes following the structure. The
number of frames and the parameter σm do not affect the results,
and are set to F = 100 and σm = 50.

First, we increased the number of outlier nodes in G′ and
randomly set their kinematics while preserving the kinematics of
all other nodes. As shown in Fig. 6(a) and 6(d), even in the presence

4. Both the code and the dataset are available at:
www.imperial.ac.uk/PersonalRobotics.

of severe topology changes our proposed method finds matches
more accurately than graph alignment methods, as our method
benefits from the kinematic (second order) and motion (third order)
terms. While the second and third order terms perform better than
the overall proposed method in this outlier test, the experiments
below show that including the first order term is important in other
scenarios.

Second, we increased each node’s kinematic range in G′ while
not changing the structure topology. To generate G′, we perturb G
by adding newly generated random motions from U(0, ρ ∗ σm),
where ρ induces a motion perturbation ratio. The results are shown
in Fig. 6(b) and 6(e). Even though the second and third order terms
are deteriorated by the motion perturbation, the first term helps
to establish correct matches robustly, resulting in an overall high
accuracy.

Third, we tested the robustness to structures having symmetric
topology but non-symmetric motions. The symmetry order indicates
a number of possible symmetric axes. As we can see in Fig. 6(c)
and 6(f), both the graph matching methods and using only the first
term resulted in low accuracies, but our method can find correct
matches using the motion information.

Through these experiments, we have validated that the structural
topology as well as the kinematic and motion information are char-
acteristic properties for dynamic structures. While each individual
term suffers depending on the perturbation, the combination of all
three terms results in increased accuracy and robustness to a range
of perturbations.

4.2 Real Kinematic Structure Datasets
Imperial-PRL-KSC-Dataset: The Imperial-PRL-Dataset [2] has
previously been used for testing the complex kinematic structure
generation performance. It contains simple structures as well as
highly complex structures such as a human upper body and a
human hand. However, the kinematic structures are not diverse
enough to validate the correspondence matching performance. Thus,
we constructed more sequences using various humanoid robots5

5. We utilised three robots: iCub (www.icub.org),
NAO (www.softbankrobotics.com) and Baxter (www.rethinkrobotics.com)
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(a) Proposed (b) Graph alignment: NETAL [42] (c) Graph alignment: MAGNA++ [43]

(d) Proposed F to TM [30] (e) Proposed F to HGM [29] (f) Proposed F to BCAGM+MP [26]

(g) Appearance feature matching: ACC [17] (h) Appearance feature matching: RRWM [24] (i) Appearance feature matching: PGM [18]

Fig. 7. Experiments on real image datasets: dancing human vs. dancing iCub. Two static images are used for the appearance based methods (best
viewed in colour).

(a) Proposed (b) Graph alignment: NETAL [42] (c) Graph alignment: MAGNA++ [43]

(d) Proposed F to TM [30] (e) Proposed F to HGM [29] (f) Proposed F to BCAGM+MP [26]

(g) Appearance feature matching: ACC [17] (h) Appearance feature matching: RRWM [24] (i) Appearance feature matching: PGM [18]

Fig. 8. Experiments on real image datasets: Baxter vs. OWI-535 Robotic Arm Edge (best viewed in colour).

(a) Proposed (b) Graph alignment: NETAL [42] (c) Graph alignment: MAGNA++ [43]

(d) Proposed F to TM [30] (e) Proposed F to HGM [29] (f) Proposed F to BCAGM+MP [26]

(g) Appearance feature matching: ACC [17] (h) Appearance feature matching: RRWM [24] (i) Appearance feature matching: PGM [18]

Fig. 9. Experiments on real image datasets: yellow crane vs. digging arm (best viewed in colour).

and human motion, and have performed many tests with different
sequence combinations. We generated the kinematic structures
G and G′ using [2] with manually set segment numbers, which
are used as input pairs for the proposed method and the graph

alignment methods.

For the object appearance based matching methods, we used
the first image of each sequence as input. Initial candidate feature
correspondences were generated using the MSER detector [76] and
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Fig. 10. Various kinematic structure correspondence matching results using the proposed method (best viewed in colour). The bottom-left
correspondence is analysed in more detail in Fig. 12.

TABLE 1
Performance on the real kinematic structure dataset. The numbers are

the mean and standard deviation (in parenthesis) respectively.

Methods Accuracy (%)
NETAL [42] 67.72(±39.59)
MAGNA++ [43] 63.42(±33.66)
Proposed F to HGM [29] 35.06(±30.73)
Proposed F to TM [30] 29.76(±21.65)
Proposed F to BCAGM [26] 52.66(±25.02)
Proposed F to BCAGM+IPFP [26] 45.28(±15.50)
Proposed F to BCAGM+MP [26] 69.09(±20.65)
Proposed F first term only 85.19(±20.39)
Proposed F second term only 68.81(±31.58)
Proposed F third term only 67.81(±19.72)
Proposed F to RRWHM [25]
without weight normalisation Eq.(3) 88.23(±13.07)

Proposed F to RRWHM [25]
with weight normalisation Eq.(3) 92.99 (±10.41)

the SIFT descriptor [63] as was described in [18]. Then, ACC [17],
RRWM [24] and PGM [18] are applied separately using the code
provided by the authors.

As shown in Fig. 7, 8 and 9, our method clearly outperforms
other methods for finding accurate kinematic correspondences. Es-
pecially the graph alignment approaches often failed to distinguish
symmetric matches, and the appearance based correspondence
matching approaches cannot be applied to heterogeneous objects.
These results on real image data are in line with the tests on
synthetic data. Our method is able to establish similar kinematic
structure matches even between visually totally different appear-
ances and in the presence of strong motion variations.

Fig. 10 shows more correspondence matching results between
heterogeneous objects. Even though there are many outlier nodes in
G′, our method finds accurate matches. The bottom left matching
result is especially interesting, as the matching is symmetrically
reversed. This is due to the motions executed by the robots, as
one robot moves its arm upwards while the other robot moves its
arm downwards. This is further illustrated in Fig. 12, where we
present image sequences of the pairs in order to demonstrate their
motion directions. From these results, it can be observed that the
proposed combinatorial motion similarity term is able to imply
motion directions.

In Table 1 and Fig. 11, we show the quantitative matching
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Fig. 11. Boxplots of the performance of state of the art methods on
the real kinematic structure dataset. The bottom and top of the box
are respectively the lower and upper quartile, the central bold band is
the median, and the white dot is the mean, showing that our proposed
method outperformed the others.

accuracy based on manually generated ground truth matchings.
We compare our method to NETAL [42] and MAGNA++ [43].
Our proposed framework outperforms those methods, both in
terms of higher accuracy as well as significantly lower variance
(p < 0.05), which highlights the robustness of our method when
applied to different sequences. We utilise different hypergraph
matching algorithms which allow to merge different order similarity
information in a structured way to obtain topological, kinematic
and motion correspondences. The notion “Proposed F to [·]” in
Table 1 denotes that we use the approximation algorithms of [25],
[26], [29], [30] to find the matches based on F (Eq.(1)), i.e. we do
not directly use the hypergraph methods for feature matching, but
use their approximation algorithms instead.

Using the approximation algorithm of RRWHM [25] to solve
Eq.(1) performs best because of the stochastic scheme in RRWHM
which updates the correspondence matrix more robustly than
other optimisation-based methods [77], especially when the graph
structure is dynamic and largely deformed by motions. Furthermore,
RRWHM has been shown to achieve better performance in the case
of non-convex functions as in Eq.(1).

In Table 1, one can see that combining the three different terms
leads to higher accuracy compared to using the individual terms
only. We also show that the proposed term normalisation weights
wκ(e) play an important role by balancing the structural topology
and motion similarity. We have observed that most failure cases
without the normalisation term were due to mismatched nodes
having similar motions, which is expected as the motion term has
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(a) iCub body – iCub dancing (b) Baxter arm – OWI-535 Robotic arm
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Fig. 12. This figure shows that the combinatorial motion term can distinguish motion directions (best viewed in colour). (a) Sequential matches of iCub
body sequence and iCub dancing sequence. The matches are upside-down, as the left iCub is moving its hands downwards, whilst the right iCub is
waving its hands upwards. (b) Sequential matches of Baxter arm and OWI-535 Robotic Arm Edge sequence. The matches are leftside-rightside.

(a) (b)
Fig. 13. (a) The method in [20] finds a corresponding motion cluster
representing the swinging leg. The red lines show the 10 closest pairs
of local feature points in the descriptor space. The blue lines represent
corresponding anchor points, and the green lines connect swinging body
parts. (b) The proposed method can correspond an overall kinematic
structure correctly considering structure topology as well as motion (best
viewed in colour).

the highest weight when the normalisation weights are not being
used.

TigDog Dataset: We have applied the proposed method to
another articulated motion pattern matching dataset, namely the
TigDog Dataset [8], [20]. Del Pero et al. [8], [20] presented an
unsupervised method discovering characteristic motion patterns
in videos of highly articulated objects with the dataset. They
represented articulated object motion using a collection of ordered
pairs of local feature point trajectories (PoTs) [20]. This dataset
contains video shots for three different classes: tigers, horses
and dogs. The 2D locations of 19 landmarks are manually
annotated in each frame (left eye, neck, front left ankle, etc.). We
have constructed a kinematic structure using the given landmark
locations and applied it to our proposed correspondence framework.
As shown in Fig. 13, the method presented in [20] was able
to find only a limited number of local correspondences with
similar motions. In comparison, our method can correctly find
correspondences between all body parts considering structural
topology and motion characteristics.

4.3 Correspondences using Heterogeneous Sensors
We consider the kinematic structure as a mid-level representation,
so the proposed method can be applied to any kind of input device
as long as the kinematic structure can be produced. As shown
in Fig. 1, the proposed method is able to find correspondences
between similar kinematic structure joints even if their appearances
are visually very different, as well as in the presence of strong
motion variations. In addition, as shown in Fig. 1 and Fig. 14, the
proposed method can even find kinematic structure matches across
different sensors, namely RGB images and the skeleton extracted
by a RGB-D camera.

We also employed the proposed method for an advanced
robotics application. It allows the robot to find correspondences
between self-learned representations of its own body and body parts
of a human [6]. More specifically, we use an iCub humanoid robot
and perform motor babbling, i.e. issuing random motor commands.
Then the robot can find kinematic structure correspondences
between its own body parts, e.g. between its left and right arm as
shown in Fig. 15(a). In a further step, our method can also find
correspondences between the robot arm and the kinematic structure
of a human extracted by a RGB-D camera, as demonstrated in
Fig. 15(b). This could then be used for imitation learning, as
the robot found correspondences between its own joints and the
body parts of the human. We elaborate further on the use of our
framework for imitation learning in our conclusions.

4.4 Matching Similar Motions
We evaluated our method on the MPI Dexter 1 hand dataset [78]
in order to validate whether it can be used for matching similar
motions. The dataset consists of seven sequences of hand motions
of a single actor. Note that the graph representation of all the fingers
except the thumb is the same. We measured correct hand joints
matching accuracy between similar motion pairs: {‘fingercount’-
‘fingerwave’}, {‘pinch’-‘tigergrasp’}, etc. The kinematic nodes
and joint positions are estimated from the provided fingertip
positions and depth images. We achieved an accuracy of 86.67%
(no parameter tuning), compared to 25.56% (NETAL [42] ) and
31.11% (MAGNA++ [43]) which are only considering structural
topology. This demonstrates the robustness of our newly designed
third order similarity motion term, which is key to overcome the
hand’s ambiguous topological structure. Therefore our method can
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Fig. 14. The proposed method can establish kinematic correspondences
between RGB video and depth video.

also be applied to matching similar motions without the need of
adapting parameters, as long as the kinematic nodes and joint
positions are provided or can be estimated.

4.5 Time complexity analysis
The time complexity for the calculation of the first term is O(N2)
in the best case and O(N !N) in the worst case [65], while the
second term’s time complexity is O(N2), and O(N3) for the
third term. As kinematic structures typically have a relatively low
number of nodes, the computation is quite fast. On our proposed
real dataset (Imperial-PRL-KSC-Dataset), it takes 1.69 ± 1.09s,
0.11±0.07s, and 2.20±1.70s for the first, second and third order
similarity term calculation respectively (unoptimised Matlab and
R codes), as well as 0.02± 0.001s for the RRWHM hypergraph
matching [25] (optimised C++ code).6

4.6 Validations on the parameters of the first order term
We validated the parameters of the first order topology term as
detailed in Table 2. For the local constraint, we did not find a
significant performance difference between θ = 1 and θ = 2.
However, the performance decreases for θ ≥ 3, because in this
case the constraint is rarely triggered. Values of θ ≥ 3 are not
plausible either, as this would mean that the skeleton is highly
distorted. For example, θ = 3 would allow a node with just
one neighbour to be matched with another node which has four
neighbouring joints.

TABLE 2
Validations on the threshold parameters. The numbers are the mean and

standard deviation (in parenthesis) respectively.

Parameter Accuracy (%)
τ θ

3 1 92.99 (±10.41)
3 2 91.26 (±11.32)
3 3 88.23 (±19.83)
3 4 88.23 (±19.83)
2 1 81.30 (±29.32)
4 1 92.99 (±10.41)
5 1 92.99 (±10.41)
6 1 92.99 (±10.41)
2 2 85.19 (±28.62)
4 2 91.26 (±11.32)
5 2 91.26 (±11.32)
6 2 91.26 (±11.32)

The global constraint τ limits the allowed total edge difference
between the two graphs. As shown in Table 2, a low value of τ ≤ 2
leads to decreased performance, as not enough noise is allowed.
For τ ≥ 3, the impact of τ is low, as Eq.(4) weights subgraphs
inverse proportionally to the total difference in degree of the graphs.

6. The other hypergraph matching methods [26], [29], [30] take roughly the
same time for computation when compared to RRWHM.

(a) Corresponding iCub self-body (left arm) to self-body (right arm)

(b) Corresponding iCub self-body (left arm) to others (human left arm)

Fig. 15. The proposed method can be used (a) for an iCub robot to find
correspondences between iCub’s partial arm structure captured using
the iCub’s RGB camera to its own other body part, and even (b) to full
body human structure captured using a RGB-D camera.

In other words, even if τ is increased, the newly found subgraph
isomorphisms have relatively low weight. In case of graphs with
a high number of nodes, one should adjust τ accordingly, i.e. τ
should be increased for complex skeletons with a high number of
articulations.

5 CONCLUSION AND FUTURE WORK

We have presented a novel approach to find kinematic structure
correspondences between heterogeneous objects via the hypergraph
matching method. Our method establishes both structural topology
correspondences and their kinematics-based matches, effectively
eliminating outliers from structure and motion variations, as
well as being robust against frequently encountered symmetries
around the skeleton axis. To find the structural topology similarity,
we proposed a topologically constrained subgraph isomorphism
aggregation which is robust to noise in the kinematic structures. For
motion similarity, we employed the geodesic distance between the
kinematic joints. This has the advantage of being invariant to scale,
orientation, and translation; leading to an universal combinatorial
motion descriptor. Under variations of the structure topology,
kinematics and symmetry, it can be observed that our method
achieves the best performance over all other algorithms in most
cases.

As this is the first work on kinematic structure correspondence,
we provide a challenging dataset containing the ground truth
correspondences of various kinematic structures. Using this dataset,
we have shown that our proposed method outperforms other
existing approaches which are based on either solely structural
topology, or object appearance. We believe that our method
opens exciting opportunities in the computer vision and robotics
fields, with new research directions emerging in a variety of
applications such as learning by demonstration, modeless object
manipulation learning, articulated object categorisation, human
motion retargeting to a humanoid and tool usage learning. We plan
to apply our method to learning by imitation tasks in robotics. There,
finding correspondences between the kinematic structures of the
human and the robot is one of the main problems. Employing our
method would have the benefit that the structure of the robot does
not have to be known in advance, which is important for generic
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applicability across different robots, as well as robots which have to
adapt to damage [79]. Similarly, our method would also allow the
robot to adapt to users with different kinds of physical impairment
by using personalised motion ranges [80].
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