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Abstract. AUT64 is a 64-bit automotive block cipher with a 120-bit secret key
used in a number of security sensitive applications such as vehicle immobilisation
and remote keyless entry systems. In this paper, we present for the first time full
details of AUT64 including a complete specification and analysis of the block cipher,
the associated authentication protocol, and its implementation in a widely-used
vehicle immobiliser system that we have reverse engineered. Secondly, we reveal a
number of cryptographic weaknesses in the block cipher design. Finally, we study the
concrete use of AUT64 in a real immobiliser system, and pinpoint severe weaknesses
in the key diversification scheme employed by the vehicle manufacturer. We present
two key-recovery attacks based on the cryptographic weaknesses that, combined
with the implementation flaws, break both the 8 and 24 round configurations of
AUT64. Our attack on eight rounds requires only 512 plaintext-ciphertext pairs and,
in the worst case, just 237.3 offline encryptions. In most cases, the attack can be
executed within milliseconds on a standard laptop. Our attack on 24 rounds requires
2 plaintext-ciphertext pairs and 248.3 encryptions to recover the 120-bit secret key
in the worst case. We have strong indications that a large part of the key is kept
constant across vehicles, which would enable an attack using a single communication
with the transponder and negligible offline computation.

Keywords: Automotive security · Hardware and software reverse engineering

1 Introduction

Make Models Years
Mazda 323 1999-2003

626 1999-2002
Demio 1999-2001
Miata/MX-5 2000-2005
MPV 2000-2006
Premacy 2000-2004
121 1999-2001
BT-50 2006

Ford Ranger 2006
Proton 415 1998

416 1998

Table 1: Vehicles with TK5561 transponder
keys.

Since 1995, it has been mandatory for ve-
hicle manufacturers who wish to sell their
vehicles inside the EU to fit them with an
electronic immobiliser [Com95]. It has been
estimated that between 1995 and 2008, ve-
hicle immobilisers have reduced the rate of
vehicle theft by 40% [OV16].

Vehicle immobilisers are electronic de-
vices which prevent the engine of a vehi-
cle from starting when the corresponding
transponder is not present. A transponder
is a wireless authentication device, which
is usually embedded into the plastic of a
vehicle key. The immobiliser authenticates
the transponder using an antenna mounted
around the ignition barrel so that the immo-
biliser can communicate with the transpon-
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der when the vehicle key is inserted. When the driver starts the vehicle, the immobiliser
authenticates the transponder before starting the engine, thus preventing hot-wiring.

In this paper, we reverse engineer a widely used vehicle immobiliser system based on
the Atmel TK5561 transponder and the AUT64 cipher [Atm06]. The TK5561 transponder
is used in a number of Mazda, Ford and Proton vehicle keys, which are shown in Table
1. The TK5561 is based on a patented method of cryptographic authentication [BF03],
which uses the AUT64 block cipher and a proprietary authentication protocol.

AUT64 is a 64-bit Feistel network block cipher with a 120-bit secret key. It is used in
a number of automotive applications, which include the remote keyless entry system used
by most Volkswagen Group vehicles sold between 2004 and 2009 [GOKP16]. AUT64 is
round-based and has been found in a number of different configurations, for example, the
Volkswagen Group employs AUT64 with 12 rounds. The TK5561 transponder uses AUT64
with either 8 or 24 rounds, depending on a configuration bit set in the transponder’s
memory.

1.1 Contribution and Outline
The contribution made in this paper is threefold: First, we present the results of reverse
engineering AUT64 from a Mazda immobiliser system. We reveal all details of the AUT64
block cipher and the associated TK5561 authentication protocol. Secondly, we present a
complete analysis of AUT64, which includes extensive cryptanalysis of the block cipher
as a cryptographic primitive in Section 4 and Section 5. We demonstrate the following
cryptographic weaknesses in AUT64

• The AUT64 Feistel network compression function is cryptographically weak, as its
output is highly predictable;

• Input to the compression function can be precisely controlled by an attacker in the
first round of encryption;

• The AUT64 substitution-permutation network behaves non-randomly when its input
is nibble-wise symmetric;

• The cryptographically weak output from the first round of encryption can be identified
by analysing small sets of ciphertexts;

• The cipher has certain weak keys.

In Section 5.4 and Section 5.5, we identify a novel technique based on integral crypt-
analysis that allows us to determine several elements of the secret key. We show that the
eight round AUT64 has weaknesses which reduce its key size from 120 bits to no more than
57.5 bits in a chosen-plaintext setting. These results are of independent interest w.r.t. the
cryptanalysis of Feistel ciphers with key-dependent permutations and S-Boxes.

Third, in our analysis of the implementation by a major vendor (Section 6), we identify
the following weaknesses

1. The key management scheme reduces the permutation key size to just sixteen keys
per automotive manufacturer, with one key being used per vehicle family;

2. 32 bits of the key are derived based on the transponder ID, using a manufacturer-wide
key derivation function;

3. There are indications that a large part of the key is constant across different vehicles
by the same manufacturer.
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Weakness Section Keyspace (bits)
None 3 120
High-level analysis 3.2 91.5
Permutation Key Size 4.1 88.5
Compression Function Weak Keys 4.2 ≤ 87.5
Permutation Weakness 5.1 85.7
Compression Function Weaknesses 5.2, 5.3 ≤ 57.7
Integral Cryptanalysis 5.4, 5.5 ≤ 78.8
Weaknesses in Key Derivation Scheme 6.1 59.5

Table 2: How each weakness reduces the claimed key space

Based on the cryptographic and implementational weaknesses of AUT64, which we
summarise in Table 2, we present two attacks: Our first attack targets the full 24 round
AUT64 implementation in the studied system. We show that the security of the system is
no more than 248.3 bits; and likely much worse in practice, as we have indications that part
of the key is constant for many vehicles. Our second attack makes use of the knowledge of
32 bits of the key to break eight rounds of AUT64 within milliseconds using a standard
laptop.

1.2 Related Work
The need for transparency into the workings of cryptographic systems has been known
since at least the late nineteenth century [Ker83]. Still, there are many examples in the
literature of proprietary cryptographic systems which have tried and failed to achieve
security by obscurity. Some prominent examples include WEP [SIR02, SSVV14], GSM
A5/1 [Gol97, BBK08, PPPM13], DSC for cordless telephones [NTW10, WTHH11], GMR
for satellite phones [DHW+12], E0 for Bluetooth [SW06] and CSS for digital rights
management [Ste99].

Within the automotive industry, the pitfalls of proprietary cryptography have become
apparent. Algorithms originating from the semiconductor industry and specifically mar-
keted as automotive immobiliser and remote keyless entry solutions have been shown
to be highly insecure [GOKP16]. The first vehicle immobiliser to be broken was Texas
Instruments Digital Signature Transponder (DST) in 2005 [BGS+05]. Since then, two
other major cryptographic immobiliser solutions have been reverse engineered and proven
to be insecure, namely Hitag2 [VGB12] and Megamos Crypto [VGE15]. Remote keyless
entry systems have received a similar treatment. KeeLoq [Bog08, EKM+08] as well as
VW Group systems [GOKP16] have been reverse engineered and subsequently found to
be insecure. Francillion et al. [FDC10] found that remote key unlocking and vehicle start
systems from eight different manufacturers were vulnerable to relay attacks.

AUT64 was first identified by Garcia et al. for its use in a popular Volkswagen Group
remote keyless entry system [GOKP16]. Volkwagen’s implementation of AUT64 was
undermined by the use of a fixed global master key and so only a peripheral overview of
the cipher was given. In this paper we substantially expand upon this earlier work by
reverse engineering, fully specifying and cryptanalysing the AUT64 cipher.

2 Technical Background

In this section we introduce our notation and the cryptographic definitions which are
necessary to describe AUT64.
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2.1 Notation
Our notation conventions are as follows: when our operands are bytes or nibbles we make
use of the operations ∧, ∨, ⊕, � and � which are bitwise AND, OR, XOR, left-shift and
right-shift, respectively. We use ‖ to mean concatenation and we use the term symmetric
byte to refer to a byte b of the form n ‖ n where n ∈ F4

2. When describing byte strings or
look up tables, we use square brackets to specify the index. We use the functions msbm and
lsbm which return the m most and least significant bits, respectively. When our operand
is a single byte we use the functions un and ln to mean msb4 and lsb4, respectively.

WhereM is some set we use m R←−M to denote the assignment to m an element in
M chosen uniformly at random.

2.2 Chosen Plaintext Attack
Security against Chosen Plaintext Attack (CPA) is a standard notion when analysing the
security of a cipher. CPA defines an interaction between an adversary and a black-box
encryption oracle. The adversary may submit arbitrary messages to the oracle and receive
back their encryption. The goal of the attacker is to weaken the security of the cipher used
by the oracle.

2.3 Block Ciphers
K is the key space,M is the message space and C is the ciphertext space. Then, a block
cipher is defined as a pair of efficiently computable algorithms E = (E,D), where E :
K×M→ C and D : K×C →M, such that for all K ∈ K,M ∈M : D(K,E(K,M)) = M .

2.4 Unbalanced Feistel Networks
A Feistel network is a general method of transforming a function F into a permutation
P . Feistel networks are round-based. In each round, they apply a Feistel function F to a
subset of the block size n.

F

Ki

Xi[0...3] Xi[4...7]

Xi+1[0...3] Xi+1[4...7]

Figure 1: Example of a conventional (Bal-
anced) Feistel construction, where i is the
round number.

The first Feistel network was proposed in the
design of Feistel’s Lucifer cipher [Sor84]. Lucifer
and its descendants, notably the Data Encryp-
tion Standard (DES) [DES77] and RC5 [Riv95],
are now classified as balanced Feistel networks.
For an in-depth review and taxonomy of Feistel
networks we refer the reader to [SK96].

Unbalanced Feistel Networks (UFN) are a
generalisation of the balanced Feistel network
concept shown in Figure 1. A UFN construction
relaxes the constraint that the conventionally
named left and right halves of the round input
must be of equal size, instead they can be inde-
pendently of any size and are referred to as the
target and source blocks.

Generalising yet further, for a construction to be classified as a Feistel network, the
only requirement is that one part of the block being encrypted influences the encryption
of another part of the block [SK96].

Where s and t are the bit-lengths of the source and target blocks respectively and s > t

Definition 1 We define a fully generalised UFN (GUFN) round to be

Xi+1 = R
(
F
(
ki,msbs(Xi), lsbt(Xi)

)
,msbs(Xi)

)
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where R is a reversible function and F is reversible in the sense that

∀K,P,Q : F−1(K,P, F (K,P,Q)) = Q

In the context of GUFN we introduce the term cycle length which is the number of
rounds after which every bit in the state has appeared in both the target and source blocks.
A balanced Feistel network has a cycle length of two.

3 AUT64
In this section, we present full details of the AUT64 block cipher and the associated
TK5561 transponder authentication protocol. The public literature on AUT64 is scant.
The cipher is closed source and proprietary, so the only information widely available is
from a patent application [BF03] and the product datasheet [TEM98]. To address this
problem, we reverse-engineered the complete AUT64 block cipher and its implementation,
which we publish here in full detail.

AUT64 was first identified as a proprietary block cipher used in most Volkswagen
Group remote keyless entry systems between approximately 2004 and 2009 [GOKP16].
In this paper, we present AUT64 as used by the Atmel TK5561, which is an automotive
transponder package for the Atmel e5561 cryptographic IDentification IC (IDIC) [TEM98].
The e5561 uses the AUT64 block cipher and a proprietary authentication protocol to
provide a method of authentication for vehicle immobiliser systems. AUT64 is remarkable
from a cryptographic design perspective for the fact that, in addition to having a GUFN
structure, its symmetric 120-bit key defines a substitution and a permutation from which
the cipher’s security properties are derived.

In more detail, AUT64 is a 64-bit GUFN block cipher with a key size of 120 bits. In
the TK5561, it has either 8 or 24 rounds, depending on the configuration. The AUT64
key space is the triplet of all 32-bit binary strings, all eight-element permutations and all
sixteen-element permutations K = 〈F32

2 , P8, P16〉. The 120 bit key size is the sum of the
32, 24 and 64 bits occupied by the F32

2 , P8 and P16 key parts respectively.

3.1 Reverse Engineering AUT64
We reverse engineered AUT64 from the Mazda “Module 142” immobiliser system. Con-
cretely, we recovered the firmware from the Motorola MC68HC05B6 microcontroller used
in this immobiliser box using a standard programmer. Then, we loaded the firmware
binary into the IDA Pro disassembler to perform our analysis. We were able to locate all
of the important cryptographic subroutines and reconstruct the AUT64 algorithm and
protocol. We implemented a software version of AUT64 and the authentication protocol
in both Python and C to develop, test and evaluate our attacks.

We verified our findings against the available e5561 documentation and an implementa-
tion that we created for VW remote keyless entry systems [GOKP16]. We found that the
immobiliser system uses 24 rounds of AUT64 and the TK5561 authentication protocol.
After identifying AUT64 and the TK5561 authentication protocol in the firmware, we were
able to locate the permutation and S-Box key parts.

1. The permutation key part kσ (page 6 in the transponder’s memory) is located in
the first 32 bits of the microcontroller’s programmable read-only memory (PROM)
starting at the address 0x0800. The kσ we recovered is a cyclic permutation with no
fixed points;

2. The substitution key part kτ (page 8 and 7 in the transponder’s memory) is located
in the 64 bits which immediately follow the permutation key part. It is bijective, as
expected, but otherwise unremarkable.
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We found that the 32-bit compression function key kG (page 5 in the transponder’s
memory) is not stored on the vehicle immobiliser box, instead the base station computes
kG as a function of the transponder’s ID (IDcode) that is transmitted at the beginning of
the authentication protocol. This is further detailed in Section 6.2.

3.2 Cipher
This section describes the AUT64 cipher in detail. We start by defining the high-level Feistel
network, followed by the key specification and then finally describe the full key-dependent
structure.

x0 x1 x2 x4x3 x5 x6 x7

R: Byte permutation σbyte

x'0 x'1 x'2 x'4x'3 x'5 x'6 x'7

x''7x'0 x'1 x'2 x'4x'3 x'5 x'6

F

(a) One round of AUT64. The seventh byte
of the state x′′

7 is changed in each round.

G

S

S

σbit

x''7

x'0 x'1 x'2 x'4x'3 x'5 x'6 x'7

(b) The AUT64 Feistel function F .

Figure 2: The AUT64 Feistel network construction (a) and Feistel function (b).

Definition 2 (AUT64 cipher state) We define an AUT64 cipher state X as an element
in F64

2 where X is composed of eight bytes x0, . . . , x7, each an element in F8
2.

AUT64 is a GUFN where the source block is the cipher state X and the target block
is the byte x7 ∈ X.

The byte permutation R and Feistel function F are both key-dependent.

Definition 3 (AUT64 key specification) We define an AUT64 key as a triplet K ∈
〈kG, kσ, kτ 〉 where

1. kG ∈ F32
2 is a 32-bit word from which round keys are derived;

2. kσ is an 8-element permutation which defines both the byte permutation σbyte and
the Feistel function bit permutation σbit;

3. kτ is a 16-element permutation which defines the 4×4 bijective S-Box τ in the Feistel
function.
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Each round of AUT64, shown in Figure 3a, comprises two components

1. a byte permutation R(X) = X ′ where

R(x0 . . . x7) =
(
σbyte(X)[0], . . . , σbyte(X)[7]

)
2. a Feistel function F (X ′) = x′′7 .

In each round of AUT64, the state is permuted R : X → X ′ and then the Feistel
function F : X ′ → X ′′ is applied. The structure of AUT64 necessitates that, for each
bit in the state to appear in both the target and source blocks, it must be applied for a
minimum of eight rounds. We can therefore determine that the byte permutation should
have a cycle length of eight. If the permutation had any fixed points, then plaintext bits
would appear unchanged in the ciphertext. In the remainder of this paper, we assume
that the key generation algorithm indeed only chooses permutations with a cycle length of
eight.

The TK5561 patent [BF03] specifies a key generation procedure which aligns with the
way the AUT64 key is composed. There are three parts

1. The compression function key part kG is a random bit string generated by means of
the DES block cipher which is seeded by the automotive manufacturer. No further
information is given in the patent;

2. The permutation key part kσ is termed the “family key”. Each automotive manu-
facturer is allocated twelve bits, and then selects from sixteen possibilities for the
remaining twelve bits;

3. The substitution key part kτ is termed the “user key”. The key is generated using a
proprietary method not specified. The patent claims that a repeat will only occur
after 20.9× 1012 user keys have been generated. We can conclude from this claim
that the entire 4×4 S-Box space is utilised.

Definition 4 (AUT64 Feistel function) The AUT64 Feistel function F is constructed
from the following four components

1. A compression function G(X ′) = g which maps a permuted input state X ′ ∈ F64
2 to

an output byte g ∈ F8
2;

2. A substitution operation S

S(g) = τ
(
un(g)

)
‖ τ
(
ln(g)

)
which comprises two identical 4×4 S-Boxes τ applied independently to the upper and
lower nibble output of G;

3. A permutation operation
σbit

(
S(g)

)
which applies the same transposition as σbyte but bitwise to the output of S(g);

4. The substitution operation applied to the output of the bitwise permutation operation

x′′7 = S

(
σbit

(
S(g)

))

The final three operations form a Substitution-Permutation Network (SPN).
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In the following, we outline the AUT64 round key scheduling mechanism. A unique
round key is derived from the compression function key part kG in each round. The key
schedule is derived and applied within the compression function as shown in Figure 4.
AUT64 round keys are a tuple of permutations of the compression function key. The
AUT64 key schedule divides kG into eight nibbles. Two key schedule tables TU and TL
(see Figure 7c in the appendix) prescribe a permutation for each round and are applied to
kG to derive a round key for the upper and lower nibbles in the input state, respectively.

Definition 5 (AUT64 round keys) When r is the round number and i the byte index in
the permuted round state X ′, we define

uk(kG, r, i) = kG

[
TU

[
(r × 8) + i

]]

lk(kG, r, i) = kG

[
TL

[
(r × 8) + i

]]
which return the lower and upper round key nibble, respectively.

The key schedule tables TU and TL introduced in Definition 5 have the following
specifications

• They are non-identical key-independent look up tables which define the nibble-wise
key schedule for each round of AUT64. Each table comprises 8×N elements, where
N is the number of AUT64 rounds;

• Both tables are divided into blocks of 8×N , which correspond to the AUT64 cycle
length. XORing the two tables together reveals a constant difference between the
corresponding round key nibbles in each 8×N block;

• The two tables can be merged nibble-wise to yield a 16 × N round key schedule.
Assembling the key schedule in this way reveals that there are no repeated round
keys.

gl

gu

x'0

x'1

x'2

x'4

x'3

x'5

x'6

x'7

F8
2F64

2

un

ln
Toffset

kG

TU TL

uk lk

||

||

Key 
schedule

r

 

Figure 4: The AUT64 compression function G.
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Definition 6 (AUT64 compression function) The AUT64 compression function G takes
as input the key part kG, the permuted block state X ′ and the round number r. G outputs
the concatenation of two internal variables which are calculated as follows

gl =
7⊕
i=0

Toffset

[
lk(kG, r, i) ‖ ln(X ′i)

]

gu =
7⊕
i=0

Toffset

[
uk(kG, r, i) ‖ un(X ′i)

]
The compression function look up table Toffset (Figure 7b in the appendix) has the

following properties

• It contains 256 elements, is key-independent and is best conceptualised as a 16× 16
array of nibble values. The compression function selects elements from the table
using a round key nibble to select a column and a state nibble to select a row;

• It is symmetric about its descending diagonal axis such that ∀u, v ∈ F4
2

Toffset[u ‖ v] = Toffset[v ‖ u]

• The first row and first column contain only the value zero. With reference to
Definition 6, this means that for any nibble in the input state X ′ with the value zero,
Toffset will always return zero. Similarly if a round key nibble has the value zero,
then Toffset will always return zero regardless of the relevant input state nibble value.

3.3 Authentication Protocol
This section describes the TK5561 authentication protocol. Authentication takes place
between a vehicle immobiliser box B and a transponder key T. The design goals of the
protocol stated in the product patent are to provide a method for authentication and to
prevent known and chosen plaintext cryptographic attacks [BF03].

B T

IDcode

Y = CkG
(X)

H(Y)

msb32(EK(X))⊕lsb32(EK(X))

Select K

X M
R

X = RkG
(Y)

Figure 5: The TK5561 authentication protocol.

Definition 7 (AUT64 authentication) We define AUT64 authentication over a keyspace
K = F32

2 and a message spaceM = F64
2 as a quartet of algorithms A = (E,C,R,H) where

for all K ∈ K and X,Y ∈M

1. EK : X 7→ E(K,X) is the AUT64 block cipher;

2. CkG
: Y 7→ C(kG, X) is a challenge algorithm which is keyed with the AUT64

compression function key part kG ∈ K;
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3. RkG
: X 7→ R(kG, Y ) is a keyed response algorithm such that R

(
kG, C(kG, X)

)
= X;

4. H(Y ) returns the Hamming weight of Y .

The TK5561 authentication protocol shown in Figure 5 has four parts:

1. The transponder key T initiates the protocol by sending the pre-shared public value
IDcode by which the vehicle immobiliser box B determines which symmetric AUT64
key K to use for the remainder of the protocol. One immobiliser box may have the
keys for several different transponder keys;

2. The vehicle immobiliser box B generates the nonce X R←− M and then computes
the challenge by applying the proprietary challenge algorithm Y = CkG

(X). The
resulting challenge Y is sent to the transponder key T ;

3. The transponder key T receives the challenge and then recovers the original nonce
by applying the response algorithm X = RkG

(Y ). The transponder key confirms to
the immobiliser box B that it has received the correct challenge by transmitting the
Hamming weight of the challenge H(Y );

4. The vehicle immobiliser box B and the transponder key T both compute the AUT64
encryption of the nonce EK(X) and then XOR together the top and bottom halves
of the ciphertext. The transponder sends the 32-bit result back to the immobiliser.
If the values match, the vehicle ignition is enabled.

The proprietary nonce encryption algorithm CkG
is a Linear Feedback Shift Register

(LFSR) based stream cipher, which is seeded with the 32-bit part kG of the complete
AUT64 key XORed with a constant. More precisely, the challenge encryption algorithm
has a 32-bit internal state Z ∈ F32

2 that is seeded such that:

Z = kG[0]⊕ 0xD5 ‖ kG[1]⊕ 0x89 ‖ kG[2]⊕ 0x0C ‖ kG[3]⊕ 0x7B

For each bit in the keystream, the algorithm computes a byte derived from the LFSR state:

Z ′ = Z[3]⊕
(
Z[0]⊕

(
Z[0]⊕ (Z[0]� 4)

)
� 1

)
� 1

The LFSR shifts right, and the rightmost bit of Z ′ is fed back into Z from the left into bit
position 0. The keystream is read from the LFSR state Z at bit 0.

Z[0] Z[1] Z[2] Z[3]Z'

ks

Z[3] ⊕ (Z[0] ⊕ (Z[0] ⊕ (Z[0] ≫ 4)) ≫ 1) ≫ 1

Figure 6: Authentication challenge algorithm LFSR.

Each time the challenge algorithm is applied 64 bits of keystream are generated by the
challenge algorithm LFSR. The keystream is then XORed with the session nonce X to
produce the challenge value Y .

In the remainder of this paper, we first point out a series of cryptographic weaknesses
in the design of AUT64, that apply when the algorithm is used as a normal block cipher.
Then, in Section 6 we focus on a concrete implementation and present a full attack on the
respective usage of AUT64 within the immobiliser.
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4 AUT64 Weak Keys

In this section, we analyse AUT64 and identify a number of weak keys. We define a weak
key to be any AUT64 key which makes the cipher behave in an undesirable way. The
AUT64 documentation states that a key is 120 bits long. A more in-depth analysis (see
Section 3.2) reveals that whilst the key occupies 120 bits, it only has approximately 91.5
bits of entropy. This discrepancy arises because only 32 bits of the key define a bit string
kG. The remaining 88 bits define a bijective 4×4 S-Box kτ and an 8-element permutation
kσ. Bijective S-Boxes and permutations both express an arrangement of discrete elements
with no repetitions. The condition that no two elements can have the same value is the
source of reduced entropy in the key space.

4.1 Permutation Key Size
In this section we show that the permutation key part kσ size is reduced as a consequence
of the AUT64 Feistel structure.

The cycle length of AUT64 is determined by the byte permutation σbyte. In order
for each bit of the plaintext to influence each bit in the ciphertext we require that each
byte must be moved to x7 and the Feistel function applied. The byte permutation must
therefore be circular (cyclic with no fixed points) and this reduces the entropy of the
permutation key part. The number of n bit cyclic permutations is (n− 1)! therefore the
reduced σbyte key size is (8− 1)! ≈ 212.3 bits.

Any known permutation elements, such as those revealed by bytes which are unchanged
from the plaintext due to non-cyclic permutation keys, or by the observation that all of
the bytes are changed, further reduce the key size of kσ. If kσ is cyclic and n elements
become known, the remaining key size is |kσ| = (7− n)! [Bru10].

4.2 Compression Function Weak Keys
We analysed the AUT64 compression function G and identified a set of weak keys. We
know from Definition 6 that the output of G is an XOR sum of values from the lookup table
Toffset. For any input state nibble with the value zero, Toffset always returns zero. Similarly,
if a round key nibble has the value zero, then Toffset always returns zero, regardless of the
relevant state nibble.

If AUT64 is used in an application which requires decryption, then the compression
function key part kG can never contain any key nibbles with the value zero. Decryption
requires that the original plaintext can be recovered from the ciphertext and its intermediate
states. This is only possible when the Toffset column index can be determined. Any kG
nibble with the value zero will select the first row of Toffset and output the value zero for
all column indices selected by the corresponding state nibble. Since the round output
does not encode the column index, the round input cannot be decrypted and AUT64 is no
longer bijective.

More generally, if kG contains nibbles with the value zero, then the security of AUT64
is reduced and the compression function behaves non-injectively. In the most extreme case
where all of the nibbles in kG are zero, G(X ′) is reduced to the constant zero. Removing
the keys in kG which contain zero nibbles reduces the key size |kG| to 158 ≈ 231.3.

If AUT64 is used for eight rounds, then the compression function key nibbles kG3 and
kG6 are of particular significance to the security of the cipher. It is possible to determine
whether either key nibble has the value zero and whether they have the same value by a
chosen plaintext attack on the block cipher.

A chosen plaintext attack for determining if kG3 = 0, kG6 = 0 and kG3 = kG6 is as
follows
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1. Submit the plaintext (0x00)8 to the oracle and record the corresponding ciphertext
cref = EK

(
(0x00)8);

2. Generate a set of eight plaintexts to determine if kG3 = 0. Each plaintext should
contain seven bytes with the value 0x00 and one byte with a constant nibble value n
in the lower position of the byte 0x0n. The non-zero byte should be in a different
byte position for each plaintext;

3. Submit the eight plaintexts to the oracle. Compare each resulting ciphertext to cref;

4. If one of the ciphertexts matches the encryption of the first plaintext then kG3 = 0;

5. Repeat the test for kG6 = 0. Generate another eight plaintexts but place the constant
nibble value n in the upper position of the non-zero byte 0xn0;

6. If one of the ciphertexts matches the encryption of the first plaintext then kG6 = 0.

7. To determine if kG3 = kG6 , compare the two sets of ciphertexts. Check whether
there is a pair of ciphertexts which both contain a byte at the same position such
that the lower nibble, in the lower nibble ciphertext set, is equal to the upper nibble,
in the upper nibble ciphertext set.

If a weak key is revealed in this attack, it reduces the key size of kG by either four or
eight bits, depending on whether one or both key nibbles have the value zero. If neither
key nibble has the value zero but they are determined to be equal, the key size is reduced
by approximately four bits.

5 AUT64 Cryptanalysis
In this section, we present our cryptanalysis of AUT64. We identify a number of weaknesses
and derive corresponding attacks. Typically, a block cipher would be attacked by applying
linear [Mat94] or differential cryptanalysis [BS91]. The key-dependence of the permutation
and S-Box used in AUT64 led us to seek alternative cryptanalytic techniques which provide
more general attacks independent of the key. Our cryptanalysis is predominantly applicable
to the eight round AUT64 configuration, and treats AUT64 as a general block cipher in a
chosen-plaintext setting.

5.1 Permutation Weakness
In this section, we present four weaknesses of the AUT64 block cipher, which we use to
determine an element of the permutation key part kσ. We present a sixteen chosen plaintext
attack which reduces the cyclic permutation key-part to a size of |kσ| = (7− 1)! ≈ 29.5.
The four weaknesses which we use to reduce the security of AUT64 are

1. The compression function G is cryptographically weak. Careful manipulation of its
input can cause outputs which are highly distinguishable;

2. In the first round of AUT64, input to the compression function can be tightly
controlled by an attacker;

3. The SPN which takes the output of the compression function and completes the
Feistel function F has a cryptographic weakness;

4. After eight rounds of AUT64, the output from the first round Feistel function is a
byte in the ciphertext.
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We present a sixteen chosen plaintext attack which reveals one element of the permu-
tation key-part. The chosen plaintexts for this attack are the set of plaintexts such that
each plaintext contains eight identical and symmetric bytes

P =
{

(n ‖ n)8 : n ∈ {0, . . . , 15}
}

Each plaintext P in P manipulates the compression function G such that it always
outputs a symmetric byte in the first round. For each plaintext Pn ∈ P the attack works
as follows

1. The byte permutation σbyte has no effect since all of the bytes in the plaintext have
the same value. This allows the input to the compression function to be carefully
controlled.

2. The unchanged plaintext is input to the compression function GkG
(Pn) which un-

conditionally outputs a symmetric byte p′n ‖ p′n. This property holds because the
compression function yields an XOR sum of values derived from each byte in the
input (see Definition 6). If all the input bytes have the same value, the output
becomes the XOR sum of up to eight values from a single column in Toffset. Since
the key schedule (Definition 5) prescribes permutations of the same underlying key
kG in each round, the nibble-wise XOR sums output by G will have the same final
value. The order in which the terms in the sum are added will differ, but the set of
terms and the final value will always be equal.

3. The symmetric byte p′n ‖ p′n is input to the SPN which completes the AUT64 Feistel
function F (see Definition 4).

The Feistel function output byte does not generally retain the nibble-wise symmetry of
p′n ‖ p′n because the bitwise permutation σbit, on average, removes the symmetry. There
are however at least two σbit inputs in which the symmetry property is unconditionally
preserved. When the input is either 0x00 or 0xFF, σbit has no effect because all the input
bits are equal.

We exploit the property that bytes x0 . . . x6 are fixed during each round, under this
condition the compression function G is bijective with respect to the seventh byte x7.
Each of the sixteen chosen plaintexts in P cause G to output a symmetric byte, and since
we require decryption and therefore to be able to determine a unique seventh input byte
in each round, we know that P causes all possible sixteen symmetric bytes p′n ‖ p′n to be
input to the SPN.

Since the substitution operation T is also bijective, it is guaranteed that both 0x00
and 0xFF are input to σbit. When the set of chosen plaintexts P is encrypted, the outputs
of the Feistel function in the first round will always contain at least two symmetric bytes.

Once all sixteen chosen plaintexts have been encrypted, the first round of AUT64 can
be distinguished by identifying the byte index which contains the symmetric bytes from
the first round in the set of ciphertexts C, as follows

1. Define lists C′i of ciphertext bytes for each of the eight byte indices i ∈ {0, . . . , 7};

2. From each ciphertext Cn ∈ C add the byte at the index i corresponding to the list
C′i;

3. Count the number of symmetric bytes in each list.

The output from the first round of AUT64 is the list index which contains the greatest
number of symmetric bytes. The list corresponding to the first round always contains at
least two symmetric bytes (and often more). We analyse the key-dependent distribution
of symmetric bytes output under this attack in Section 5.2. Identifying the first round
permutation element reduces the permutation key entropy from |kσ| = 7! ≈ 212.3 to
(7− 1)! ≈ 29.5.
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5.2 Compression Function Symmetric Bytes
Now, we identify and exploit a cryptographic weakness of the compression function and
the Feistel function when handling symmetric bytes to reduce the total AUT64 security to
no more than |K| ≈ 276.9. For a class of weak keys, we show that the security is reduced
to just 244.7.

When the set of symmetric byte chosen plaintexts P from Section 5.1 is encrypted with
AUT64, the symmetric compression function GkG

output bytes in the first round belong
to an equivalence class. There are sixteen different equivalence classes. Each key can be
classified by the XOR sum of its nibbles

kGclass
=

7⊕
i=0

kGi

The GkG
output sets which characterise each equivalence class can be read from koffset.

The compression function classifier kGclass
selects a row from the table and the chosen

plaintext nibble value selects a column. Analysis of the compression function output in
the first round under chosen plaintexts P reveals two distributions

1. A degenerate distribution where all elements in the output have the same value.
When kGclass

= 0, the XOR sum of Toffset values is also equal to zero. One in
every sixteen keys in kG has this weakness and reduces the key size accordingly to
( 1

16 × 232) = 228. If we only include non-weak kG keys (see Section 4.2), then the key
size is further reduced to approximately ( 1

16 × 158) ≈ 227.3;

2. A uniform distribution, where there is one of each element in the output, is the most
likely outcome. This reduces the compression function key size for non-weak keys to
( 15

16 × 158) ≈ 231.2.

The compression function output distribution is preserved by the SPN which follows
G and completes the Feistel function F (see Figure 3b). Analysis of the Feistel function
output in the first round reveals information about the substitution key part kσ. There
are two different ciphertext byte list C ′i distributions to consider

1. A degenerate byte distribution; all output bytes have the same value:

∀c′i ∈ C ′i : c′i = T

(
σbit

(
S(0x00)

))
2. A uniform distribution, in which there are sixteen different output bytes, at least

two of which are symmetric.

When C ′i is a uniform distribution and contains exactly two symmetric bytes, they
reveal the substitutions of the values 0x0 and 0xF. These values are unaffected by any
σbit permutation and guarantee that the output of the Feistel function is a symmetric
byte. We analysed all possible circular permutation key values kσ applied to the set of all
sixteen symmetric bytes which may be output by GkG

under P. We found the following
distinguisher on the permutation key part kσ1: 46%, 42%, 11% and 1% of kσ keys yield
exactly two, four, eight and sixteen symmetric bytes, respectively, at the output of the
compression function G.

On average C ′i, contains exactly two symmetric bytes and the S-Box key size is reduced
from |kτ | = 16! ≈ 244.3, to ≤ 2 × 14! ≈ 237.3. The permutation key size is also reduced
to 0.46× (7− 1)! ≈ 28.4 and |kG| to approximately 231.2. In total the AUT64 key size is
reduced to no more than |K| ≈ 276.9.

1Key size percentages given are approximate. The specific values are 2304, 2112, 576 and 48 keys for
two, four, eight and sixteen symmetric bytes in C′

i respectively.
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The best case for an attacker is that P yields sixteen symmetric bytes in C ′i. This
outcome reduces |kσ| to 48 ≈ 25.6, |kτ | to 15× 16 ≈ 27.9 (16 possibilities for each class in
kFclass) and |kG| to ≈ 231.2. For weak kσ, the resulting effective key size for eight round
AUT64 is |K| = |kσ| × |kτ | × |kG| ≈ 244.7. Sometimes C ′i may not be readily identifiable
by counting symmetric byte elements. This is usually because one or more other lists in
C′ also contain an unusual number of symmetric bytes. For this case, we have developed a
second technique.

First, divide each list in C′ into an upper and lower nibble list and then test them for
equality. The first round list is distinguishable by an identical set of values in the upper
and lower nibble lists.

There is one final exception, which is in the case that kG is weak such that GkG
is not

bijective (see Section 4.1). If GkG
is not bijective, then the first round can be distinguished

using a 256 chosen plaintext attack based on integral cryptanalysis as detailed in Section 5.4.

5.3 Compression Function Divide-and-Conquer
In this section, we present a second weakness in the AUT64 compression function, which
is caused by the way the function uses its key part kG. We present a 32 chosen plaintext
attack which exploits this weakness to reduce the AUT64 key size to no more than 257.7.
In each round, G outputs two nibblewise XOR sums of values gu ‖ gl from the lookup
table Toffset (see Definition 6). The key usage of G and the properties of Toffset can be
exploited to perform a divide-and-conquer attack on the compression function key part
kG. We present a chosen plaintext attack which causes the output of the Feistel function
in the first round to be dependent on only one nibble in kG

1. Identify the ciphertext byte position corresponding to the first round r0 by performing
the sixteen chosen plaintext attack described in Section 5.1;

2. Generate the set of sixteen chosen plaintexts defined nibblewise such that each
plaintext contains fifteen nibbles with the value zero and a 4-bit counter value

P =
{(

n� (64− 8× r0)
)

: n ∈ {0, . . . , 15}
}

3. Submit the chosen plaintexts to the oracle and record the corresponding ciphertext
bytes at position r0 in the list C′r0

;

4. Exhaustively search the reduced key space. For each possible kτ , kσ and each
kG3 nibble value, encrypt offline the set of chosen plaintexts P. For each plaintext
encrypted under each key, test whether the ciphertext byte at position r0 matches
the corresponding reference value in C′r0

. Once all sixteen ciphertext bytes match
those produced by the oracle, the correct K ′G3

nibble, as well as the kσ and kτ key
parts have been identified;

5. The remaining seven kG key nibbles can be efficiently determined by supplying
additional chosen plaintexts to the oracle that cause outputs dependent on the
remaining key nibbles. Since kσ and kτ are known, each key nibble will only require
sixteen chosen plaintexts and up to sixteen offline encryptions.

This attack requires 32 chosen plaintexts and reduces the security of AUT64 to
(16!× 6!× 15) + (16× 7) ≈ 257.7 encryptions. The security is the product of the kτ , kσ and
kG3 key sizes and sixteen offline encryptions. Most keys will fail to match even the first
byte in the reference set C′r0

and so the plaintext encryptions for each key can be reduced
to an average of one offline encryption. 257.7 encryptions is considerably less security than
the AUT64 ideal key entropy of 91.5 bits, and is within the reach of specialised setups for
exhaustive key search [GKN+08]. The attack can be performed offline once the initial 32
chosen plaintexts have been encrypted.
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5.4 Integral Cryptanalysis
Next, we show how the weaknesses we identified in Section 5.1 can be generalised to perform
a divide-and-conquer chosen plaintext attack using techniques from integral cryptanalysis
to reveal an element from the permutation key part kσ. Concretely, we identify a 256
chosen plaintext attack which reduces the cyclic permutation key size from |kσ| = 7! ≈ 215.3

to (8− 3)! ≈ 26.9.
Integral cryptanalysis is a technique with similarities to differential cryptanalysis. It is

particularly effective against block ciphers which use only bijective components [KW02].
Where differential cryptanalysis typically considers plaintext-ciphertext pairs with a con-
stant XOR difference, integral cryptanalysis uses sets of chosen plaintexts and their corre-
sponding encryptions with a constant difference over the entire sets. Eight round AUT64
is vulnerable to integral cryptanalysis where the plaintexts are constructed adaptively
depending on the cipher behaviour. We propose the following method for distinguishing
the second round byte index of AUT64 using integral cryptanalysis

1. Generate a set of 256 plaintexts such that in each plaintext, seven bytes have the
value 0x00 and the eighth byte, placed at the byte index corresponding to the first
round, is an 8-bit counter which has a unique value in each plaintext

P =
{(

n ‖ (0x00)7
)

: n ∈ {0, . . . , 255}
}

2. Encrypt all of the plaintexts and store the corresponding set of ciphertexts C;

3. Build C′ from C by taking each byte in each ciphertext and adding it into a set
C ′i ∈ C′ according to its byte index i;

4. Compute the XOR sum over each set in C′

∀C ′i ∈ C′,∀cj ∈ C ′i : C ′isum
=

255⊕
j=0

c′j

This method identifies two list integrals C ′isum
with the value zero. One corresponds to (and

confirms) the first round byte index, the second identifies the byte index position, which
corresponds to the second round of encryption. An intuition for why this attack works is
to consider that because AUT64 is bijective, each round must be bijective; therefore it is
necessary for each plaintext in P to encrypt to a unique ciphertext byte in the first round.
If this were not the case, then the original plaintext could never be recovered from the
intermediate state caused by the output of the first round. The method we propose causes
the output from the first two rounds to each be a permutation of the set of all possible
byte values. For each plaintext Pn ∈ P the attack works as follows

1. The byte permutation σbyte applied to Pn yields a transposed plaintext P ′n of the
same form: seven bytes with value 0x00 and one unique counter byte. Since it has
been placed at the byte index which corresponds to the first round, the counter is
always moved to byte position seven in P ′n;

2. Where j is the byte counter, the Feistel function F applied to the transposed plaintext
yields an encrypted intermediate state

X ′ = (0x00)7 ‖ FK
(

(0x00)7 ‖ j
)

3. The byte permutation is applied to the intermediate state X ′ and the encrypted
byte from the first round j′ is transposed to a byte index position determined by the
permutation key part kσ;
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4. The Feistel function is applied to the permuted intermediate state. Each permuted
intermediate state σbyte(X ′) has seven bytes with value 0x00 and one, at an unknown
index, with the encrypted counter value j′;

5. The output from the second round of encryption FK
(
σbyte(X ′)

)
is written to the

cipher state and then encryption continues for another six rounds.

After eight rounds of AUT64, each ciphertext contains a byte from the first round round
j′ and another from the second round j′′. In both rounds, the input to the compression
function has only one non-zero byte. We can be certain that the output ciphertext byte
lists C ′r0

, C ′r1
∈ C′ both contain the entire uniform set of all 256 byte values. The integral

XOR sums C ′r0sum
and C ′r1sum

are zero, and the first and second byte indices are identified.
In Figure 8 in the appendix we show the histogram representation of this attack.

This weakness reduces the permutation key part by one additional known permutation
element. Applying this attack, its prior in Section 5.1, and determining that kσ is cyclic
(see Section 4.1) requires a total of 272 chosen plaintexts and reduces the cyclic permutation
key size from |kσ| = 7! ≈ 212.3 to (7− 2)! ≈ 26.9.

5.5 Extending the Integral Cryptanalytic Method
Finally, we generalise the integral cryptanalytic method from Section 5.4 and determine
its limitations. We present a chosen plaintext attack for determining the third and fourth
round permutation key parts and show that the permutation key size |kσ| is reduced
to just six possible keys. Permutation elements of an AUT64 key can be iteratively
identified by adaptively formulating chosen plaintext attacks which propagate an integral
sum distinguisher into a target round.

The type of chosen plaintexts necessary for identifying the third round are those with
six 0x00 bytes and two counters n,m placed at the byte positions corresponding to round
one and two, respectively. For example, if round one and two are at byte indices zero and
seven respectively

Pnm =
{

(n ‖ (0x00)6 ‖ m) : n,m ∈ {0, . . . , 255}
}

From the set of 216 plaintexts Pnm the ones which determine the third round are
the subset which result in intermediate states such that the encrypted output bytes
corresponding to rounds one and two are equivalent: n′ = m′.

A general method for building the set of plaintexts P ⊂ Pnm which cause the integral
sum C ′r2sum

= 0 is to exhaustively encrypt the set of plaintexts Pnm. Check each ciphertext
for equality at the byte indices belonging to rounds one and two. When n′ = m′, add the
corresponding plaintext to the attack set P.

For each chosen plaintext Pn ∈ P, the internal state after two rounds of encryption is
two equal encrypted counter bytes and six bytes with the value 0x00. The bijective Feistel
function property determines that under these conditions, the third round will always
output a unique ciphertext byte for each unique encrypted counter pair.

Now, we compute the XOR sum over each ciphertext byte-index list C ′i ∈ C′. The
lists corresponding to the indices of rounds one, two and three all have an XOR sum of
zero. Subtracting the known indices of the first and second rounds uniquely identifies the
permutation element corresponding to the third round of encryption.

Continuing our attack, the fourth round can be identified by applying the same
method, but placing three byte counters in the exhaustive set of plaintexts at the indices
corresponding to rounds one, two and three. Encrypt all 224 plaintexts and test for equality
of the three encrypted counter values. Add the plaintexts which meet the ciphertext
equality condition into a chosen plaintext set P, which is then used to identify the fourth
round by computing the corresponding ciphertext byte index list sums.
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Determining the ciphertext byte indices of the first three rounds of AUT64 requires
a total of 528 + 216 chosen plaintexts and reduces the cyclic permutation key size from
|kσ| = 7! ≈ 212.3 to (7− 3)! = 24 ≈ 24.6. Determining the first four rounds requires a total
of 784 + 216 + 224 ≈ 224 chosen plaintexts and reduces the cyclic permutation key size
from |kσ| = 7! ≈ 212.3 to (7− 4)! = 6.

The limitation of this weakness is that the number of chosen plaintext encryptions
grows exponentially in the number of permutation elements which are determined. It is
not efficient to continue the attack beyond identifying the first two rounds. The most
optimal strategy is to use the weakness of Section 5.4 to reduce the permutation key size
to 120 keys using 272 chosen plaintexts, and to search the remaining keys offline.

5.6 More than Eight Rounds
The cryptographic weaknesses we have presented are all dependent on an adversary being
able to distinguish the output of the Feistel function in the first round. If AUT64 is
implemented with more than eight rounds, then this property is negated. A ninth round
of AUT64 will always overwrite the byte output by the first round.

In general, we are able to distinguish 16 − N rounds from N round AUT64 by the
application of the attacks in Section 5.4. The VW remote keyless entry system uses a
twelve round implementation of AUT64. Our methods are therefore able to distinguish
16 − 2 = 4 permutation key parts in this implementation. Attacking twelve rounds of
AUT64 requires resolving uncertainty as to which byte indices the counters corresponding
to the positions of the first four rounds need to be placed.

To distinguish the fifth round, four simultaneous counter positions must be identified
from eight possible locations. Therefore in twelve round AUT64,

(8
4
)
× 232 ≈ 238.1 chosen

plaintexts are required to distinguish the output of the fifth round. This attack reduces
|kσ| from 7! ≈ 212.3 to 4!× 2! ≈ 23.6.

6 Attacking a Concrete System using AUT64
In this section, we present our results for attacks on the implementation of AUT64 in
a real immobiliser system. We first outline the utilised scheme for key derivation, and
present a corresponding attack that breaks AUT64 in the 24 round setting (as configured
by the vendor). We also outline a very fast attack on 8-round AUT64 when kG is known.

6.1 Weaknesses in Key Derivation Scheme
Based on our reverse engineering, we found that the immobiliser box derives the 32-bit key
part kG as a function of the (public) IDCode of the transponder. More precisely, let ID0,
ID1, ID2, ID3 represent the four bytes of IDCode (page 1 in the transponder’s memory).

Definition 8 (kG key derivation) Further, let u = (ID0 ∧ 0xE) � 1, TD be a 32 byte
key-independent look up table. Then kG is defined bytewise as follows

kG3 = ID3 ⊕ TD[3 + u]
kG2 = ID2 ⊕ TD[2 + u]⊕ kG3

kG1 = ID1 ⊕ TD[1 + u]⊕ kG3

kG0 = ID0 ⊕ TD[u]⊕ kG3

TD is given in Figure 7a in the appendix. The use of a key derivation function means
that an adversary can trivially recover kG with a single communication to the transponder
(to obtain the IDCode). The remaining task is thus to determine the permutation and the
S-Box.
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6.2 Attacking a 24-Round AUT64 Implementation
The studied immobiliser systems uses AUT64 in the 24-round configuration. To recover kτ
and kσ, we first obtain kG based on capturing the transponder’s IDCode. The anticipated
remaining key size is |K| = 16! × 7! ≈ 256.5 (assuming all 4×4 S-Boxes and all cyclic
permutations are possible), which is already in the range of dedicated brute force devices
such as [GKN+08]. However, a property of the key management scheme specified in
the AUT64 patent is that it leaves only sixteen possible permutation keys (the so-called
“family key”) per vehicle manufacturer. That means that by reading kσ from two different
immobiliser boxes and identifying the constant part (this is a one-time process), the
remaining AUT64 key space is only |K| = 16!× 16 ≈ 248.3.

Further, we have indications that the studied system actually uses a constant kτ and
kσ for a range of vehicles. More precisely, we recovered kτ and kσ from two different
immobiliser boxes and obtained the same values. If this assumption can be confirmed, it
implies that the full key of the transponder can be recovered solely by using the knowledge
of IDCode (to derive kG) and the manufacturer-wide values kτ and kσ, without requiring
further cryptanalysis. We leave the confirmation of this conjecture for future work.

6.3 Attacking Eight Round AUT64
Finally, we give an example for exploiting the cryptographic weaknesses of Section 5 in
a practical setting. We assume that (i) AUT64 is used with 8 rounds, (ii) kG can be
predicted (e.g. if the derivation function described above is used), and (iii) that we obtain
all 8 output bytes. Note that in the TK5561 protocol, we obtain the XOR of the two
32-bit halves, while the patent specifies this reduction to 4 byte as optional. We leave the
extension of the following attack to the case when only the XOR is available for future
work.

Under the above conditions, our method breaks eight rounds of AUT64 within millisec-
onds using a standard laptop: First, we use kG and the cipher weaknesses we identified in
Section 5.1 to build a model of the Feistel function SPN

1. Determine the byte index corresponding to the first round of encryption by using
the integral cryptanalytic method in Section 5.4. The first set of chosen plaintexts is

P1 =
{(

(0x00)7 ‖ n
)

: n ∈ {0, . . . , 255}
}

Placing the byte counter n at byte index seven in the plaintext list ensures that
only the first round is identified since for all cyclic permutations the seventh byte is
moved in each round. Calculate C ′1r0

∈ C′1, where r0 is the byte index corresponding
to the output from the first round.

2. Use C ′1r0
and the corresponding counter value list to build a model of the unknown

SPN part of the Feistel function F . The model is a 256 element lookup table which
represents the same function as the key-defined SPN.

3. To reduce the combinatorial burden of the next step, use r0 derived in step 1 to
produce a second set of chosen plaintexts

P2 =
{

(64− (8× r0)� n) : n ∈ {0, . . . , 255}
}

Calculate C ′2r0
and C ′2r1

where r0, r1 are the byte indices in the ciphertext corre-
sponding to the output from the first and second rounds respectively. Define the set
of ciphertexts for this step as C2.
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4. Use the adaptive divide-and-conquer techniques we present later in this section to
reduce the remaining key space.

We now discuss our techniques for rapidly determining the remaining key parts kτ and
kσ using the SPN model. The permutation key part kσ can be determined efficiently by
using the SPN model to calculate the expected round outputs for the next unknown round
index. For example, to determine the byte index corresponding to the third round we
propose the following method

1. Use the ciphertext byte lists C ′2r0
, C ′2r1

corresponding to the first and second rounds
to generate all of the possible internal cipher states X′2 which could be input to the
third round. There will be no more than

(7
2
)

= 21 possible permutations;

2. For each potential internal state X ′ ∈ X′2, compute the compression function G and
apply its output to the SPN model. The correct permutation will yield a set of bytes
which match those found in the ciphertext byte index list C ′2r2

corresponding to the
output of round three.

This method of determining kσ can be used to determine permutation elements beyond
the third round by computing the possible permutations of the relevant known round index
ciphertext bytes. After the first four round indices have been determined using this attack,
the most efficient solution is to exhaustively search the remaining six possible keys.

For the final part of this attack, we propose a method based on the weakness identified
in Section 5.2 and prior knowledge of kσ, which efficiently determines the substitution key
part. The list of output ciphertext bytes from the first round C ′2r0

contains two or more
symmetric bytes. Since we have a model of the SPN and we have determined the internal
permutation, we can use these symmetric bytes to determine a large number of elements
in kτ . The very worst case for an adversary is that the remaining |kτ | = 2× 14! ≈ 237.3.
On average, ten or more of the elements will be revealed and the remaining substitution
key part can be exhaustively found in milliseconds. Experimentally, we found that the
majority of AUT64 keys are broken within milliseconds using this method on a standard
Intel i7 laptop.

7 Conclusions

In this paper, we identify significant weaknesses in the AUT64 automotive block cipher
and its associated immobiliser protocol. We present a number of cryptographic AUT64
weaknesses which we combine into attacks on both eight and twenty four round implementa-
tions. Despite AUT64 having a 120-bit key, we show that in certain implementations, eight
round AUT64 can be broken within milliseconds using a standard laptop, with an absolute
worst case complexity of 237.3. Also, in a concrete immobiliser system, the security of 24
round AUT64 is no more than 48.3 bits due to the use of a key derivation function that
determines part of the key based on the transponder ID. We also have strong indications
that the studied system makes use of manufacturer-wide keys, which reduces the attack
time to a single communication with the transponder and negligible computation.

This paper contributes to the mounting evidence that it is imperative for the automotive
industry to discontinue using proprietary cryptographic implementations and for them
to move towards standardised algorithms and peer-reviewed protocols. We also make a
novel contribution to the literature on the cryptanalysis of generalised Feistel ciphers with
key-dependent permutations and S-Boxes.
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7D 56 99 65 8C 74 82 83
9B 92 7B A1 AA B0 64 CF
B9 DE 5D ED C8 FC 46 0B
D7 1A 3F 29 C6 38 28 47

(a) TD key derivation table.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 A B C D E F
0 2 4 6 8 A C E 3 1 7 5 B 9 F D
0 3 6 5 C F A 9 B 8 D E 7 4 1 2
0 4 8 C 3 7 B F 6 2 E A 5 1 D 9
0 5 A F 7 2 D 8 E B 4 1 9 C 3 6
0 6 C A B D 7 1 5 3 9 F E 8 2 4
0 7 E 9 F 8 1 6 D A 3 4 2 5 C B
0 8 3 B 6 E 5 D C 4 F 7 A 2 9 1
0 9 1 8 2 B 3 A 4 D 5 C 6 F 7 E
0 A 7 D E 4 9 3 F 5 8 2 1 B 6 C
0 B 5 E A 1 F 4 7 C 2 9 D 6 8 3
0 C B 7 5 9 E 2 A 6 1 D F 3 4 8
0 D 9 4 1 C 8 5 2 F B 6 3 E A 7
0 E F 1 D 3 2 C 9 7 6 8 4 A B 5
0 F D 2 9 6 4 B 1 E C 3 8 7 5 A

(b) Toffset compression function look up table.

TU TL

1 0 3 2 5 4 7 6 4 5 6 7 0 1 2 3
0 1 2 3 4 5 6 7 5 4 7 6 1 0 3 2
3 2 1 0 7 6 5 4 6 7 4 5 2 3 0 1
2 3 0 1 6 7 4 5 7 6 5 4 3 2 1 0
5 4 7 6 1 0 3 2 0 1 2 3 4 5 6 7
4 5 6 7 0 1 2 3 1 0 3 2 5 4 7 6
7 6 5 4 3 2 1 0 2 3 0 1 6 7 4 5
6 7 4 5 2 3 0 1 3 2 1 0 7 6 5 4
3 2 1 0 7 6 5 4 5 4 7 6 1 0 3 2
2 3 0 1 6 7 4 5 4 5 6 7 0 1 2 3
1 0 3 2 5 4 7 6 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0 1 0 3 2 5 4 7 6
6 7 4 5 2 3 0 1 0 1 2 3 4 5 6 7
5 4 7 6 1 0 3 2 3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3 2 3 0 1 6 7 4 5
2 3 0 1 6 7 4 5 6 7 4 5 2 3 0 1
3 2 1 0 7 6 5 4 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 4 5 6 7 0 1 2 3
1 0 3 2 5 4 7 6 5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1 2 3 0 1 6 7 4 5
7 6 5 4 3 2 1 0 3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3 0 1 2 3 4 5 6 7
5 4 7 6 1 0 3 2 1 0 3 2 5 4 7 6

(c) TU and TL round key derivation tables.
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Figure 8: Histograms demonstrating the integral cryptanalytic technique which we apply
in Section 5.4. Each histogram represents the cyphertext byte values which are output at
a specific byte index over a set of adversarially chosen plaintexts. Ciphertext byte indices
3, 4, 5 and 6 are shown along the y-axis. The x-axis is composed from left-to-right showing
the symmetric byte values, the lower nibble values, the upper nibble values and finally the
complete byte values. This method of presenting the ciphertexts allows the permutation
key part to be divide and conquered. In this case byte indices 4 and 5 are exposed by their
uniform byte distributions as originating from the first two rounds of encryption.


	Introduction
	Contribution and Outline
	Related Work

	Technical Background
	Notation
	Chosen Plaintext Attack
	Block Ciphers
	Unbalanced Feistel Networks

	AUT64
	Reverse Engineering AUT64
	Cipher
	Authentication Protocol

	AUT64 Weak Keys
	Permutation Key Size
	Compression Function Weak Keys

	AUT64 Cryptanalysis
	Permutation Weakness
	Compression Function Symmetric Bytes
	Compression Function Divide-and-Conquer
	Integral Cryptanalysis
	Extending the Integral Cryptanalytic Method
	More than Eight Rounds

	Attacking a Concrete System using AUT64
	Weaknesses in Key Derivation Scheme
	Attacking a 24-Round AUT64 Implementation
	Attacking Eight Round AUT64

	Conclusions

