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Abstract
We present an extension of the applied pi-calculus

that can be used to model distance bounding protocols.
A range of different security properties have been sug-
gested for distance bounding protocols; we show how
these can be encoded in our model and prove a partial
order between them. We also relate the different security
properties to particular attacker models. In doing so, we
identify a new property, which we call uncompromised
distance bounding, that captures the attacker model for
protecting devices such as contactless payment cards or
car entry systems, which assumes that the prover being
tested has not been compromised, though other provers
may have been. We show how to compile our new calcu-
lus into the applied pi-calculus so that protocols can be
automatically checked with the ProVerif tool and we use
this to analyse distance bounding protocols from Master-
Card and NXP.

1 Introduction

Contactless payment cards and “keyless” car entry sys-
tems aim to make life easier. However, they also make
it possible to wirelessly-pickpocket a victim [12] or even
steal their car [21]. Such exploits are not merely the-
oretical; criminal gangs are using such attacks to steal
cars [6]. Thieves relay signals from a victim’s key fob
(located inside the victim’s house) to the victim’s car
(parked outside), which enables the thieves to unlock the
car, start the engine, and drive away.

Distance bounding protocols [11] use round trip times
to establish an upper-bound on the distance between a
“prover”, e.g., a contactless payment card or key fob, and
a “verifier”, e.g., a payment machine or car. This can be
used to enforce that a prover is co-located with a verifier.
Hence, they can be used to prevent the aforementioned
attacks. Round trip times are sometimes bounded by the
speed of light [11] and sometimes by the lag introduced
by relaying equipment [20].

A distance bounding attack occurs when a verifier is
deceived into believing they are co-located with a prover,
when they are not. Attackers may relay, replay and alter
messages, as well as trying to predict or preempt timed
challenges. Some distance bounding protocols also aim
to defend against a “dishonest prover” attacker , i.e., an
attacker that knows all of the secret values of a nor-
mal prover, but will misuse them to try to trick a ver-
ifier. Other attacker models consider a weaker “terror-
ist prover,” i.e., a dishonest prover that will not reveal
its long term keys. The literature on symbolic verifica-
tion of distance bounding protocols includes five differ-
ent types of attacks, each of which uses some combi-
nation of basic, unprivileged attackers, dishonest prover
attackers, and terrorist fraud attackers. We describe these
in detail in the next section.

In this paper, we extend the applied pi-calculus [2] to
distinguish between co-located processes and processes
at distinct locations, and we restrict communication be-
tween locations using timers. In particular, when a lo-
cation’s timer is active, processes at that location may
only receive input from co-located processes (they can-
not receive input from a remote process, i.e., a process at
a different location). Our extended calculus allows us to
model distance bounding protocols. Indeed, we can con-
sider an attacker, some provers and a verifier in various
locations. Moreover, timers capture bounded round trip
times, in particular, a verifier cannot receive any input
from a remote attacker whilst a timer is active at the ver-
ifier’s location. Thus, the calculus allows us to check for
and detect each of the different types of attack against
distance bounding protocols. Furthermore, we define a
compiler that encodes the calculus into the standard ap-
plied pi-calculus, which enables automated analysis us-
ing tools such as ProVerif [8].

Industrial distance bounding protocols such as Master-
card’s RRP protocol [20] and NXP’s “proximity check”
[14, 25] aim to protect payments and access tokens from
relay attacks. These protocols need not defend against at-
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tacks requiring dishonest provers, because if an attacker
gets access to the secret keys, they can clone the cards
or key fobs, and make payments or gain access without
a need to relay the original device, i.e., protection is only
needed for an uncompromised device.

However, we expect some devices (e.g., EMV cards
or car fobs) may be compromised at some point, and
we would like to ensure that the compromise of a par-
ticular prover would not lead to an attacker being able
to successfully attack other provers. None of the com-
monly considered distance bounding security properties
(which are presented in the next section) match this at-
tacker model.

Using our calculus, we are able to consider all possible
combinations of verifiers, provers and dishonest provers
and so enumerate all possible distance bounding attack
scenarios. Defending against each of these attack scenar-
ios gives us a security property, and under reasonable as-
sumptions (which we detail in Section 5) we can equate
many of these distance bounding attack scenarios and
impose a partial order on the others so creating a hierar-
chy of distance bounding attacks. Different parts of this
hierarchy relate to different attacker models, and each
attacker model is dominated by a single security prop-
erty (this ordering is presented in Figure 3 on page 11).
Our ordering shows that, under reasonable assumptions,
“assisted distance fraud” attacks [13] are more powerful
than all other properties. Moreover, it shows that when
an attacker can only act remotely, protection against “dis-
tance hijacking” attacks [13] is the most powerful prop-
erty needed. Details of these attacks are given in the next
section.

From our hierarchy of distance bounding protocols we
identify a new distance bounding attack scenario and
security property, which we call uncompromised dis-
tance bounding security. In an uncompromised distance
bounding attack the provers being targeted are remote
from the verifier and the attacker acts at both the loca-
tion of the prover and the verifier. Additionally, the at-
tacker may have compromised a number of other provers
at both locations, and use these in the attack. An un-
compromised distance bounding attack exists if the at-
tacker can cause the verifier to believe that one of the
uncompromised, remote targeted provers is in fact local
to the verifier. Defending against this kind of attack is the
strongest security property needed for protocols such as
MasterCard’s RRP to protect contactless payment cards
or NXP’s proximity check when being used to protect,
e.g., access to buildings.

We demonstrate the applicability of our results
by analysing MasterCard’s RRP protocol for distance
bounding of contactless EMV [20], and a distance
bounding protocol from NXP [14, 25]. These proto-
cols have not been studied before. In these protocols the

prover will send information about how long replies are
expected to take and the verifier will use this information
to set the time limits used in the distance bounding pro-
tocol. If attackers can alter these time limits then they
can succeed in a relay attack by telling the verifier to
wait long enough to relay the messages. As our calcu-
lus is based on the applied pi-calculus we are also able
to check that the protocols ensure the authenticity of the
timing information to confirm that attacks on it are not
possible.

Contributions: Our contributions are as follows:

• An extension of the applied pi-calculus with loca-
tions and timer actions (Section 3).

• Formalizations of security properties for distance
bounding protocols (Section 4).

• A hierarchy of our security properties, relations to
particular attacker models, and identification of a
new security property (Section 5).

• A practical, automatic tool for the analysis of dis-
tance bounding protocols, based on compiling our
calculus into the applied pi-calculus (Section 6).

• Formal analysis of distance bounding protocols, in-
cluding from MasterCard and NXP (Section 7).

Our models, compiler and full paper (with proofs) are on
our project website https://cs.bham.ac.uk/~tpc/

distance-bounding-protocols/

Related work: Some prior work on the verification of
distance bounding protocols has used manual reasoning,
e.g., [30, 34] in the symbolic model, [4, 9, 10, 18] in the
computational model and [13, 34] using theorem provers.

Some previous work on automatic analysis of distance
bounding protocols has been based on the applied pi-
calculus: Malladi et al. [27] analyse single runs, Chothia
et al. [12] analyse an arbitrary number of runs for relay
attacks, and Debant et al. [15] provide a model with a
formal correctness proof, which uses a definition of relay
attack that is close to our definition of uncompromised
distance bounding.

Nigam et al. [31] introduce an extension to strand
spaces to model security protocols that include time and
Kanovich et al. [26] consider a multiset rewriting model
and compare discrete and continuous time. A contri-
bution of our paper is to show that you do not need to
explicitly consider the time of actions to meaningfully
analyse distance bounding protocols. Mauw et al. [28]
improves on the framework of [34] looking at causality
between actions to make a framework for automatically
testing distance fraud and terrorist fraud.

None of the previous papers on symbolic checking of
distance bounding protocols consider the full range of
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distance bounding properties or makes comparisons be-
tween them.

A recent survey [3] gives many examples of distance
bounding protocols and attacks. Two notable protocols
missing from this survey are MasterCard’s RRP proto-
col for contactless EMV cards and NXP’s “proximity
check”, which we both consider in this paper. Master-
Card’s RRP is a variant of the PaySafe protocol, which
we have previously proposed for contactless EMV [12].

Past papers [15, 28, 31] have reported an attack against
PayWave when the prover is dishonest. However, as we
discuss in Section 5, if an EMV card has been compro-
mised, then there is no need to relay it, hence such “dis-
tance fraud attacks” are not the correct attacker model for
contactless EMV. In contrast, we relate distance bound-
ing security properties to particular attacker models.

2 Distance bounding protocols and attacks

Distance bounding protocols aim to let a verifier place an
upper-bound on the distance to a prover by timing how
long it takes for certain challenges to be answered. Cryp-
tography is used to ensure that the responder had to know
the challenge before replying. Often the time taking to
perform complex cryptography will vary between runs,
therefore it is difficult to time cryptographic actions, and
the challenge-response mechanism is typically limited to
a simple exchange of nonces, with the cryptography per-
formed before or afterwards.

Example 1. As a running example we consider the fol-
lowing distance bounding protocol, in which the verifier
and all provers share the same symmetric key.

Verifier Prover

Generate random values
chal and resp

id

{chal,resp}k

ready

chal

timed resp

The verifier receives the identifier of the prover, gen-
erates nonces chal and resp, and sends the encrypted
nonces to the prover. Once the prover indicates that it
has decrypted the nonces, the verifier activates a timer,
and sends nonce chal to the prover. The prover waits for
nonce chal before revealing nonce resp, hence, the nonce
is only revealed once the verifier’s timer is running.

This protocol is not vulnerable to relay fraud because
only the prover can decrypt the challenge and response,

and an honest prover will not release the response until
it receives the challenge, i.e., the attacker cannot learn
the response until the timer has started, and then, if the
prover is remote from the verifier, it will be impossible to
get this response to the prover without the timer expiring.

Our example protocol does not defend against a dis-
honest prover that tries to trick the verifier, i.e., a prover
can convince the verifier that it is nearer than it really is.
Such a dishonest prover could be a hardware device that
has been compromised by an attacker, or the owner of a
device trying to mislead the verifier. Indeed, the prover
can send the response early, before receiving the chal-
lenge, so the verifier receives the response just after it
transmits the challenge. This will lead to a short delay
between the challenge and response, making the verifier
incorrectly believe that the prover is nearby.

The right security property for a distance bounding
protocol, will depend on the use case. Common secu-
rity properties considered in the literature on symbolical
of checking distance bounding protocols include:

• Relay/Mafia Fraud [17]: The verifier and the prover
are remote from each other. Attackers act at the
same location as both the verifier and prover, and
may relay, alter or replay messages, to trick the
prover into believing that the prover is in fact local.

• Distance Fraud [16]/Lone Distance Fraud [13]: A
dishonest prover, which may deviate from the pro-
tocol, is at a location remote from the verifier. This
dishonest prover misleads the verifier into believing
that it is local.

• Distance Hijacking [13]: A dishonest prover re-
motely authenticates to a verifier, as in Distance
Fraud, but there are also other honest provers at the
same location as the verifier, which the dishonest
prover may make use of.

• Terrorist Fraud [16]: A terrorist fraud attack in-
volves one attacker acting locally to the verifier
along with a remote dishonest prover, with the goal
of making the verifier believe that the remote dis-
honest prover is in fact local. This kind of attack
always assumes that the prover has a secret key that
identifies it and that the prover does not send this
key to any process which is local to the verifier.

• Assisted Distance Fraud [13]: A terrorist prover
remotely authenticates to a verifier, assuming the
cooperation of another dishonest prover that is co-
located with the verifier.

We can stop our example protocol being vulnerable to
distance fraud attacks by adding a new nonce that is sent
with the challenge, and also needs to be included with the
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response. However, such a protocol would still be vul-
nerable to terrorist fraud attacks, because a remote dis-
honest terrorist fraud prover could decrypt the challenge
and response and send them to an accomplice attacker
that is local to the verifier, which can then use them to
answer the verifier’s challenge within the time limit.

This terrorist fraud attack can be stopped by, for in-
stance, requiring the prover to hash the response with
their secret key. Thereby providing evidence to the veri-
fier that some local party did indeed know the secret key.
However, if the same key is used by multiple provers then
the protocol is vulnerable to distance hijacking and as-
sisted distance fraud, because the dishonest prover could
send the challenge and response to some honest prover
that is co-located with the verifier. This honest prover
would answer the verifiers challenge, which the verifier
believed was the dishonest prover.

To protect against these attacks, we could require ev-
ery prover to use a unique key with the verifier, thereby
making it impossible for the dishonest prover to encrypt
a message for some other honest prover.

Example 2. Making the additions described above to the
protocol from Example 1 we get a protocol that is secure
against all the attacks listed above:

Verifier Prover

Generate random values
chal, resp and nonce

id
{chal,resp}kpv

ready

chal,nonce

timed h(nonce,kpv),resp

This protocol uses a lightweight hash function, which
needs to be computed before the timer expires.

3 Timer location calculus: A language for
modelling distance bounding protocols

Our timer location calculus extends the applied pi-
calculus [1, 2, 7, 33] with timers and locations. We
first present the calculus syntax, illustrating this using
the protocol from Example 1. We then present the se-
mantics and explain how this captures the behaviour of
timed communications.

Syntax: Each protocol role is written as a process,
using the syntax of our language (Figure 1). Communi-
cation between roles is modelled by the input and output
commands. The semantics, presented below, will substi-
tute the term sent by an output command for the variable
named in an enabled input. We assume that the attacker

Figure 1 The timer location calculus syntax
M,N ::= terms

x,y,z variables
a,b,c,k names
f (M1, . . . ,Mn) constructor application

D ::= g(M1, . . . ,Mn) destructor application

P,Q ::= processes
0 nil
out(N).P output
in(x).P input
P | Q parallel composition
!P replication
new a.P restriction
let x = D in P else Q term evaluation
event(M1, . . . ,Mn) an event
startTimer.P timer activation
stopTimer.P timer termination

S ::= systems
[{P1, . . . ,Pn}]r a location
new ã.S restriction
[{P1, . . . ,Pn}]r | S locations

controls the network, so processes are not able to ensure
that a particular output goes to a particular input.

Parallel composition (P | Q) represents two processes
running concurrently, and process replication (!P) repre-
sents an arbitrary number of copies of a process running
in parallel. The new command creates a new value that
then represents, for instance, a nonce, a key or a process
identity. This value will not be known to the attacker
unless it is output on a public channel.

Example 3. The following process models an arbitrary
number of provers with different ids each running an ar-
bitrary number of times

ExProvers(id) = !new id.!PRole(id)

We define PRole(id) in the next example to model a sin-
gle run of the protocol with identity “id”, so !PRole(id)
represents an arbitrary number of runs of the protocol
with a particular id. The “!new id” term at the front of
the process generates an arbitrary number of new pro-
cess ids.

Cryptography is modelled using constructors and de-
structors, e.g., symmetric key encryption can be mod-
elled using a binary constructor enc(m,k) to represent the
message m encrypted with the key k and a binary destruc-
tor function dec with the rewrite rule dec(enc(m,k),k) =
m. Functions can be public, i.e., available for use by the
attacker, or private meaning that they cay only be used
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by processes specified as party of the protocol. Private
functions are useful, for instance, to look up private keys
which should only be known to protocol participants.

Functions are applied using the let statement, e.g.,
“let pt = dec(ct,k) in P else Q” tries to decrypt cipher
text ct with key k, and acts as P if decryption succeeds
and Q otherwise. Term evaluation in the let statement
can also be used to define projections on tuples, and
equality checks on names. As syntactic sugar we write
“in(=a).P”, for a process that receives an input and then
acts as the process P if that input value is equal to a. We
refer the reader to [2] for more details on functions in the
applied pi-calculus.

Example 4. A single run of the prover role of the proto-
col informally described in Example 1, with identity id,
can be modelled as the process:

PRole(id) = out(id) . in(x) .
let (chal,resp) = dec(x,k) in
out(ready) . in(=chal) . out(resp)

Events are used to annotate the protocol for automated
checking. For instance, below we will add an event to
the protocol to signal that the verifier believes it has cor-
rectly verified a particular prover. The syntax presented
so far is from the applied pi-calculus. Next, we present
our additions, namely, locations and timers.

The process startTimer.P represents starting a timed
challenge and stopTimer.P represents ending a chal-
lenge. We require that every start timer action is matched
by exactly one stop timer action along all possible paths,
and replication and parallel composition are forbidden
between start and stop timer actions.

Example 5. The verifier role of the protocol informally
described in Example 1 can be modelled as the process:

ExVerifiers = !in(id) . new chal . new resp.
out(enc((chal,resp),k)) . in(ready).
startTimer . out(chal) . in(=resp) .
stopTimer . event(verify(id))

Locations are written [P]r, where P are (co-
located) processes and r denotes the number of active
timers. We abbreviate [{P1, . . . ,Pn}]r as [P1, . . . ,Pn]r and
[{P1, . . . ,Pn}]0 as [P1, . . . ,Pn]. Our model assumes that
processes are either co-located or at distinct locations,
and we abstract away from precise distances between
provers and verifiers when modelling. We assume that
there is a known maximum round trip time for commu-
nication between “local” processes, i.e., co-located pro-
cesses, and the timer enforces this. Hence, it will not be
possible for a message to travel to processes at different
locations, and back again before the timer expires.

Example 6. The system

new k.[ ExProvers | ExVerifiers ]

represents our example provers and verifiers running at
the same location, i.e., it is possible for the prover to an-
swer the challenge within the time limit and be verified.
The declaration of the key k as new means that this is
a new unique value, known only in the ExProvers and
ExVerifiers processes.

By comparison, the system

new k.([ ExProvers ] | [ ExVerifiers ])

represents the verifiers and provers at different locations.
Hence, in the latter system, it should not be possible for
the prover to answer the timed challenge within the time
limit, therefore a correct distance bounding protocol will
not allow the prover to be verified.

Semantics: Dynamic behaviour of processes (which
model protocols) can be examined using the semantics
of our language (Figure 2), which is defined over system
configurations, denoted E,L , where that E is a set of
free names and L is a finite multiset of systems.

The set E keeps track of the names that have been as-
signed so far, making it possible for the new command
to pick fresh previously unused names, this is done by
the (NEW) rule. The (REPL) rule creates a copy of a
replicated process, the (LET 1) rule can be used to ap-
ply functions, e.g., for decryption, and the (LET 2) rule
selects the else branch when no function reductions are
possible (this, for instance, allows us to define equality
tests). These rules are a direct extension of existing ap-
plied pi-calculus rules (e.g., [1, 33]) with our syntax for
locations.

The rules we have created for our modelling language
define the behaviour for timers and for communication
between locations. The (START) rule increments the
number of timers running at a location, and the (STOP)
rule reduces the number of running timers. The re-
striction placed upon processes ensures that the num-
ber of running timers never becomes negative. Rule
(I/O LOCAL) defines local communication, which al-
lows messages to be exchanged between co-located pro-
cesses, regardless of whether timers are running.

Example 7 (Local communication). As an example we
consider a verifier that sends a challenge, denoted a, to
a prover, to which the prover replies with a function f

applied to this and some other value b:

PV PP

a

timed f (a,b)

P′V P′P
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Figure 2 Operational semantics for our timer locations calculus

E,L ∪{ [P ∪{!P}]r }→ E,L ∪{ [P ∪{!P,P}]r } (REPL)

E,L ∪{ [P ∪{P | Q}]r }→ E,L ∪{ [P ∪{P,Q}]r } (PAR)

E,L ∪{ [P ∪{new a.P}]r }→ E ∪{a′},L ∪{ [P ∪{P{a′/a}}]r } (NEW)
for some name a′ /∈ E

E,L ∪{ [P ∪{let x = D in P else Q}]r } → E,L ∪{ [P ∪{P{M/x}}]r } (LET 1)
if there exists M such that D→M

E,L ∪{ [P ∪{let x = D in P else Q}]r }→ E,L ∪{ [P ∪{Q}]r } (LET 2)
if there is no M such that D→M′

E,L ∪{ [P ∪{out(M).P, in(x).Q}]r }→ E,L ∪{ [P ∪{P,Q{M/x}}]r } (I/O LOCAL)

E,L ∪{ [P ∪{out(M).P}]r , [Q]0 }→ E,L ∪{ [P ∪{P}]r , [Q∪{out(M)}]0 } (GLOBAL)

E,L ∪{ [P ∪{startTimer.P}]r }→ E,L ∪
{
[P ∪{P}]r+1

}
(START)

E,L ∪{ [P ∪{stopTimer.P}]r }→ E,L ∪
{
[P ∪{P}]r−1

}
(STOP)

E,L ∪{ [P ∪{out(M).P}]r }→ E,L ∪{ [P ∪{P | out(M)}]r } (ASYNC)

E,L ∪{ [P ∪{event(M).P}]r }→ E,L ∪{ [P ∪{P}]r } (EVENT)

We can write these roles as processes:

PV = startTimer.out(a).in(x).stopTimer.P′V
PP = in(x).out( f (x,b)).P′P

such that processes P′V and P′P do not contain vari-
able x (hence, we need not consider substitutes for x in
these processes). Moreover, consider system configura-
tion C1 = E,{[PV ,PP]0} that co-locates those processes.
Hence, we can observe traces in which the timed chal-
lenge succeeds. Indeed, C1 reduces by rule (START) two
applications of rule (I/O LOCAL) rule, and rule (STOP):

C1→E,
{[

out(a).in(x).stopTimer.P′V ,PP
]

1

}
→E,

{[
in(x).stopTimer.P′V ,out( f (a,b)).P′P

]
1

}
→E,

{[
stopTimer.P′V ,P

′
P
]

1

}
→E,

{[
P′V ,P

′
P
]

0

}
By comparison, the processes cannot complete the chal-
lenge from distinct locations. Indeed, although

E,{[PV ]0 , [PP]0}→
∗

E,
{[

in(x).stopTimer.P′V ,
]

1 ,
[
out( f (a,b)).P′P

]
0

}
,

the semantics do not allow any further reduction.

Rule (GLOBAL) allows an output to arrive at a new
location, if no timers are active at that location. In imple-
mented systems, it is only possible to receive outputs at

particular times, yet rule (GLOBAL) allows outputs to be
received at any time (in particular, after other processes
have reduced). In this sense, the rule might be considered
an over-approximation. However, for any communica-
tion allowed by our semantics, there exists a correspond-
ing system execution (that takes communication and pro-
cessing times into account). Thus, the rule accurately
captures system behaviour, in particular, all possible in-
teractions with an attacker are considered.

Example 8 (Preemption). A remote process may com-
municate with a timed process by preempting the mes-
sages needed. For instance, consider configuration C3 =
E,

{
[PV ]0 , [in(x).P

′
P,out( f (p,b))]0

}
and reduction

C3→ E,
{
[PV ,out( f (p,b))]0 ,

[
in(x).P′P

]
0

}
→ E,{

[
out(a).in(x).stopTimer.P′V ,out( f (p,b))

]
1 ,[

in(x).P′P
]

0}
→∗ E,{

[
stopTimer.P′V

]
1

[
P′P
]

0}
→ E,{

[
P′V

]
0

[
P′P
]

0}

Note that the message received by PV uses the name p
rather than the challenge name a, hence, when using
preemption there is no way in which the answer to the
response to a timed challenge can be based on the mes-
sage outputted as part of that challenge.
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Rule (ASYNC) defines asynchronous communication,
which prevents processes from blocking when they are
ready to output. We could also avoid blocking by replac-
ing instances of out(M).P with out(M).0 | P, but intro-
ducing parallel composition reduces readability. More-
over, for purposes of compilation (Section 6), it is useful
to consider only linear processes.

4 Modelling DB protocols and attacks

We define distance bounding protocols as follows:

Definition 1 (Distance bound protocol specification).
A distance bounding protocol specification is a tuple
(P(id),V, ñ), where

• P(id) = !new id.!Q for some process Q;
• V = !V ′ for some process V ′ that contains an event

event(verify(id)).
• ñ is a list of names known only to Q and V .

We require that no further events are used in either pro-
cess and the only free names (i.e., names not declared as
new or bound by an input) used are those in ñ and the
public channel c.

Process Q models a single run of a prover with the
identity id and P(id) represents arbitrarily many dis-
tinct provers, each of which can run arbitrarily many
times. Similarly, process V ′ models a single run of
a verifier and V models arbitrarily many runs. Event
“event(verify(id))” signifies a successful execution of
the verifier with a prover that uses identity id. Anony-
mous protocols can use a dummy id value. It is impor-
tant to note that the “verify” event does not mean that we
have verified that the protocol is secure, rather it means
that the verifier believes it has completed a run of the pro-
tocol. This could be because there is a prover at the same
location as the verifier, or it could be because an attacker
has performed a successful attack and tricked the verifier.

The names ñ are secrets known to the verifier and all
provers; many well designed protocols will have no such
secrets, in which case ñ will be the empty list, nonethe-
less many commercial devices continue to use global
shared secrets (see e.g. [22] for one of many examples).

Example 9. The protocol informally described in Ex-
ample 1 can be modelled as specification (ProverE(id),
VerifierE,〈k〉), where ProverE(id) and VerifierE are as
described above, and k is the global shared key.

Since attackers can be present at a number of different
locations, we introduce system contexts as systems with
“holes,” in which a process may be placed. These holes
denote the locations in a system where the attacker can
act, and we write them as A. E.g., the system context

C1 = new k.[Veri f ierE | A ] | [ ProverE(id) | A ] repre-
sents a scenario in which the attacker can be co-located
with the verifier V , and co-located with the prover Q,
whereas C2 = new k.[ Veri f ierE ] | [ ProverE(id) | A ]
represents a scenario in which the attacker is co-located
with the prover and is remote from the verifier. When
the context is applied to a process the A symbol is re-
placed with that process, to give a system. E.g., C2[PA] =
new k.[ Veri f ierE ] | [ ProverE(id) | PA ].

Using our calculus, and system contexts, we can for-
mulate the five types of attacks against distance bounding
protocols described in Section 2, in which verifiers are
deceived into believing they are co-located with provers.
We formulate attacks as reachability requirements over
traces that represent executions of distance bounding
protocols. In particular, our formulations require an exe-
cution of a verifier, with a remote prover, which ends in
a verify event for a particular id.

The following definition tells us if an attacker process
can be found that leads to a context performing a verify
event.

Definition 2. Given a name id and a system context C,
we write verified(id):C if there exists a process PA and a
trace:

{c},C[PA] −→∗ E,L ∪{[P ∪{new id.P}]r}
−→ E ∪{id′},L ∪{

[
P ∪{P{id′/id}}

]
r}

−→∗ E ′,L ′∪{[P ′∪{event(verify(id′)).P′}]r′}

where the only free name in PA is the public channel
name c and PA does not contain timers nor events.

It follows from our definition that verified(id):C denotes
a successful execution of a verifier, therefore we would
expect it to hold for any context that places a verifier and
prover, with the identity id, at the same location. By
comparison, we would not expect verified(id):C1, for the
aforementioned context C1, which places the verifier and
prover at different locations, unless the protocol being
modelled is insecure.

Using this we can now formally define the different
types of distance bounding attacks.

Definition 3. Distance bound protocol specification
(P(id),V, ñ) is vulnerable to relay (or mafia) fraud, if
verified(id):new ñ.[ V | A ] | [P(id) | A].

It follows from the definition that a relay attack is pos-
sible if the prover and verifier are at different locations,
and an attacker process is co-located with each of the
prover and verifier. Such an attack typically involves the
attacker process co-located with the verifier answering
the timed challenges, using messages passed from the
other location. To keep our definitions simple we require
the same attacker process at both locations, though dif-
ferent parts of this process can act at each location. E.g.,
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an attacker process PPA | PVA might define process PPV
to interact with the verifier and PAV to interact with the
prover.

Example 10. There is no process PA such that
verified(id):[ Veri f ierE | PA ] | [ProverE(id) | PA], i.e.,
no attacker can trick the verifier into believing that it has
verified id when the provers are at a different location.
We informally reasoned why this protocol is safe from
relay attacks in Section 2 and we will verify this result
automatically in Section 7.

Relay/mafia fraud considers an attacker that does not
have the secret values of a normal prover. A more power-
ful “dishonest prover” attacker has access to such secrets.

Definition 4. Distance bound protocol specification
(P(id),V, ñ) is vulnerable to:

• distance fraud, if verified(id) : new ñ.[ V ] |
[ DP-A(id) ]
• distance hijacking, if verified(id) : new ñ.[ V |

P(id′) ] | [ DP-A(id) ]

where P(id) = !new id.!Q and DP-A(id) denotes
!new id.out(id).Q′ | A, where Q′ outputs bound and free
names of Q (including names in ñ, which are otherwise
hidden from the attacker) and the results of any private
function applications in Q, and A is the context hole.

The process DP-A(id) reveals all the secret values of a
normal prover to the attacker, which captures a dishonest
prover attacker.

Example 11. Specification (ProverE(id),VerifierE,〈k〉)
is vulnerable to distance fraud. The prover process does
not declare new names, and there are no private func-
tions used therefore:

DP-A(id) = !new id.out(id).out(k) | A

We define PA as the process that receives the key k from
process DP-A, uses the key to decrypt the challenge and
response, and sends the response, without waiting for the
challenge:

PA = in(k).in(x).let (chal,resp) = dec(x,k) in out(resp)

Since the response is sent before the timer starts, it has
time to make it to the verifier before the timer is active.
Hence, [ VerifierE ] | [ !new id.out(id).out(k) | PA ] can
reduce such that the verifier can perform the veri f ied
event, which means that verified(id) : [ VerifierE ] |
[ DP-A(id) ] holds and the attack is possible.

The attack works because the attacker can preempt
the challenge. This can be prevented if the challenge
must be observed before a response can be provided,

which can be achieved by including a nonce in the chal-
lenge and requiring that nonce to be included in a re-
sponse. Hence, we considered the revised specification
(ProverE2(id),VerifierE2,〈k〉), where

VerifierE2 = !in(id).new chal.new resp.
out(enc((chal,resp),k)).
new c2.startTimer.
out(chal,c2).in(=resp,=c2).
stopTimer.event(verify(id))

ProverE2(id) = !new id.!out(id)in(x).
let (chal,resp) = dec(x,k) in
in(=chal,x).out(resp,x)

It can be shown that this fix suffices to defend against
distance fraud attacks. Intuitively, the nonce c2 is only
sent when the timer is running, so the attacker can never
return this in time if not co-located with the verifier.

Terrorist provers are less powerful than dishonest
provers, because they will not send their secret values
to a third party. Nevertheless, by considering terrorist
provers working with another attacker that is co-located
with the verifier, we can identify further attacks.

Definition 5. Distance bound protocol specification
(P(id),V, ñ) is vulnerable to:

• terrorist fraud, if verified(id) : new ñ.[ V | A ] |
[ T P-A(id) ]
• assisted distance fraud, if verified(id):new ñ.[ V |

DP-A(id′) ] | [ T P-A(id) ]

where P(id) = !new id.!Q, DP-A(id′) is as specified in
Definition 4, and T P-A(id) denotes !new id.out(id).!Q′ |
A, where Q′ is the process that acts as an oracle with
all relevant functions for all bound and free names and
private function applications in Q, and A is the context
hole.

The process T P-A will perform operations on behalf of
the attacker, e.g., signing, encrypting and decrypting any
values the attacker wishes, but it will not reveal secret
values.

Example 12. Specification (ProverE2(id), VerifierE2,
〈k〉) is vulnerable to terrorist fraud attacks. We have

T P-A(id) = !(new id.out(id)
| in(x).let y = dec(x,k) in out(y)
| in(x).out(enc(x,k))) | A

This process can receive the encrypted challenge from
the verifier, decrypt it, and send the resulting plaintext to
an attacker process co-located with the verifier, all before
the timer is started. At the verifier’s location we consider
the following attacker process PA = in(chal,resp).in(=
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chal,x).out(resp,x), this process can receive the chal-
lenge information from the terrorist prover process, and
then use it to complete the verifier’s challenge. This suf-
fices to show verified(id):new k.[ V | A ] | [ T P-A(id) ],
hence, the specification is vulnerable to terrorist fraud.

Example 13. The second, more secure, protocol in Ex-
ample 2 can be modelled in our calculus as (V 2,P2,〈〉)
where:

P2(id) = !new id .!out(id) . in(x) .
let (chal,resp) = dec(x, lookup(id)) in
out(ready) . in(=chal,nonce) .
out(xor(nonce, lookup(id)),resp)

V2 = !in(id) . new chal . new resp .
out(enc((chal,resp), lookup(id))) .
in(ready) . new nonce .
startTimer . out(chal,nonce) . in(xb,=resp) .
stopTimer . let xb = h(nonce, lookup(id))

in event(verify(id)) else 0

and lookup is a private function used to find a unique key
shared between one particular prover and the verifier,
and h is a public hash function.

We show in Section 7 that there does not exist any at-
tacker process that can make any of the system contexts
that model the attacker perform a verify event for the id
being tested. Therefore this protocol is secure against all
of these possible, different distance bounding attacks.

We only consider two locations when capturing differ-
ent types of attacks against distance bounding protocols.
More attack scenarios would be possible by considering
attackers at other locations, however, these scenarios are
strictly weaker than those presented, so they would not
lead to interesting definitions.

5 A hierarchy of attacks

We have modelled five types of attack against distance
bounding protocols by considering various scenarios in
which verifiers are deceived into believing they are co-
located with provers. These scenarios consider the fol-
lowing terms:

• V | A, a verifier co-located with a basic attacker (re-
lay fraud and terrorist fraud);
• V , a verifier in isolation (distance fraud);
• V | P(id′), a verifier co-located with honest provers

(distance hijacking);
• V | DP-A(id′), a verifier co-located with dishonest

provers (assisted distance fraud);

• P(id) | A, remote provers co-located with an at-
tacker (relay fraud);
• DP-A(id), remote dishonest provers in isolation

(distance fraud and distance hijacking); and
• T P-A(id), remote terrorist provers in isolation (ter-

rorist fraud and assisted distance fraud).

Yet, numerous combinations of these terms were not
considered by the definitions in the previous section, e.g.,
we have not considered a verifier co-located with a ba-
sic attacker and some other prover, along with a remote
prover and a basic attacker: [V | A | P(id′)] | [P(id) |
P(id)]. We also have not considered co-location of re-
mote dishonest provers, e.g., DP-A(id′) | T P-A(id).

We now consider a more general setting whereby a
verifier is co-located with zero or more of a basic attacker
A, honest provers P(id′), terrorist provers T P-A(id′), and
dishonest provers DP-A(id′). These provers all use iden-
tifiers that are distinct from the identifier id, which is
being used in an attempt to deceive the verifier. More-
over, at a distinct, remote location, we consider one or
more of honest provers P(id), terrorist provers T P-A(id),
and dishonest provers DP-A(id). Furthermore, the re-
mote location may additionally include one or more of a
basic attacker A, honest provers P(id′), terrorist provers
T P-A(id′), and dishonest provers DP-A(id′). This gives
way to 24 ·23 ·24 = 2048 scenarios. Albeit, we can dis-
regard scenarios in which identifier id is absent (since
without this any attack will be an attack on authentica-
tion, rather than a distance bounding attack, and authen-
tication attacks can be found using a range of other well
established methods, e.g. [1]). This gives us 24 · (23−
1) · 24 = 1792 scenarios to consider, significantly more
than the five scenarios that have been identified in the
literature.

We can reduce the number of scenarios we need to
consider by observing that there is a strict order on the
capabilities of the different attacker processes:

Lemma 1. For any distance bounding protocol speci-
fication (P(id),V, ñ), from which we derive DP-A and
T P-A, and for all system contexts C, sets of names E and
names x ∈ {id, id′}, we have

verified(id):C[A | P(x)]
⇒ verified(id):C[T P-A(x)]

⇒ verified(id):C[DP-A(x)]

Moreover, no reverse implication holds.

By filling a context’s hole with a process containing a
hole (as above), we derive a context (which is required
by the verified predicate).

It follows from Lemma 1 that we need not con-
sider more than one of the terms P(x), DP-A(x), or

USENIX Association 27th USENIX Security Symposium    1571



T P-A(x) at a particular location. For instance, the ver-
ifier can perform the verify event in the context [V ] |
[P(id) | A | DP-A(id)] if and only if it can perform the
event in the context [V ] | [DP-A(id)]. Hence, we need
not consider both these contexts; we need only consider
the latter, simpler context.

Honest and dishonest provers represent an arbitrary
number of provers. (The bound name used as the id of
these provers will be substituted for another value by the
(NEW) rule.) Hence, we have:

Lemma 2. For any distance bounding protocol speci-
fication (P(id),V, ñ), from which we derive DP-A and
T P-A, and for any system contexts C[ ], sets of names
E, names id and id′, and X ∈ {P,DP-A,T P-A}, we have:

verified(id):C[X(id′) |X(id)]⇔ verified(id):C[X(id)]

It follows from Lemma 2 that if process X(id) is
present, then it is not necessary to consider the corre-
sponding X(id′) process as well.

When there is a dishonest prover at a different location
to a basic attacker process, the dishonest prover could
send all of its secrets to the basic attacker process en-
abling it to also act as a dishonest prover:

Lemma 3. For any distance bounding protocol specifi-
cation (P(id),V, ñ), from which we derive DP-A, and for
all processes P and Q, names id, tuple of names ñ, and
sets of names E, and all names x (including x = id), we
have that

verified(id):new ñ.[P | A] | [DP-A(x) | Q]
⇔ verified(id):new ñ.[P | DP-A(x)] | [DP-A(x) | Q]
⇔ verified(id):new ñ.[P | DP-A(x)] | [A | Q]

Our observations reduce the number of interesting,
distinct, system contexts to 27, each of which models
a different distance bounding attack scenario, and pro-
tection against which offers a distinct security property.
These 27 contexts are given in the figure in the Appendix.

Lemma 1 lets us order contexts in terms of the strength
of the security properties they represent. For instance, if
we replace T P-A(id) with DP-A(id), then the attacker is
strictly more powerful, and the security properties they
represent are stronger. Additionally, we note that adding
processes to a context will not affect the verified, pred-
icate, e.g., verified(id):C[A]⇒ verified(id):C[A | P(x)].
The partial order this leads to is shown in the figure in
the Appendix.

For any protocol, if it is secure against an attack sce-
nario in this ordering then it is also secure against the
attack scenarios directly below it. Additionally, we can
find examples to show that all the attack scenarios are
different, and that attack scenario that are not directly
above or below each other are unrelated.

This partial ordering of attack scenarios the Appendix
tells us that protection against distance hijacking attacks
is strictly stronger than security against distance fraud
attacks, and that security against assisted distance fraud
is stronger than security against terrorist fraud attacks,
which in turn is a stronger property than security against
relay attacks. However, distance hijacking and assisted
distance fraud are not directly comparable properties. To
illustrate this we could consider a verifier with an over-
ride mode: if a process sent it the secret key of a prover
then it would accept it as local. Such a protocol could be
secure against assisted distance fraud but would not be
secure against distance hijacking.

On the other hand we could consider a verifier that
would correctly distance bound a process and would then
accept any identity from that local process. Such a pro-
tocol could be secure against distance hijacking but not
against assisted distance fraud. Therefore, the strongest
property that a distance bounding protocol can have is
protection from both distance hijacking and assisted dis-
tance fraud.

To separate many of the distance bounding properties
we need to consider a verifier that will verify any pro-
cess that sends it a secret key. This is the difference be-
tween what a dishonest prover and a terrorist prover can
do, however there are currently no proposals for distance
bounding protocols with this behaviour. Therefore, it is
a safe assumption that for any proposed distance bound-
ing protocol, if there is no local attacker process, then the
ability to send a secret key does not add any additional
power. This means that:

Assumption 1. Distance bounding protocols will not be
designed so that a correct prover could send their secret
key to the verifier. I.e.,

verified(id):new ñ.[V ] | [DP-A(id)]
⇔ verified(id):new ñ.[V ] | [T P-A(id)]

All examples of distance bounding protocols we have
seen in the literature do not distance bound the verifier to
the prover. This would mean that the attacker does not
gain any additional power by being local to the prover,
rather than local to the verifier. This further reduces the
number of interesting cases we need to consider.

Assumption 2. In the protocols we consider the
prover does not also distance bound the verifier. I.e.,
verified(id):new ñ.[V | A] | [P(id)]

⇔ verified(id):new ñ.[V | A] | [P(id) | A]
These assumption, along with the lemmas above, leave

us with 14 distance bounding attack scenarios, which can
be ordered using the lemmas above. This ordering is
shown in Figure 3.

Discussion: With the assumption that transmitting the
secret key does not matter, assisted distance fraud be-
comes the most powerful distance bounding property. If
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Figure 3 Ordering of distance bounding attack scenarios that follows from lemmas 1, 2 and 3 and assumptions 1 and
2. Higher properties imply those below them. We write [V (id) | P] | [Q] for verified(id):[V | P] | [Q]

Distance	Fraud	
[V(id)]	|	[DP(id)]		

Mafia	fraud/Relay	
[V(id)|A]	|	[P(id)|A]	

[V(id)]	|	[P(id)|A]	

[V(id)|P(id’)]	|	[P(id)|A]	

Terrorist	Fraud	
[V(id)|A]	|	[TP(id)]	

[V(id)|P(id')|A]	|	[TP(id)]	

Distance	Hijacking	
[V(id)|P(id')]	|	[DP(id)]	

Assisted	Distance	Fraud		
[V(id)|DP(id')		]	|	[TP(id)]	

Remote	a6acker	only	
Uncompromised	Distance	Bounding	

[V(id)|DP(id')]	|	[P(id)|DP(id’)]	

Relay	Hijacking	
[V(id)|P(id')|A]	|	[P(id)|A]	

Trusted	devices	only		

Some	untrusted	devices	

Terrorist	a6acker	

[V(id)]	|	[P(id)|DP(id')]	

[V(id)|A]	|	[P(id)|TP(id')]	 [V(id)|P(id')]	|	[P(id)|DP(id')]	

[V(id)|P(id')|A]	|	[P(id)|TP(id')]		

No	terrorist	a6acker	

Remote	and	local	a6ackers	

Key:	
			P(id):					honest	provers	with	idenGty	“id”				
			V(id):					verifier	wishing	to	verifier	“id”	
			A:											a6acker	process	
			TP(id):		terrorist	provers,	acGng	as	“id”	
			DP(id):		dishonest	provers,	acGng	as	“id”	

Prover	being	checked	
						is	compromised	

Prover	being	checked	
	is	not	compromised	

a distance bounding protocol is secure against this at-
tack scenario, then none of the other attacks are possible.
However, this property is very strong; industrial distance
bounding protocols such as MasterCard’s RRP or NXP’s
proximity check do not have this property nor do they
need it: If a bank card or key fob has been fully com-
promised, then an attacker may send all key information
from this device to the same location as the verifier and
so pass the verification.

The lines which dissect Figure 3 each represent differ-
ent possible attacker models, and each area is dominated
by a single property, which, if checked, will prove secu-
rity for that particular attacker model. Assisted distance
fraud, and all of the other attack scenarios that require a
terrorist fraud attacker process (as indicated by the red
dotted line in Figure 3), rely on the terrorist fraud at-
tacker simply deciding not to send their key. While such
an attacker could exist, there is nothing to stop an at-
tacker, that has compromised a device, from sharing the
secret key. Therefore, the additional protection provided
by protecting against a terrorist attacker is questionable
in some attacker models.

The brown, large dashed lines separates the properties
in which the verifier is checking a compromised prover
from an uncompromised prover. Many of the use cases
for distance bounding protocols aim to protect a device
against relay attack, thereby preventing criminals from

taking a victim’s car or making a payment with the vic-
tim’s EMV card, for instance. In this attacker model,
if the attackers have compromised the device, then they
can simply clone it, making the distance bounding at-
tack unnecessary. In this model, checking verified(id):
[V | DP-A(id′) | A] | [P(id) | DP-A(id′)] ensures that all
of the possible relevant security properties hold. For this
security property to hold, the attacker should not be able
to pretend to be an uncompromised device, regardless of
how many other devices are compromised. We define
this property as uncompromised distance bounding:

Definition 6 (Uncompromised Distance Bounding at-
tack). Given a name id′ and a distance bounding pro-
tocol (V,P(id), ñ), from which we derive a dishonest
prover DP-A(id′), we say that the protocol is vulnera-
ble to an uncompromised distance bounding attack if:
verified(id):new ñ.[V | DP-A(id′)] | [P(id) | DP-A(id′)]
otherwise we say that it is safe from this attack.

As we are dealing with dishonest provers, by Lemma 3:

verified(id):new ñ.[V | DP-A(id′)] | [P(id) | DP-A(id′)]
⇔ verified(id):new ñ.[V | A] | [P(id) | DP-A(id′)]
⇔ verified(id):new ñ.[V | DP-A(id′)] | [P(id) | A]

therefore any of these system contexts could be used
to represent uncompromised distance bounding attacks.
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We choose the one that makes it clear that the dishonest
prover can act at both locations.

The purple dot-dashed line separates the attack sce-
narios that have only a remote attacker from those that
let the attacker act both locally to the verifier and re-
motely. In the case where transmissions from the veri-
fier can be picked up remotely and the attacker can only
act remotely, the strongest possible property is distance
hijacking. However, in many applications the messages
from the verifier are limited to the local area (e.g. due to
the RFID technology as used by contactless EMV cards),
therefore the attacker must be able to act locally to the
verifier and these attack scenarios do not apply.

The green small dashed line marks out the attack sce-
narios that assume trusted hardware from those that al-
low some provers to be compromised. Our ordering
shows that verified(id):new ñ.[V |P(id) |A] | [P(id) |A] is
the most powerful property that can be tested in this cat-
egory. This attacker corresponds to, for instance, a relay
attack against an EMV card, which uses another, differ-
ent EMV card at the verifier’s location. The use of this
other EMV card that is co-located with the verifier makes
it a more powerful attacker than a basic relay attack, but
it is still less powerful than an uncompromised distance
bounding attack, because it does not require any cards to
be compromised. We do not believe this particular attack
scenario has been identified before, as a distinction from
relay attacks, so we call this “relay hijacking”.

In summary, our ordering tells us that:

• If the protocol is aiming to defend against terrorist
fraud attackers, then it should be checked against
assisted distance fraud.
• If the attacker model does not include terrorist fraud

attackers, then the strongest protection a protocol
can have is against both distance hijacking and un-
compromised distance bounding attacks.
• If the attacker model does not require protection for

a compromised prover, then the strongest attack that
needs to be defended against are uncompromised
distance bounding attacks.
• If a distance bounding protocol assumes trusted

hardware devices, then the strongest attack that
needs to be defended against is relay hijacking:
verified(id):[V | P(id′) | A] | [P(id) | A].
• If the attacker model only considers attackers that

are remote from the verifier, then the strongest at-
tack that needs to be defended against is distance
hijacking.

6 Automated reasoning

To enable automated reasoning, we define a compiler
from our timer location calculus to a dialect of the ap-

plied pi calculus with phases [7], which can be automat-
ically reasoned with using the ProVerif tool [8]. Phases
are used to define an ordering on reduction, e.g., pro-
cesses in phase 1 can only be executed before the pro-
cesses in phase 2, which come before the processes in
phase 3, etc. Beyond phases, the applied pi-calculus adds
named communication channels, e.g., out(c,m) outputs
message m on the channel c. Channels can be public or
private, and the attacker can only send and receive mes-
sages on public channels. The applied pi-calculus does
not have timers or locations, and our compiler encodes
the start timer, stop timer and locations using other prim-
itives. Thus, compilation enables distance bounding pro-
tocols to be verified automatically using ProVerif.

We restrict compilation to extended linear processes
that contain at most one timer:

Definition 7. A linear process is a process without par-
allel composition or replication. Moreover, an extended
linear process is a process new ñ.L1 | · · · | Li |!Li+1 | · · · |
!Ln, where L1, . . . ,Ln are linear processes.

Linear processes allow us to express all distance bound-
ing protocols from the literature, so they do not reduce
the usefulness of our method.

Using linear processes, we introduce a technique to
simplify the detection of vulnerabilities and define a
compiler that allows us to take advantage of that tech-
nique.
Proof technique: It follows from Definition 2 that: if
verified(id):new ñ.[!L1 | L2 | A] | [L3 | A] such that only
L1 contains a timer, then there exists a successful ex-
ecution of L1. Moreover, the following lemma shows
that it is sufficient to consider L1 |!blind(L1) in place of
!L1, where blind(L1) is L1 after removing timer actions
(startTimer and stopTimer) and events, hence, it suffices
to isolate timers and events to a single instance of L1.

Lemma 4. For all system contexts new ñ.[!VL | Lv | A] |
[Lp | A], sets of names E and name id, such that VL, Lv
and Lp are linear processes and only VL contains a timer,
we have: verified(id):new ñ.[!VL | Lv | A] | [Lp | A] ⇒
verified(id):new ñ.[VL |!blind(VL) | Lv | A] | [Lp | A].

It follows from Lemma 4 that distance bounding at-
tacks can be detected by checking whether a single in-
stance of the verifier is deceived. Moreover, we need
only consider a single unreplicated timer.
Our compiler: Intuitively, the goal of our compiler is
to encode a single timer using phases. In particular, all
processes should initially be in phase 0, hence, all pro-
cesses are initially active. Once the timer is activated, we
advance all processes at the same location as the timer to
phase 1, hence, only processes at the timer’s location are
active. Finally, once the timer is deactivated, we advance
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all processes to phase 2, hence, all processes are active.
Thus, compilation encodes timers as phases.

Encoding the activation and deactivation of timers as
phases is straightforward, indeed, we merely replace
startTimer.P with 1 :P and stopTimer.Q with 2 :Q. But,
encoding the advancement of other processes at the same
location as the timer from phase 0 to phase 1 is problem-
atic, as is advancing processes at different locations from
phase 0 to phase 2, because we cannot know when pro-
cesses should advance. We overcome this problem by
over-approximating advancement.

We over-approximate by ensuring processes can ad-
vance between phases at any time. It suffices to con-
sider advancements just before input operations, because
processes ready to output can be reduced by an attacker
that receives those outputs before an advancement and
replays the messages received afterwards, and other pro-
cesses do not produce communications, so it does not
matter whether they happen before or after an advance-
ment. We define the following function to produce all
ways in which advancements can be inserted into a pro-
cess before inputs.

Definition 8. Given a timer location calculus process P,
and a non-empty list of integers ds, we define the function
phases, to applied pi-calculus processes, as follows

phases(P,ds) =!P1 |!P2 | · · · |!Pn

where {P1, . . . ,Pn} = phasesSet(P′,ds), P′ equals P
with every in(x) replaced with in(c,x) and every out(M)
replaced with out(c,M) and function phasesSet is defined
as follows:

phasesSet(P, [d])
= {C[d : in(M,x).P′] : P =C[in(M,x).P′]}∪{P}

phasesSet(P,d1 ::d2 ::ds)
= {C[d1 :in(M,x).P′′] : P=C[in(M,x).P′] ∧P′′ ∈

phasesSet(P′,d2 ::ds)}∪ phasesSet(P,d2 ::ds)

Using function phases, we define our compiler, first
for systems with verifiers co-located with attackers and
then for systems with remote attackers.

Definition 9. Given a system context S = new ñ.([!VL |
Lv | A] | [!new id.!PL | Lp | A]) and name id, we define the
compile(id,S) as

new ñ.(tToPh(VL) |
phases(blind(VL), [1,2]) | phases(Lv, [1,2]) |

!new id.phases(PL, [2]) | phases(Lp, [2]))

where tToPh(L) is L after replacing startTimer.P with
1:P and stopTimer.Q with 2:Q and every in(x) replaced
with in(c,x) and every out(M) replaced with out(c,M)

Timers limit communication between locations. Hence,
once timers have been encoded as phases, we no longer
require locations. Thus, our compiler also removes loca-
tions. (Once locations are removed, we can consider a
single hole, rather than multiple holes. Such a hole can
be left implicit, because it will be introduced by Defini-
tion 11, below.) It follows that our compiler outputs
processes in the applied pi calculus with phases, which
can be automatically reasoned with using ProVerif.

When the verifier and attacker are not co-located, we
must prevent the attacker communicating with the ver-
ifier’s location whilst the timer is running. To do this,
we replace the public channel “c” with a private channel
“priv” between phase 1 and 2 (i.e., whilst the timer is ac-
tive), thereby denying the attacker access to the commu-
nication channel. To maintain equivalence between com-
piled processes in the applied pi-calculus with phases and
the original process in the timer location calculus, com-
pilation introduces the following processes:

• !in(c,x).1 : out(priv,x), respectively !1 : in(priv,x).
2 : out(c,x), which allows messages sent on public
channel c in phase 0 (before the timer starts), re-
spectively private channel priv in phase 1 (whilst
the timer is running), to be received on private chan-
nel priv in phase 1, respectively public channel c in
phase 2 (after the timer stops).

The first process permits preemption, whereby a message
is sent before a timer starts and received when the timer
is running, and the second permits a message sent whilst
a timer is running to be received after the timer stops.

• !1 : in(priv,x).out(priv,x), which allows messages
sent on private channel priv to be buffered, i.e., re-
ceived and relayed.

This final process ensures that any reduction by the
(ASYNC) rule on private channel priv in our timer lo-
cation calculus can be mapped to a reduction in the ap-
plied pi-calculus, which has no such rule (a similar pro-
cesses isn’t required for reductions by the (ASYNC) rule
on public channel c, because the attacker process can
simulate such reductions).

Definition 10. Given a system context S = new ñ.[!VL |
Lv] | [!new id.!PL | Lp | A] and a name id, we define
compile(id,S) as

new priv.new ñ.(renameC(priv, tToPh(VL)
| renameC(priv, phases(blind(VL), [1,2]))
| renameC(priv, phases(Lv, [1,2]))
| !new id.(phases(PL, [2])) | phases(Lp, [2])
| !in(c,x).1:out(priv,x) |!1 : in(priv,x)2:out(c,x)
| !1 : in(priv,x).out(priv,x)
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where tToPh(L) is defined above and renameC(a,P) is
process P with every occurrence of the channel c used for
input and output between all 1 : and 2 : actions replaced
with the channel priv.

The ProVerif tool [8] can test to see if there exists an
attacker process that can make an event reachable.In this
paper we only require events that are a function applica-
tion to new names, which can be defined as follows. Al-
though ProVerif can test such properties, the correspond-
ing definition has not previously been formally defined,
we do so here:

Definition 11. We write ev( f (a1, . . . ,ai)), Init :P if there
exists a process Q such that the free names of Q are
a subset of the names Init and Q does not contain any
events, and a trace:

T = Init,{P|Q}→∗ E,{event( f (b1, . . . ,bi)).P′}∪P
and for 1≤ j≤ i the trace T contains the reductions:
E j,P j ∪{new a j.Pj}→ E j ∪{b j},Pi∪{Pj{b j/a j}}

The following theorem tells us that we can check
the compiled system in the applied pi-calculus and con-
cluded security results about the system with locations:

Theorem 1. Given a system context S = new ñ.[!VL |
Lv | A] | [!new id.!PL | Lp | A] or S = new ñ.[!VL | Lv] |
[!new id.!PL | Lp | A], and a name id, we have

not ev(verify(id)),{c} :compile(id,S)
⇒¬ verified({c}, id):S

7 Case studies

We have implemented the compiler introduced in the pre-
vious section. Using this tool and ProVerif we analysed
various distance bounding protocols. The tool and all of
the model files mentioned in this section are available on
the website given in the introduction.

Contactless payment protocols: Smart cards use the
EMV protocol to perform contact-based and contactless
payments via payment terminals [19, 20]. EMV Contact-
less cards make use of ISO/IEC 14443 for the communi-
cation between the card and terminal. ISO/IEC 14443
is a standard that specifies near-field communication at
13.56 MHz. This standard is widely used for bank cards
and cards for access control (e.g. for buildings) and pub-
lic transport. Due to its physical characteristics it is
not possible to communicate over a long distance using
ISO/IEC 14443. Even with a very powerful antenna ac-
tive communication is only possible up to around a me-
ter [23].

The EMV protocol comprises of an exchange of trans-
action data and then the card generates a MAC (called
the Application Cryptogram or AC) using a session key
based on a key shared between the smart card and the

Figure 4 MasterCard’s Relay Resistance Protocol

Reader Card
KM ,PrivC
CertPrivCA(PubB)
CertPrivB(PubC)
Nonce ∈R {0,1}32

PubCA
UN ∈R {0,1}32

SELECT PayPass

PayPass selected

GET PROCESSING OPTIONS

AIP, AFL

EXCHANGE RELAY RESISTANCE DATA, UN

timed Nonce, Timing information

READ RECORD

CertPrivCA(PubB), CertPrivB(PubC), . . .

GENERATE AC, UN, Amount, Currency, . . .

KS = EncKM (ATC)
AC=MACKs (ATC,Amount,UN,..)
SDAD = SignPrivC(AC, Nonce,
Timing information, UN,. . . )

SDAD, AC

card issuer and the Application Transaction Counter
(ATC), which equals the number of times the card has
been used and will provide freshness to the transaction.
The AC is used for verification of the transaction by the
card issuer. As the payment terminal cannot read the
AC, the card also signs the transaction data, known as
the Signed Dynamic Application Data (SDAD) and the
payment terminal uses this to verify the transaction.

MasterCard’s Relay Resistance Protocol (RRP) [20],
as part of an EMV transaction, is presented in Figure 4.
RRP is an extension of the EMV protocol, for which a
new command is added, namely the EXCHANGE RE-
LAY RESISTANCE DATA command. In a regular EMV
session, a transaction is initiated by executing the SE-
LECT command, to select the EMV applet on the smart
card, and then the GET PROCESSING OPTIONS com-
mand to provide information about the capabilities of the
terminal to the card.

The card will typically respond to the GET PRO-
CESSING OPTIONS message with the Application In-
terchange Profile (AIP) and Application File Locator
(AFL), used to indicate the capabilities of the card and
the location of data files respectively. To finalise a trans-
action the GENERATE AC command is used. This com-
mand includes a nonce, known as the Unpredictable
Number (UN), to provide freshness to the transaction,
and an AC, and if the card supports it the SDAD, are
them returned.

The new command added in RRP is the EXCHANGE
RELAY RESISTANCE DATA command, which will be
timed and is typically executed after the GET PROCESS-
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ING OPTIONS command. The terminal will send a
nonce (Terminal Relay Resistance Entropy), which will
also be used as the Unpredictable Number for the rest
of the transaction. The card will respond with another
nonce (Device Relay Resistance Entropy) and three tim-
ing estimates (minimum time for processing, maximum
time for processing and estimated transmission time).
The maximum time serves as an upper bound for the
terminal’s timer. Both random numbers and the timing
information are included in the SDAD. If the card does
not respond in time, it is assumed that it is not actually
present at the current location and the data may be re-
layed.

MasterCard’s RPP is similar to PaySafe [12], though
PaySafe makes fewer changes to the previous EMV spec-
ification. No new commands are introduced; rather than
sending the nonce using the EXCHANGE RELAY RESIS-
TANCE DATA as in RRP, it is included in the GET PRO-
CESSING OPTIONS command and a nonce is added in
the corresponding response. This exchange is timed to
detect possible relay attacks.

Mauw et al. [28] looked at PaySafe and observed that
it is vulnerable to distance fraud attacks and suggested
adding the UN nonce to the timed response to protect
against this. We note that the same weakness to distance
fraud applies to MasterCard’s protocol. Due to the phys-
ical characteristics of ISO/IEC 14443, we consider dis-
tance fraud attacks not to be applicable to protocols using
this standard, as it will always be necessary to have a lo-
cal adversary in order to be able to communicate with the
local reader. Furthermore, once a card is compromised,
it should not lead to a compromise of other cards but the
compromised card should be considered lost as the infor-
mation on it can be used to clone the card, as discussed
in Section 5. This means that we do not consider attacks
such as terrorist fraud or distance hijacking applicable to
these protocols.

NXP’s distance bounding protocols: NXP’s Mifare
Plus cards are used in, for example, public transport and
for building access control and also make use of the
ISO/IEC 14443 specification for contactless communi-
cation. The cards use a proprietary distance bounding
protocol. It is not publicly known what protocol is used.
Nevertheless, NXP have been granted a patent [25] and
have filed a further patent application [14] for distance
bounding technology.

We present the protocol from the granted patent [25]
in Figure 5. As with any protocol on top of ISO/IEC
14443, the session starts with the reader sending a SE-
LECT command to the card and the card responding with
its ID. The distance bounding check will be initialised
by sending a PREPARE PROXIMITY CHECK command.
The card generates a random 8-byte number nP and sends
timing information to the reader indicating how long a

Figure 5 NXP’s patented distance bounding protocol.
The timed step can be repeated up to 8 times

Verifier/Reader Prover/Card

kk

SELECT

id

PREPARE PROXIMITY CHECK

nP ∈R {0,1}64

Timing information: ti

nV ∈R {0,1}64

PROXIMITY CHECK, nV

timed nP

VPC, MACk(VPC,nV ,nP, ti)

MACk(CK,nV ,nP, ti)

reply to the distance bounding check should take. Af-
ter receiving the timing information the reader generates
its own random 8-byte number (nV ), sends this to the
card using a PROXIMITY CHECK command and starts
its timer.

In reply to the PROXIMITY CHECK command the
card sends its own random number and on receiving this
the reader stops its timer and checks the time against the
timing information previously sent by the card. These
steps can send the whole 8-byte nonces in one message,
or the nonces can be split into up to eight exchanges of 1
byte each, so giving multiple time measurements.

Finally, the reader sends a VERIFY PROXIMITY
CHECK with a MAC of the nonces and the timing infor-
mation. The card checks whether the nonces and timing
information are correct, and if so the card replies with
a MAC of its own, again including the nonces and tim-
ing information. The card and readers MAC are distin-
guished by the inclusion of a different constant in each.
The reader checks the card’s MAC, and if it is correct it
verifies the card as being at the same location.

NXP’s other patent application [14] presents the same
protocol but without the timing information (we refer to
this as NXP’s variant 1 below). It also presents a variant
of the protocol in which the reader does not include a
MAC with the PROXIMITY CHECK command (we refer
to this as NXP’s variant 2 below). Similar protocols are
claimed which use encryption rather than MACs. It is
not specified whether there is a unique key per card, or a
global key that is shared between many cards.

Checking prover provided timing information: In
the protocols above the prover sends the verifier informa-
tion about how long responses should take. When test-
ing security properties for these protocols we also need
to ensure that the timing information is correctly authen-
ticated.
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The authentication for the timing information should
be independent of how the information is used, or the
location of the processes, therefore we may reasonably
over-approximate the correctness of the timing infor-
mation by removing the timer actions and running all
processes in parallel in the applied pi-calculus, along
with any required dishonest provers. The ProVerif tool
lets us check the authenticity of information by check-
ing correspondences between events. For protocols that
strongly authenticate the prover’s identity we check the
authenticity of the timing information by adding an
event(start(ti, id)) to the start of the prover being tested,
where it is a name representing the timing informa-
tion, and id is the identity of the prover. We add an
event(end(ti, id)) to the verifier at the point it accepts the
timing information as valid for prover id. For protocols
that are anonymous, or do not authenticate the prover’s
identity, we replace the id in the event with the session
nonces. We check that every end event has a correspond-
ing start event, i.e., the verifier only accepts timing infor-
mation as valid for a prover if the prover also performed
a session with that timing information.

Analysis and results: We modelled MasterCard’s
RRP, PaySafe, NXP’s protocols and several protocols
from the literature as well as our example protocols in
our calculus. Using our tool we compiled these to the
applied pi-calculus with phases, and analyzed the result-
ing models with ProVerif. Table 1 summarizes the results
of our analysis for the different protocols and attack sce-
narios. The compiled models can be significantly larger,
as they scale linearly with the number of input opera-
tions. For example, the PayWave model becomes about
4 times longer than the original model when checking
it for mafia fraud. For the results in Table 1, the verifi-
cation with ProVerif finishes within a second on a sys-
tem with an Intel Core i7-4550U and 8GB of RAM. For
the protocols from the literature we used similar abstrac-
tions to model these as used in [28] and [15]. All models
are available online. For the protocols from the literature
[5, 24, 29, 30, 32, 35, 36] our analysis did not find any
new results, so we focus on the industrial protocols.

We found that all the payment protocols protect
against relay attacks and are safe in the uncompromised
distance bounding scenario. It follows that your bank
card is safe from relay attacks, even if someone else’s
card is compromised. PaySafe and MasterCard’s RRP
protocol do not defend against distance fraud, but Mauw
et al.’s extension does. However, as noted above, dis-
tance fraud attacks are not applicable to protocols using
ISO/IEC 14443, as it is always required to have a local
adversary in order to communicate with the payment ter-
minal. All of the protocols fail to protect against terrorist
fraud attacks but, as discussed, we do not consider these
applicable to the EMV attacker model. Therefore, we
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Example 1 (Section 2) OK Attack Attack Attack N/A
Example 2 (Section 2) OK OK OK OK N/A
PaySafe OK OK Attack Attack N/A
PaySafe with changes [28] OK OK OK Attack N/A
MasterCard’s RRP OK OK Attack Attack OK
NXP’s protocol (unique keys) OK OK Attack Attack OK
NXP’s protocol (global key) OK Attack Attack Attack OK
NXP’s variant 1 (unique keys) OK OK Attack Attack N/A
NXP’s variant 2 (unique keys) OK OK Attack Attack N/A
Meadows et al. [30] OK OK OK Attack N/A
MAD (One-Way) [36] OK OK OK Attack N/A
CRCS [32] OK OK OK Attack N/A
Hancke and Kuhn [24]
Poulidor [35]
Tree-based [5]
Uniform [29]

OK OK OK OK N/A

Table 1: Results of our verification. The last four proto-
cols use the same underlying distance bounding method.

can conclude that all of the payment protocols meet their
security goals with regard to relay attacks.

NXP’s protocols with a unique key for every device
provide the same security against relay attacks as Master-
Card’s RRP and PaySafe. Here we again consider both
distance and terrorist fraud attacks not applicable due to
the underlying ISO/IEC 14443 protocol. However, if we
assume that a global key is shared across a range of de-
vices then security against relay attacks holds, but un-
compromised distance bounding security does not. This
is due to the fact that the compromise of one device is
equal to the compromise of the complete system. This
would represent a major security risk with, for example,
a single compromised key fob putting all cars at risk.

The only property that can distinguish the case where
one compromised device leads either to an attack only
on this one device or to the compromise of the complete
system, is our proposed uncompromised distance bound-
ing property. None of the properties suggested in previ-
ous papers can detect the difference between a global and
unique key used in the NXP protocol, so highlighting the
need for our work.

Regarding the authentication of timing information,
our analysis shows that MasterCard’s RRP, PaySafe and
NXP’s protocols with unique keys correctly bind the
identity to the timing information. As NXP’s protocol
with a global key does not authenticate the identity, we
check the timing information against the session nonces,
and find that it correctly binds these. Therefore, for these
protocols, attacks aimed at the timing information will
not work.

8 Conclusion

We have presented an applied pi-calculus based mod-
elling framework for distance bounding protocols and at-
tacks. We built a hierarchy of distance bounding attack
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scenarios, and we have identified a new scenario for pro-
tocols that do not aim to protect against a compromised
prover. We have defined a compiler from our calculus to
the applied pi-calculus and use this compiler to analyse
several distance bounding protocols, including protocols
by MasterCard and NXP. We have also shown how the
timing profiles used in these protocols can be verified.
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Figure 6 Ordering of all distance bounding attack scenarios that follows from lemmas 1, 2 and 3
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