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1 INTRODUCTION

ABSTRACT

The sensitivity of Pulsar Timing Arrays to gravitational waves (GWs) depends on the noise
present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic to the
pulsar. Intrinsic sources of noise will include rotational instabilities, for example. Extrinsic
sources of noise include contributions from physical processes which are not sufficiently well
modelled, for example, dispersion and scattering effects, analysis errors and instrumental insta-
bilities. We present the results from a noise analysis for 42 millisecond pulsars (MSPs) observed
with the European Pulsar Timing Array. For characterizing the low-frequency, stochastic and
achromatic noise component, or ‘timing noise’, we employ two methods, based on Bayesian
and frequentist statistics. For 25 MSPs, we achieve statistically significant measurements of
their timing noise parameters and find that the two methods give consistent results. For the
remaining 17 MSPs, we place upper limits on the timing noise amplitude at the 95 per cent
confidence level. We additionally place an upper limit on the contribution to the pulsar noise
budget from errors in the reference terrestrial time standards (below 1 per cent), and we find
evidence for a noise component which is present only in the data of one of the four used tele-
scopes. Finally, we estimate that the timing noise of individual pulsars reduces the sensitivity
of this data set to an isotropic, stochastic GW background by a factor of >9.1 and by a factor
of >2.3 for continuous GWs from resolvable, inspiralling supermassive black hole binaries
with circular orbits.

Key words: gravitational waves —methods: data analysis — pulsars: general.

field regime (see e.g. Freire et al. 2012; Shao et al. 2013). These
results rely on the pulsar timing technique (e.g. Lorimer & Kramer

Over the past decades, pulsar astronomy has been instrumental in the
experimental tests of general relativity (GR) and alternative theories
of gravity. Some of the most notable highlights from this research
field include the first evidence of the existence of gravitational
waves (GWs; Taylor & Weisberg 1989), the most precise tests of
GR (Kramer et al. 2006b), as well as tests of alternative theories of
gravity, such as tensor—scalar gravity, in the quasi-stationary, strong-
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2005), which fits the precisely recorded times-of-arrival (TOAs) of
the pulses with a model of the pulsar’s rotational, astrometric and
orbital parameters, as well as signal propagation delays induced by
the ionized interstellar medium between the pulsar and Earth. The
differences between the observed TOAs and those predicted by the
model are called the timing residuals and contain the effects of any
unmodelled physical or instrumental processes.

One of the applications of pulsar timing is the possibility of direct
detection of GWs via the precise timing of an ensemble of pulsars,
commonly referred to as a Pulsar Timing Array (PTA; Foster &
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Backer 1990). The expected effects of GW propagation on the TOAs
were first examined by Sazhin (1978). Later, the idea of using a PTA
for unambiguous direct detection of low-frequency (nHz regime)
GWs based on the predicted cross-correlation of the residuals of
pulsars in various sky positions was proposed by Hellings & Downs
(1983). Subsequent work has identified the potential of modern
timing data for detecting nHz GWs and formulated the detection
methodologies (e.g. Jenet et al. 2004, 2005; Sanidas, Battye &
Stappers 2012).

PTAs are sensitive to the stochastic GW background (GWB) re-
sulting from the incoherent superposition of the GW signals from
the cosmic population of unresolved inspiralling supermassive black
hole binaries (SMBHBSs; e.g. Rajagopal & Romani 1995), contin-
uous GWs (CGWs) from individual, resolvable SMBHB systems
(e.g. Estabrook & Wahlquist 1975), the GWB created from the de-
caying loops of a cosmic string network that may have formed in
the early Universe (e.g. Kibble 1976), a cosmological relic GWB
from the Universe’s inflationary era (e.g. Grishchuk 2005) and the
memory term (long-term change in the GW’s amplitude) from GW
bursts from SMBHB mergers (e.g. Favata 2009). Prior to the detec-
tion, upper limits on the GW amplitudes can impose limits on the
properties of the cosmic SMBHB population (e.g. Shannon et al.
2015), and rule out the presence of nearby SMBHBs proposed by
independent observations (Jenet et al. 2004). In the era of GW as-
tronomy, PTAs using future, hypersensitive telescopes will also be
able to test theories of gravity in the radiative regime. The GW
polarization modes predicted by GR or alternative theories result
in different spatial cross-correlations of the pulsar timing residuals
(e.g. Chamberlin & Siemens 2012). These cross-correlations can be
further modified if the graviton is not massless as predicted by GR
(e.g. Lee 2013).

The pursuit of GW detection using pulsar timing is coordinated by
three consortia; the European Pulsar Timing Array (EPTA; Kramer
& Champion 2013) in Europe, the North-American Nanohertz Ob-
servatory for Gravitational Waves (NANOGrav; McLaughlin 2013)
in North America and the Parkes Pulsar Timing Array (PPTA;
Hobbs 2013) in Australia. The PTAs employ in total eight large
single-dish radio telescopes. The EPTA uses five telescopes, namely
the Effelsberg Radio Telescope (EFF), the Nancay Radio Telescope
(NRT), the Lovell Telescope (JBO), the Westerbork Synthesis Radio
Telescope (WSRT) and the Sardinia Radio Telescope. NANOGrav
uses two telescopes, the Green Bank Telescope and the Arecibo
Radio Telescope, while the PPTA uses the Parkes Radio Telescope.
The three consortia cooperate under the International Pulsar Timing
Array (IPTA) consortium, maximizing the observing efficiency and
data set sensitivity.

The sensitivity of a given PTA is mainly limited by the uncertain-
ties of the TOA measurements, the number of observations and the
data time-span, the number of pulsars, their sky distribution and the
presence of low-frequency noise in the data (see e.g. Lee et al. 2012;
Siemens et al. 2013). While improvements in the instrumentation,
increase of the allocated telescope time to PTAs and discoveries of
new pulsars can address the first three factors, low-frequency noise
needs to be characterized and understood on a pulsar-by-pulsar
basis.

A number of methods have been developed to mitigate the dom-
inant sources of noise in pulsar timing. Temporal variations in the
dispersion measure (DM; integrated free electron density of the
interstellar medium) along the line of sight to the pulsar are a pri-
mary source of low-frequency stochastic noise. DM time delays,
however, depend on the observing frequency, v, as fpy o< DMy =2,
and therefore DM variations can be, to a large degree, corrected
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using multifrequency data (e.g. Keith et al. 2013; Lee et al. 2014).
Improper calibration of the gain of the two receiver feeds or cross-
coupling between the two feeds can potentially lead to distortions
of the total intensity profiles. These instrumental artefacts will in-
troduce additional non-stationary noise components in the timing
residuals (van Straten & Bailes 2003; van Straten 2006). By per-
forming standard calibration observations during every observing
run, we can minimize the presence of such noise in the data (e.g.
Britton 2000). By comparing the noise properties of the same pul-
sars using overlapping data from different telescopes, uncorrected
noise from instrumental instabilities can potentially be identified
(Lentati et al. submitted).

Unfortunately, pulsar timing data also exhibit some levels of
‘timing noise’ (TN), low-frequency, stochastic, achromatic noise,
the physical origin of which is unknown and, as such, cannot be
mitigated. TN is primarily thought to be caused by pulsar rotational
instabilities from various mechanisms. One approach is to consider
simultaneous random walks and discrete jumps (caused, e.g. by mi-
croglitches) in the pulsar’s spin frequency and the spin-down rate
(e.g. Cordes & Downs 1985; D’ Alessandro et al. 1995; Shannon &
Cordes 2010). Based on observational evidence, it is also suggested
that TN can result from accumulated periodic and quasi-periodic
changes in the spin-down rates due to magnetospheric state switch-
ing (Kramer et al. 2006a; Lyne et al. 2010). In addition, intrinsic
noise has also been proposed to be the result of undetected (and
therefore unmodelled) bodies in orbit, such as asteroid belts (Shan-
non et al. 2013) or planetary-mass objects in long, decadal orbits
(Thorsett et al. 1999). Clearly, the measured TN in pulsar timing
data can be a superposition of noise intrinsic to the pulsar, and any
of the above non-intrinsic noise which is not properly mitigated,
e.g. noise by DM variations not properly corrected due to the lack
of sufficient multifrequency data.

While young pulsars show large amounts of low-frequency noise,
millisecond pulsars (MSPs), typically show very low levels of such
noise (Verbiest et al. 2009). It is theorized that MSPs have spun-up
to the observed ms-order rotational periods via mass transfer from
their companions during the system’s evolution (e.g. Alpar et al.
1982). Their highly stable rotations, short periods and absence of
significant temporal changes in their pulse profile shapes (see e.g.
Shao et al. 2013) make them excellent celestial clocks which can be
timed to sub-100 ns precision over decades. MSPs are therefore the
observed sources for GW-detection experiments, and indeed for all
high-precision pulsar timing applications.

Despite their demonstrated rotational stability, some MSPs show
significant amounts of TN. While their TN is considerably weaker
than that of non-recycled pulsars, it can be significant enough to
hinder GW detection. PSR B1937+421 (J1939+2134), the first
ever discovered MSP, is a notable example of an MSP with
strong TN (Kaspi, Taylor & Ryba 1994; Shannon et al. 2013).
Other MSPs show more moderate noise levels, comparable to
the predicted strength of the targeted GWs signals (e.g. PSR
J171340747; see Zhu et al. 2015). The characterization of TN
is therefore of central importance in high-precision pulsar timing
applications.

The measured TN will also contain signals from spatially corre-
lated low-frequency noise (e.g. Tiburzi et al. 2016). Primary exam-
ples are the long sought-after stochastic GWB, the signal caused
by errors in the reference terrestrial time standards (see e.g. Hobbs
et al. 2012) and errors in the Solar system ephemeris (see Cham-
pion et al. 2010). These signals can be distinguished by the spatial
cross-correlations they induce on the timing residuals. The GWB
induces a quadrupole signature (see Section 7.1). Errors in the
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terrestrial time standards produce a fully correlated signal in all
pulsars (see Section 6), while errors in the Solar system ephemeris
can potentially produce a superposition of dipolar correlations be-
tween pulsars, each produced by the error in the predicted location
of a Solar system body. PTAs allow such correlated signals to be
recovered or put upper limits on their power.

Different methods have been proposed and employed to char-
acterize the statistical properties of TN in pulsar data and to per-
form pulsar timing analysis in the presence of correlated noise.
These cover techniques based on frequentist (Matsakis, Taylor &
Eubanks 1997; Coles et al. 2011) and Bayesian statistics (e.g. van
Haasteren et al. 2009; Lentati et al. 2014), both in the time- and
frequency-domain. As part of the efforts to detect GWs, an increas-
ing number of algorithms are being used by the various PTAs to
determine the TN properties of MSPs, motivating work to exam-
ine the possible biases inherent to different methods. In this con-
text, we perform characterization of the TN using two established
methods based on different statistical analyses, Bayesian and fre-
quentist, and make a comparison of their performance and results.
We subsequently use the measured TN properties to search for the
presence of TN unique to specific observing systems, place an up-
per limit on the contribution of clock errors to the measured noise
and investigate the impact of the TN on the data set’s sensitivity to
GWs.

This paper is organized as follows. In Section 2, we describe the
data we use. In Section 3, we present the methods used to calculate
the noise parameters. The results from both methods are presented
in Section 4. In Section 5, we check for TN present only in individual
data subsets and continue to investigate systematics by making a
search for a correlated clock error signal in Section 6. In Section
7, we evaluate the effects of the TN present in our data on their
sensitivity to GWBs and CGWs and finally discuss our conclusions
in Section 8.

2 THE EPTA DATA RELEASE 1.0

We use the EPTA Data Release 1.0 that is presented in Desvignes
et al. (submitted; henceforth D15). The data set is composed of data
recorded with four EPTA radio telescopes: The EFF in Germany,
the NRT in France, the WSRT in the Netherlands and the JBO
in the United Kingdom. The data-recording systems (backends)
used are the Effelsberg—Berkeley Pulsar Processor (EBPP), the
Berkeley—Orléans—Nangay (BON), the Pulsar Machine I (PuMal)
and the Digital Filterbank (DFB), respectively. A more detailed de-
scription of the instruments and data reduction techniques can be
found in D15, where the timing solutions of the pulsars are also
presented.

The data set includes TOAs from 42 MSPs. Their key proper-
ties are summarized in Table 1. We identify observing systems as
unique combinations of telescope, backend and central observing
frequency (receiver). In total, the data set has 18 distinct systems.
The EBPP L-band' data have the longest time-span, with a maxi-
mum of 18 yr, starting from 1996 October, divided into two observ-
ing systems, due to a change in the receiver in 2009. For most of
the sources with EBPP data, all other instruments started recording
from 2007 onwards, dividing our longest pulsar data sets into two
subsets: the first, with single-telescope, single-frequency data and
the second, with multitelescope, multifrequency data. The lack of
multifrequency data in the first half of the data set makes direct

!'1-2 GHz range in centre frequency.

Noise properties of 42 EPTA MSPs 4423

Table 1. General characteristics of the EPTA Data Release 1.0. For each
pulsar we note the total time-span, 7, the ranges of the observing frequencies,
v, the number of observing systems and the number of TOAs. Sources
marked with a star suffer from a gap of ~6 yr (1999-2005) in the Effelsberg
1410 MHz data.

PSR T V range Number of Number of
J-Name (yr) (MHz) systems TOAs
J0030+-0451* 15.1 1345-2678 7 907
J0034—-0534 13.5 323-1628 6 276
J0218+4232 17.6 323-2683 13 1196
J0610—2100 6.9 1365-1632 3 1034
J0613—-0200 16.1 323-2636 14 1369
J06214-1002 11.8 323-2635 10 673
JO751+1807 17.6 1352-2695 9 796
J0900—-3144 6.9 1365-2303 5 875
J1012+5307 16.8 323-2636 15 1459
J1022+1001 17.5 323-2634 10 908
J1024—-0719* 17.3 13462628 9 561
J1455-3330 9.2 1367-1698 3 524
J1600—-3053 7.6 13662298 4 531
J1640+2224 17.3 1335-2636 8 595
J1643—-1224 17.3 1353-2639 11 759
J1713+0747 17.7 820-2637 14 1188
J1721-2457 12.7 1335-1698 4 150
J1730—-2304* 16.7 1352-2629 8 268
J1738+-0333 73 1366-1630 3 318
J1744—1134 17.3 323-2634 9 536
J1751-2857 8.3 1397-1631 3 144
J1801—1417 7.1 1395-1697 3 126
J1802—-2124 72 13662048 4 522
J1804—-2717 8.1 1374-1698 3 116
J1843—1113 10.1 1335-1629 5 224
J1853+1303 8.4 1397-1698 3 101
J1857+0943 17.3 1335-2632 9 444
J1909—-3744 9.4 1367-2681 3 425
J1910+1256 8.5 1366-1630 3 112
J1911-1114 8.8 1397-1630 4 130
J1911+4-1347 75 1365-1698 3 140
J1918—-0642 12.8 1372-1630 6 278
1193942134 24.1 820-2278 12 3172
J1955+2908 8.1 1395-1629 4 157
J2010—-1323 74 13812298 5 390
1201942425 9.1 1365-1629 3 130
1203341734 7.9 1367-1631 4 194
J2124-3358 9.4 1365-2298 5 544
J2145-0750 17.5 323-2683 12 800
1222942643 8.2 1355-2637 6 316
12317+4-1439* 17.3 13522637 8 555
1232242057 7.9 1395-1698 4 229

measurements and corrections of the DM variations impossible. It
is however possible to extrapolate the signal measured in the sec-
ond epoch to the first, under the assumption that the DM variations
signal is stationary (see Lee et al. 2014). This is performed us-
ing the Bayesian analysis methods described in Section 3.2. For a
number of MSPs (e.g. PSR J17134+0747, PSR J1012+45307), mul-
titelescope coverage begins in 1999 with PuMal data, which contain
good quality low-frequency data, allowing direct measurements of
the DM variations almost throughout the data set. We note that four
MSPs (see Table 1) suffer from a gap in the Effelsberg L-band data
for the period between 1999 April and 2005 October. The gap is
due to changes in the observing priorities.

MNRAS 457, 4421-4440 (2016)
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3 METHODS FOR ESTIMATING NOISE
PROPERTIES

For the estimation of the noise properties, we use two different
methods. The first method follows a Bayesian approach, in the
time-frequency domain and is described in Lentati et al. (2014). The
second method uses frequentist statistics based on power-spectral
estimation of the residuals and using algorithms described in Section
3.3, which are an extension of those introduced in Coles et al. (2011).
We first discuss the noise model components, which we use for both
approaches, and then present the details of each method used.

3.1 Noise modelling

We form the timing residuals using the pulsar timing analysis pack-
age TEMPO2 (Hobbs, Edwards & Manchester 2006), which itera-
tively performs a weighted least-squares (wLS) fit of the model to
the TOAs until the reduced chi-squared of the residuals is mini-
mized. Timing models are gradually improved over many years by
incorporating more data. These solutions will often result in tim-
ing residuals scattered beyond what would be expected based on
their formal uncertainties, due to the absence, at this point, of the
stochastic signals in the model. These signals are in general divided
into the time-correlated and uncorrelated components.

The uncorrelated (white-noise) components correct the uncer-
tainties of the timing residuals. The formal uncertainties of the
TOAs are derived by the cross-correlation of the recorded inte-
grated pulse profile with a reference template, which is constructed
using the best available observations. These uncertainties are cor-
rect if the recorded profiles are characterized solely by (white)
radiometer noise and the profile template precisely represents the
intrinsic shape of the integrated profile. However, possible presence
of un-excised radio frequency interference (RFI), temporal varia-
tions in the pulse profile, artefacts in the profiles from instrumental
instabilities or imperfect profile templates can lead to errors in the
uncertainty estimations (e.g. Liu et al. 2011). It is therefore com-
mon practice to include a multiplicative correction factor called
error factor (EFAC). We also add a correction term quadratically
to the formal uncertainty to account for additional scatter in the
TOAs caused by statistically independent physical processes, such
as pulse phase jitter noise (e.g. Shannon et al. 2014). This term is
commonly referred to as error added in quadrature (EQUAD). We
do not investigate the physical origin of the noise included in the
EQUAD:s. This requires a more detailed analysis of the white noise;
for example, jitter noise is dependent on the integration time of the
observation and this needs to be properly taken into consideration if
one wants the EQUAD number to describe an underlying physical
process.

We include one EFAC and one EQUAD term per observing sys-
tem to mathematically model the uncorrelated noise from all pos-
sible processes. The white-noise correction factors should be such
that the data satisfy the central assumption of pulsar timing, that
they are drawn from a random Gaussian process. In other words,
when subtracting the waveforms (induced residuals) of all calcu-
lated stochastic signals from the residuals, their uncertainties should
be such that the residuals are white and the timing solution has a re-
duced chi-squared of unity. The original TOA uncertainty, o, EFAC
(f), EQUAD (q) and corrected uncertainty, &, are related” as

2= fY+q (1

2 This definition is not unique. TEMPO2 by default defines the correction as
6’2 — f2 . (0,2 +q2)

MNRAS 457, 4421-4440 (2016)

We include two stationary time-correlated noise components,
namely the chromatic low-frequency noise from DM variations
and the achromatic TN. Previous studies (e.g. Shannon & Cordes
2010; Coles et al. 2011) have shown that the low-frequency power
spectra of pulsar timing residuals can be adequately modelled with
single power laws for the majority of MSPs. This does not mean
that the TN is necessarily a pure power law, but rather that this func-
tional form is sufficient to describe the data, given the measurement
precision. We examined whether deviations from the single power-
law model are supported by the data using the Bayesian analysis
method. In particular, we performed the noise analysis with two
additional models for the TN spectrum: (i) a model that allows the
power of individual frequency bins to vary independently from the
power-law model and (ii) a model that includes the power law and
an additional sinusoid signal of varying frequency, amplitude and
phase. We evaluated the results using the Bayes factor, i.e. the ratio
of the Bayesian evidence of two competing models (see also Section
3.2). A common interpretation of the Bayes factor is given by Kass
& Raftery (1995), based on which we required a value equal or
greater than 3 to justify the addition of any extra model parameter.
This was not the case for any of the models we compared to the
simple single power-law model.

In this work, we have followed the single power-law formalism
for both analysis methods in order to facilitate their comparison
and the comparison of the measured TN parameters with those
usually used as GW stochastic parameters in the PTA literature.
For isotropic GW signals (see Section 7) one of the most important
properties is the characteristic strain spectrum, £.(f), of the GWB on
the one-sided power spectrum of the induced timing residuals. For
most models of interest, this can be written as a power-law function
of the GW frequency (e.g. Jenet et al. 2005), f as

f)“
h(f)=A( %), 2
f) (ﬁ- @

where A is the (dimensionless) amplitude of the wave, « is the
spectral index® and f; is the reference frequency, typically set to
1 yr~'. The one-sided power-spectral density of the signal is then
given by

AZ f -Y

(=13 ( ﬁ) : 3)
where the power spectrum and strain spectral indices are related as
y =3 — 2«. This is the functional form we use to model the TN. We
set a cut-off at frequency 1/7, where T is the time-span of the data.
The cut-off arises naturally because the fitted pulsar’s spin and spin-
down absorb the power from any achromatic low-frequency signal
below the cut-off frequency. It has been shown (van Haasteren et al.
2009; Lee et al. 2012) that if the spectral index is y < 7 (which is
the case for all MSPs in this paper), the cut-off at frequency 1/7T is
sufficient.

The DM variations have been mitigated using first- and second-
order DM derivatives in the timing model (which are first- and
second-order polynomials) and additionally a power law equivalent
to equation (3). The DM derivatives absorb any power from the
stochastic DM component below the cut-off frequency, in the same
way the spin and spin-down do for the achromatic TN (Lee et al.
2014). The observing frequency dependence of the DM variations
signal is measured in the time-domain via the (multifrequency) tim-
ing residuals, as we show in Section 3.2. The choice of a power-law

3 We define the index positive, but note that in the literature it is sometimes
defined as a negative number.
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spectrum for the DM variations is motivated by the fact that, across a
wide spatial frequency range, the electron density fluctuation spec-
trum usually follows a power law (Armstrong, Rickett & Spangler
1995).

3.2 Noise parameter estimation using Bayesian inference

The first Bayesian investigation of the GWB detectability with PTAs
was performed by van Haasteren et al. (2009). The algorithms were
later applied on EPTA data to derive the EPTA GWB upper limit
(van Haasteren et al. 2011). In that analysis, the TN parameters of
the MSPs were simultaneously estimated with the GWB parameters.
Further work on Bayesian analysis methods for pulsar timing pro-
vided more algorithms, both in time- and time-frequency-domains,
to characterize the properties of TN and DM variations and to per-
form robust pulsar timing analysis in the presence of correlated
noise (e.g. van Haasteren & Levin 2013; Lentati et al. 2013; Lee
et al. 2014).

Bayes’ theorem, which is the central equation for these analysis
methods, states that
pr(©) = X7 @)

z

where O is the model’s parameters, Pr(®) is the posterior proba-
bility distribution (PPD) of the parameters (probability distribution
of the parameters given the model and the data), 7(®) is the prior
probability distribution (pPD) of the parameters (the initial hypoth-
esis of the probability distribution of the parameters for a given
model), L(®) is the likelihood function (which gives the probability
that the data are described by a given model) and Z is the Bayesian
evidence. Following Feroz & Hobson (2008), Z is only a normal-
izing factor independent of ® and can therefore be ignored when
one is interested only in parameter estimation, such that Pr(®)
L(®)r(®). On the other hand, when one is interested in model se-
lection, the ratio of the evidence between two different models, R,
known as the Bayes factor, is used. The probability, P, of a model
compared to another, can the expressed (Kass & Raftery 1995) as

R
TI4+R

The various Bayesian analysis algorithms are distinguished by
the mathematical description of the model parameters and the com-
putational methods used to sample the unnormalized PPD.

Lentati et al. (2014) introduced TEMPONEST, a Bayesian software
package for the analysis of pulsar timing data, available to use as
a TEMPO2 plug-in. The timing solution and the additional stochastic
parameters such as EFACs, EQUADs, DM variations and the TN
(referred to as ‘excess red noise’) can be determined simultaneously.
TEMPONEST uses the Bayesian inference tool MuLTINEST (Feroz &
Hobson 2008) to explore this joint parameter space, whilst using
TEMPO2 as an established means of evaluating the timing model at
each point in that space. For the PPD sampling, TEMPONEST uses the
nested sampling Monte Carlo method (Skilling 2004).

We perform a joint analysis for the timing model and the stochas-
tic parameters. Both the TN and the DM variations are modelled
as Gaussian stochastic signals with power-law spectra as described
by equation (3). TEMPONEST employs the time-frequency analysis
described in Lentati et al. (2013). The TN waveform is expressed
as (here, and henceforth we use boldface characters in equations to
denote matrices) tty = Frya, where Fry is the Fourier transform
with elements F = sin(27tf) + cos(27t f) and corresponding coef-
ficients, a, which are free parameters. The Fourier frequencies take

&)
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values = n/T, with n integers ranging from 1 up to the value nec-
essary to sample frequencies as high as 1/14 d~!. The covariance
matrix of the TN is then described by the following equation (see
Lentati et al. 2015):

Crv = C;' = C;'Frx [(Fn)"Cy P + (9) 7]

(Fo)'C,' (6)

Here, ¥ = (a;a;), is the covariance matrix of the Fourier coefficients
and C,, is the covariance matrix of the white-noise component, a
diagonal matrix with the main diagonal populated by the residual
uncertainties squared, 62 (as in equation 1). The superscript T
denotes the transpose of the matrix.

The covariance matrix for the DM variations, Cpyy, is equivalent
to equation (6), but including an observing frequency dependence.
This is achieved by replacing the F elements with FgM =F;,;D;D;,
where the i,j indices denote the residual numbers, D; = 1/(K;v?),
v; is the observing frequency of the TOA, typically set as the central
frequency of the observing band, and K=2.41x107'® Hz 2cm3pc
s~!, is the dispersion constant.

The likelihood function is the probability that the data (TOAs),
noted as t, are fully described by the timing model signal, T(e),
with parameters € and the stochastic noise. The latter is encoded in
the residuals’ total covariance matrix,

C=C,+Cpm+Cn. @)

Following van Haasteren et al. (2009), and noting that the dif-
ference t — T(e) gives the timing residuals vector, we can write the
likelihood function as:

— ! e 2T C(—1(e) 8)

Jemrc|
After the noise properties are estimated, we produce the TN wave-
forms, which can be estimated from the data using the maximum
likelihood (ML) value of its statistical model parameters, A and
y. As shown in Lee et al. (2014), the ML waveform, #1y, and its
uncertainties, o 1N, are optimally estimated as

try = CnC 't )
with uncertainties estimated as
o = Crn — Cin€ ' Cry. (10)

The uncertainties are estimated as the standard deviation of the
estimator. However, as noted in Lee et al. (2014), since the data
points of TN waveforms are correlated, their interpretation in terms
of uncertainties is meaningless, since this is only valid under the
assumption that the noise is uncorrelated. The uncertainties can
therefore only be used as an indication of the variance of each
point.

We have performed the Bayesian inference analysis twice using
different combinations of pPDs. The pPDs on the timing parameters
are always uniform, centred around the value from the wLS fit of
the timing model by TEmpo2 with a range of 10-20 times their 1o
TEMPO2 uncertainties. This range was chosen after testing verified
that is sufficient for all timing parameters PPDs to converge. For the
noise parameters, the ranges are from 0 to 7 for spectral indices, —20
to 8 for the logarithm of the amplitudes, —10 to —3 for the logarithm
of the EQUADs and 0.3 to 30 for the EFACs. For EQUADs, TN
and DM variations amplitudes, we used two different types of pPDs.
The first is a uniform distribution in log space (log-uniform) and
the second is a uniform distribution in linear space (uniform). Log-
uniform pPDs assume that all orders of magnitude are equally likely
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for the parameter value while for uniform pPDs, we assign the same
probability for all values. The uninformative log-uniform pPDs
will result in PPDs for the parameters that are the least affected
by the pPD and therefore are what we consider as the parameter
measurement. If no significant noise can be detected in the data,
the PPDs are unconstrained and the distribution’s upper limit is
dependent on the lower limit of the pPD. Therefore, a separate
analysis is required using uniform pPDs in order to obtain robust
upper limits. If the signal is strong and the result from a log-uniform-
pPD analysis is a well-constrained PPD, then the change of the pPD
should not affect the result significantly and the PPDs should be
almost identical. As a result, we performed the analysis with the
following combinations of pPDs.

(a) Uniform EQUAD pPDs and log-uniform pPDs for TN and
DM variation amplitudes. This set of pPDs results in upper limits for
EQUAD:s. As such, the solutions have the highest possible timing
residuals uncertainties, resulting in weaker TN and DM variations
detections. The TN and the DM variations are treated in the same
way, giving no prior information that can favour the one over the
other when multifrequency data are not sufficient to de-couple them.
In the absence of multifrequency data one can therefore expect that
their PPDs will not be well constrained.

(b) Uniform TN amplitude and log-uniform pPDs for EQUADs
and DM variation amplitudes: The total white-noise levels of these
solutions are lower, since EQUAD PPDs can be flat if the data do
not support them to be measurable. The use of uniform pPDs for
the TN amplitude and log-uniform for the DM variations results
in solutions in favour of the TN against the DM variations in the
absence of multifrequency data. This set of pPDs will provide the
strictest upper limits on the TN amplitudes. We used the PPDs from
this analysis to calculate the amplitude upper limits at the 95 per cent
confidence level (CL).

3.3 Noise parameter estimation using power-spectral analysis

Power-spectral analysis of pulsar timing data using standard discrete
Fourier transforms is complicated by highly variable error bars, ir-
regular sampling, data gaps (due to difficulties in being granted tele-
scope time at exact regular intervals but also due to loss of data from
technical difficulties, weather conditions, telescope maintenance or
from weak pulses on particular days due to unfavourable interstellar
scintillation) and the presence of TN which has a steep red spectrum.
Fourier transforms require equispaced data points. Interpolation of
data points on regular grids introduces time-correlations in data
points and the presence of strong TN introduces spectral leakage.
In order to bypass such problems, Coles et al. (2011) introduced an
algorithm for pulsar timing analysis in the presence of correlated
noise which employs the use of generalized least-squares (GLS)
analysis of the timing data using the covariance matrix of the resid-
uals (as described in Section 3.2). In brief, the covariance matrix of
the residuals is used to perform a linear transformation that whitens
both the residuals and the timing model. The transformation is based
on the Cholesky decomposition of the covariance matrix.

For this algorithm, initial estimates of the residuals covariance
matrix are necessary, and are obtained using the Lomb-Scargle
periodogram (LSP), which can calculate the power spectrum of
irregularly sampled data. Spectral leakage in the presence of strong
TN with steep power-law spectra is mitigated with pre-whitening
using the difference filter. The difference pre-whitening filter of any
order, k, can be described by yy,. x = Yuw. k- 1t) — Yw k-1t = 1),
where ¢; is the ith sampling time and y,, 4 is the whitened residual
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of difference order k (k = 0 corresponds to the original residuals).
It was suggested to use the lowest order necessary to whiten the
data enough to mitigate spectral leakage. Effectively, this filter is
equivalent to multiplying the power spectrum by a filter (e.g. for
first-order difference, the filter is the square of the transfer function).
After the spectrum is estimated using the pre-whitened data, one
corrects the power spectrum by dividing it with the same filter, a
process known as post-darkening. The low-frequency spectrum can
be fitted with a power-law model leading to the first estimation of
the covariance matrix. Through an iterative process, new estimates
of the spectrum can be achieved by using LSP after whitening the
data using the Cholesky decomposition of the covariance matrix.

Coles et al. (2011) have demonstrated that the implementation of
this method allows better timing solutions with more robust timing
parameters and uncertainty calculations. In particular, the measured
spin and spin-down of the pulsar show the largest improvements,
since they have low-frequency signatures in the Fourier domain
and correlate with TN. However, this method is not optimized to
accurately estimate the TN properties through detailed fitting of
a noise model to the power spectrum. The algorithm described in
Coles et al. (2011) focuses on obtaining a linear, unbiased estimator
of the timing parameters. For this purpose, they demonstrate that
using the GLS timing solutions using the covariance matrices of any
TN models which whiten the data sufficiently to remove spectral
leakage, are statistically consistent. In this work, we extend the
algorithms of Coles et al. (2011), focusing on the precise evaluation
of the power spectra and the power-law model parameters. To this
end, we have developed an independent power-spectral analysis and
model fitting code.

A fully frequentist analysis should include a white-noise and
DM-correction analysis. However, in order to focus on comparing
the methods with regards to the estimation of the TN properties,
we use the ML EFAC and EQUAD values and subtract the ML
DM-variations waveforms derived from the Bayesian analysis.

Our spectral analysis code calculates a generalized LSP, i.e. it
performs a wLS fit of sine and cosine pairs at each frequency. We
follow an iterative procedure as follows: (1) We first use TEMPO2
to obtain the wLS post-fit residuals, while subtracting the ML DM
variations signal estimated with the Bayesian methods described in
Section 3.2. (2) We calculate the spectrum of these residuals using
a chi-squared minimization fit on all frequency points. (3) TEMPO2
is re-run using the covariance matrix of the initial noise model
to perform a GLS fit. (4) Finally, we re-run the spectral analysis
code on the residuals from the GLS timing solution to update the
TN model and repeat steps 3 and 4 until the solution converges.
Typically, this required no more than one iteration.

Our code implements a generalized LSP to account for the tim-
ing residual uncertainties. Denoting each pair of time and residual
as (#;, y;), the LSP is formed by fitting sine—cosine pairs of the
form $(wy, t;) = ay cos(wyt;) + by sin(wyt;) at all angular frequen-
cies, wy = 27 fi, with f; the frequency. The solution is obtained by
minimizing the chi-squared for each wy, weighted by the summed
uncertainties of the timing residuals as

) y; — a sin(wt;) — b cos(wt;)
X = Z 6

an

Once the LSP is calculated, noting the number of timing residuals

as N, the spectral density is finally computed as

2151°T
NZ

S(f) = ) (12)
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We examine whether spectral leakage is present following the
same routine as in Coles et al. (2011). Visual inspection of the
original spectrum allows us to approximately define the frequency
where the red component of the spectrum intersects the flat,
white component. We apply a low-pass filter in time-domain to
separate the high-frequency from the low-frequency residuals and
calculate their individual spectra. The high-frequency spectrum
should be consistent with the high-frequency part of the spectrum
of the original data. If that is not the case, and instead the high-
frequency spectrum is significantly weaker, then leakage is impor-
tant and we need to apply the pre-whitening filter. The code allows
for any order of difference whitening. For this data set, we required
only up to second order. We then proceed with calculating the LSP
as before and finally post-darken the spectrum before calculating
the final spectral density.

We fit the power spectrum with the following function:

AZ
1272

f -v
S(f)=50(?) + Sw, So =

13)
Here, Sy is the spectral density of the high-frequency (white) com-
ponent. The power-law description of the low-frequency component
is equivalent to equation (3), with Sy the spectral density at reference
frequency, f;, which is set to 1yr~!. A fit of only the low-frequency
component is proven difficult; due to the steepness of the spectrum
at low frequencies and moderate power of the TN in many MSPs,
only about five frequency points would be included in a pure power-
law fit of only the red part of the spectrum. This leads to unstable
fits without meaningful error estimations.

The fit minimizes the chi-squared, x 52 Chi-squared minimization
assumes that the spectrum is normally distributed. In principle, the
power spectrum is a chi-squared distribution. However, in logarith-
mic space, the distribution is approximately Gaussian with variance
of order unity. Therefore this is a good approximation if we fit the
power-law model to the spectrum in logarithmic space. By doing
so, we minimize the chi-squared defined as

N f v 2
sz, = Z {1og S; —log (So (?’) + SW) } s (14)

i=1

where S; and f; define the points of the spectrum for each frequency
bin, i, while simultaneously fitting for Sy, y and Sw. We first fit the
spectrum while setting the uncertainties of the LSP points to one
and then scale the uncertainties to achieve a reduced chi-squared of
unity.

Once we obtain the values for the noise parameters, we construct
the covariance matrix of the TN, Cyn. The Fourier transform of
the TN power-law model gives the covariance function, cin(7) =
(try,itry,j). The i and j indices refer to the time epoch of the ob-
servation and T = #; — ¢;. The TN covariance matrix is then formed
by the elements Cry, ;; = c(t1n, ), Where t;; = |t; — t;]. Using the
total covariance matrix (equation 7), we then perform a TEmpo2 GLS
fit on the TOAs, repeat the power-spectrum analysis and power-law
fit to update the model parameter values and iterate these steps until
we converge to a stable solution.

For the cases where the spectra are white-noise dominated and
no measurement of the TN parameters can be achieved on a 3¢
level, we derived upper limits for the TN amplitude. The limits are
at the 95 per cent CL and are calculated as the 2o upper limit of the
white-noise level (Sw in equation 13 and Table 3).
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4 RESULTS

Table 2 summarizes the results of the noise properties determined
using TEMPONEST, while Table 3, summarizes the results from the
power-spectral analysis. The reader can find online* the PPDs of
the TN properties from the Bayesian analysis, the power spectra and
the TN waveforms from both methods. In the rest of this section,
we first discuss the framework under which we compare the results
from the two methods and then proceed with the comparison of
the results in more detail. We conclude this section by presenting
and discussing the results on the white-noise parameters from the
Bayesian analysis.

4.1 Comparing Bayesian and frequentists results

Bayesian analysis is based on the principle that we test a hypothesis
(model) given the data and a pPD. The latter is essential in Bayesian
inference and states our prior degree of confidence on what the PD
of the parameter is. The inference results in the PPD, which is the
updated probability distribution for the unknown parameter, based
on the information provided by the data.

Bayesian inference also assigns the likelihood value for each
model (i.e. for each set of values for all unknown parame-
ters), providing a measure of how well the model describes the
data. To evaluate the TEMPONEST results, we report in Table 2
the ML values of the TN parameters and the median value and
lo uncertainties of the one-dimensional marginalized PPDs. The
uncertainties are calculated such that 68 per cent of the area un-
der the distribution is symmetrically distributed around the me-
dian. The asymmetry of many PPDs will result in asymmetric error
bars.

We sort the PPDs in three categories, and show representative
examples in Fig. 1. We name the first category of distributions
‘well-constrained’; this represents cases where the data were suf-
ficient to obtain good measurements of the noise parameters. As
seen in Fig. 1 for the case of PSR J1012+5307, the PPDs are well
defined and very close to symmetric. As a result, the median values
of the one-dimensional PPDs coincide well with the ML solution.
There are cases where the PPD of at least one of the TN parameters
suffers from long tails due to strong covariances between unknown
parameters (e.g. amplitude of TN and amplitude of DM variations
in the absence of sufficient multifreq