
 
 

University of Birmingham

Towards distributed heterogeneous simulation
using internet of things
Haseeb, Muhammad; Malik, Asad Waqar; Rahman, Anis ur; Hamayun, Mian Muhammad

DOI:
10.1109/JIOT.2019.2939361

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Haseeb, M, Malik, AW, Rahman, AU & Hamayun, MM 2019, 'Towards distributed heterogeneous simulation
using internet of things', IEEE Internet of Things Journal, vol. 6, no. 6, 8824127, pp. 10472-10482.
https://doi.org/10.1109/JIOT.2019.2939361

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2019 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Final published version - DOI: 10.1109/JIOT.2019.2939361

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Apr. 2024

https://doi.org/10.1109/JIOT.2019.2939361
https://doi.org/10.1109/JIOT.2019.2939361
https://birmingham.elsevierpure.com/en/publications/f178e4ff-79b1-425c-8ac1-4e587655e91a


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Towards Distributed Heterogeneous Simulation
using Internet of Things

Muhammad Haseeb, Asad Waqar Malik, Anis U. Rahman, and Mian M. Hamayun

Abstract—Parallel discrete event simulation frameworks have
been widely used to analyze the performance of traditional
applications under different scenarios. The existing frameworks
are designed to work on a cluster and cloud-based computing
environments. With the current advances in the internet of things,
there is a strong need to revamp such traditional frameworks
and make use of the smart connected-devices as an underlying
infrastructure to perform simulations. In this study, we propose a
new simulation framework, which has been specifically designed
to work with diverse heterogeneous devices. The framework
allows these heterogeneous mobile devices to participate in a
distributed simulation while managing network latency, using
device profiles that are maintained by the simulation framework.
Moreover, in the proposed framework, random and context-
aware simulation task distributions have been explored to manage
the devices’ sporadic connectivity. Evaluation results using the
well-known PHOLD benchmark demonstrate a gain in the overall
efficiency of the proposed simulation system.

Index Terms—Discrete event simulation, time warp, internet of
things, distributed simulation, master-worker paradigm, parallel
computation.

I. INTRODUCTION

Parallel Discrete Event Simulation (PDES) has evolved
over the years and is still an active research area due to
its significant application in many fields. It is mainly used
in fields including automation, auto manufacturing, military
training, civil aviation, road traffic monitoring, bio-informatics
and other computer-controlled systems [1]. With different
implementations of distributed simulations, the objectives and
outcomes vary with task requirements of the simulated sys-
tems. These objectives include the prediction of possible
outcomes, validation of the designed models or to discover the
effects of various changes in environments [2]. The existing
simulation techniques can be broadly classified as a time-
stepped and event-driven approaches. In the time-stepped
models, the simulation time advances linearly, whereas, in the
event-driven approaches, simulation time advances from one
event to the next event. The former approach lacks adaptability,
and hence, the latter is widely used due to its adaptability
and application in various domains. Furthermore, PDES over
a distributed environment requires synchronization models to
produce correct results. Therefore, PDES can be further clas-
sified into conservative and optimistic approaches. In case of

M. Haseeb, A. W. Malik, A. U. Rahman and M. M. Hamayun: National Uni-
versity of Sciences and Technology (NUST), Islamabad, Pakistan. A. W. Malik
and A. U. Rahman: Department of Information Systems, Faculty of Computer
Science & Information Technology, University of Malaya, Malaysia. Mian
M. Hamayun: University of Birmingham, Dubai, United Arab Emirates.
Corresponding author: Asad Waqar Malik.

Manuscript received April 19, 2019; revised August -, -.

conservative approaches, the causality constraints are always
enforced by disseminating control messages across simulation
components. In contrast, being optimistic permits violation of
local causality constraint with support for rollbacks, in order
to undo out-of-order executions [2].

With advancements in system architecture and availability
of fast processing units, complex PDES models have been
adopted to simulate realistic scenarios such as traffic modeling
and weather forecasting. But existing simulation frameworks
are designed to work in a cluster-based environment with fixed
number of nodes and stable network connectivity throughout
the simulation run, that is the entire simulation is performed
in a controlled environment. However, with the inception of
cloud computing paradigm, researchers have started using
cloud infrastructure for running such simulations, presenting
new challenges for traditional simulation frameworks. In con-
trast to the cluster environment, it is difficult to provide a
controlled environment for simulation execution in a cloud
setting. Moreover, the cloud offers a multi-tenant environment
with potentially other applications executing on the same node,
on the same rack or even using the same network path and
can adversely affect the overall efficiency of the simulation.
Therefore, traditional frameworks need modifications to per-
form well under a shared cloud environment [3].

Similarly, the adoption of IoT has opened up new research
opportunities for PDES community. With connected devices
termed as smart devices possess computing, networking and
storage capabilities. Even though the resources are limited as
compared to traditional computer systems but they are capable
of running a manageable simulation model. Moreover, these
heterogeneous devices provide a low latency infrastructure
and access to contextual information for simulation runs. The
contextual information about the device’s compute capability
and network connectivity determines its likelihood of selection
for task execution. On the contrary, the traditional simulation
frameworks fail to be ported on to such resource-constrained
devices. Key issues include response delays, sporadic connec-
tivity, variable processing power, and low device memory.

The use of conservative simulation models over heteroge-
neous devices increase the simulation time while decreasing
the overall efficiency of the system. In this situation, the
adoption of traditional optimistic approaches is a better option
as it exploits parallelism. However, frequent rollbacks can
drain device energy quickly. Moreover, sporadic connectivity
in mobile networks can adversely impact simulation results.
Furthermore, both types of simulation approaches i.e. conser-
vative and optimistic, lack any kind of fault tolerance mech-
anisms. This makes the simulation environment even more



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

TABLE I
COMMONLY USED PDES FRAMEWORKS

PDES Language Simulation Context-aware Supports Dynamic Support for
Framework Model Task Distribution Topology Change Low Energy Devices

GloMoSim [4] C-based PARSEC Hybrid × × ×

DaSSF [5] Java/C++ Conservative × × ×

ARTIS GAIA+ [6] C/MPI Conservative/Optimistic × × ×

LUNES [7] C Agent-based × × ×

ScipySim [8] Python Conservative × × ×

ROOT-Sim [9] C Optimistic × × ×

ErlangTW [10] Erlang Optimistic × × ×

Spades [11] Java Agent-based × × ×

GO-Warp [12] GO Optimistic × × ×

Devices Connectivity Backend Processing

Workflow

Big data platform

Search

Operational data

Fig. 1. Typical IoT model where devices are part of a network. The devices
share information with a central unit for further data processing.

complex with heterogeneous devices on different networks and
participating in the distributed simulation. Thus, increasing the
total delay and decreasing the simulation reliability.

Contributions – In this paper, we propose a master-worker
framework to support PDES over smart devices. The frame-
work manages heterogeneous resources and provides fault
tolerance. The master nodes control all devices/nodes partic-
ipating in the simulation. The framework allows joining of
new devices during the simulation, as well as replacement
of existing devices with the newly-joined ones. The key
contributions of the proposed framework are listed below:

(i) Proposes a master-worker paradigm with master nodes
initiating and tracking simulation on available connected
devices. Thus, it supports execution of PDES over het-
erogeneous devices including low energy devices.

(ii) Manages churn behavior of mobile devices dynamically
in order to smooth-out execution of the entire simulation
and to provide a better simulation environment based on
heterogeneous devices.

(iii) Dynamic management of device connectivity and task
distribution resulting in improved overall efficiency, re-
duced number of rollbacks as compared to random
distribution and lesser power consumption. Thus, the
improved efficiency can help in better utilization of IoT/
battery-operated devices.

Organization – The rest of the paper is organized as follows.
Section II covers recent research contributions in the area and
presents reviews on existing frameworks. In Section III system
model is presented. The proposed framework is presented in
Section IV. Section V covers the motivation behind this study.

Simulation parameters and evaluation setup are discussed
in Section VI. Finally, the discussion and conclusions are
presented in Sections VII and IX.

II. RELATED WORK

Over the last couple of decades, many simulation frame-
works have been proposed to support conservative and opti-
mistic approaches for different testbeds. Fujimoto et al. [13]
explains PDES concepts and its real-life applications to give a
better understanding to readers and researchers. Moreover, the
selection of synchronization techniques with respect to such
applications have been discussed in [14]. Time Warp (TW)
algorithm is the most commonly used optimistic simulation
protocol in various applications [15]. Other variants are dis-
cussed in [16] and parameterized TW algorithm [17].

Table I summarizes the commonly used PDES frameworks,
in addition to the TW algorithm discussed above. However,
these frameworks cannot work over IoT devices, as most of the
frameworks are designed to work in controlled environments
i.e. these frameworks cannot handle/tolerate node/device or
packet failures. Therefore, in order to utilize the computing
power of nearby IoT devices, we need a new framework
that can provide fault tolerance features to PDES. Despite
widespread adaption of IoTs in different research domains,
the use of heterogeneous devices for PDES has been explored
to a very limited extent. Over the last decade, technology has
made significant progress in terms of exploiting these smart
devices. In the following sub-sections, we cover these PDES
contributions including algorithms and frameworks.

PDES Frameworks for Internet of Things – Gabriel et
al. [18] use hybrid simulation models for large complex
scenarios. The models are capable of exploiting network
diversity, which is the case for IoT devices. Fundamentally, the
model decomposes a complex simulation scenario into small
individual blocks, each working in a synchronous fashion.
Furthermore, the solution supports three different simulation
models: agent-based, discrete event and script-language; thus,
providing a suitable simulation environment for IoT devices.
Similarly, Giancarlo et al. [19] propose a hybrid approach
exploiting the benefits of agent-based computing. The ap-
proach is integrated with a network simulator to investigate the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

communication challenges when using IoT devices. The afore-
mentioned contributions use conservative approaches requiring
synchronizations before every simulation time advancement.
The extensive use of synchronizations limits the opportunities
for parallelism in such models. Gluhak et al. [20] reviews
existing frameworks with their limitations and concluded that
the existing test-bed simulators are ineffective due to the high
diversity of IoT devices and associated challenges. Brambilla
et al. [21] propose a framework based on DEUS, a discrete
event simulator to study large-scale IoT networks. The simu-
lator is developed in Java and benchmarked in an urban IoT
environment. The main objective of this work is scalability.
Furthermore, the simulator is based on a conservative approach
with no mention of time advancement mechanism. Similarly,
traditional simulation protocols are tested over standalone
battery-operated devices in terms of energy memory and
execution of time [22]. Further, to utilize the computing power
of IoT devices, Artificial Neural Networks (ANNs) are used
for simultaneous data transfer in order to reduce latency and
improve network lifetime [23]. To summarize, a comparison
of IoT simulation frameworks is presented in Table II.

PDES Frameworks for Cloud-based Simulation Models –
On-demand processing power and pay-as-you-go services have
changed many aspects of traditional simulation and its related
algorithms. Over time, parallel and discrete event simulators
have adapted different paradigms to exploit the power of these
services. D’Angelo et al. [33] present an approach to shift from
traditional parallel computing platforms to cloud computing
services by modifying existing techniques. Fujimoto et al.
have presented the overall advancements in PDES over the
years and discussed the future directions as well as chal-
lenges in [34]. Serrano-Iglesias et al. [35] propose DNSE3;
a web-service oriented cloud-based network simulator taking
benefit of the elasticity and scalability features. The main
objective is to run complex large-scale simulations on the
pay-per-use cost model. The proposed simulator takes a range
of parameters, performs the simulation and on completion,
returns results to the end-user. Malik et al. [3] propose a Time-
Warp Straggler Message Identification Protocol (TW-SMIP) to
support optimistic simulation models in cloud environments.
The model dynamically computes barrier points based on the
straggler messages. The results show an improved efficiency
as compared to the traditional TW algorithm in cloud envi-
ronments. Similarly, PDES framework for distributed shared
memory is presented in [36]. The framework introducing
event- and cross-state models with event handlers accessing
memory of any process to change the event pointers. However,
the proposed solution is tested in a private cloud environment.

Cloud is inherently a multi-tenant environment and the exe-
cution of other applications can impact the overall simulation
performance. Limited works have focused on performance
improvement using continuous system monitoring techniques.
For example Peng et al. [37] have proposed a neural network-
based system that transforms tasks into an abstract models.
Such models can be used to efficiently manage resource
allocations in a multi-tenant environment such as cloud.

PDES Framework for High-Level Architecture – High-level
architecture (HLA) is an IEEE Std 1516-2000 designed to

provide usability and interoperability among existing simu-
lation frameworks. HLA implementation provides integration
of existing simulators to provides services for objects, data
and federation management [38]. The objective is to build a
complex multi-scale simulation. Wang et al. [39] present a
rollback back mechanism and its adoption in HLA. In a wide-
area network, communication delays affect the overall simu-
lation performance. However, in such networks, the commu-
nication costs are usually high and it becomes problematic to
synchronize nodes using an optimistic approach. Such network
delays contribute to an increase in total rollbacks. Ziganurova
et al. [40] discuss general rollback issues and propose a
technique to reduce delays using the shortest path approach.
However, in most of the cases, it is unrealistic to control the
underlying network. Distributed simulation development using
HLA is a complex task requiring a sound knowledge of the
HLA standard. To handle this challenge, Falcone et al. [41]
have proposed HLA Development Kit Framework (DKF) to
facilitate the challenging development process.

Literature Review Summary – Parallel and distributed sim-
ulation over heterogeneous devices is an emerging area of
research. Most of the works proposed in PDES cover exe-
cution over a multi-tenant cloud environment with the main
focus on improving efficiency. On the other hand, traditional
frameworks are designed to work in a controlled cluster
environment. In all of the above frameworks, network and
node reliability is assumed by default, which is not the
case with IoT based frameworks. A few such IoT based
simulation frameworks have been proposed in literature (as
discussed above). Most of these framework provides a closed
simulation environment where the dynamic behavior of IoT
devices is not captured. Due to the mobility of IoT devices,
the devices connectivity and dis-connectivity can affect the
simulation performance and outcomes. Similarly, the available
frameworks are developed on top of network simulators, which
mainly focus on studying network parameters such as packet
delivery ratio and transmission delay. These are relatively
different objectives as compared to that of a PDES simulation
framework involving IoT devices. Last but not the least, due to
the complexity of optimistic simulation over IoT devices, the
existing works cover the conservative simulation approaches
only. The proposed framework is based on a master-worker
paradigm managing dynamic behavior of devices and distribut-
ing simulation tasks. This framework considers parameters like
context-awareness, network delays, and packet transfer rate
for task distribution. The master node manages the execution
of the entire simulation including the management of devices
churn behaviour. Furthermore, the proposed framework also
supports multiple master nodes, where a node can act as a
master node for a group of nearby available IoT devices.
Thus, the proposed framework provides a highly scalable
environment.

III. SYSTEM MODEL

We consider a framework based on an undirected graph G =
(V,E) to support distributed simulations in a heterogeneous
environment. Here, the device set V comprises of a master



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE II
COMPARISON OF DIFFERENT IOT SIMULATION FRAMEWORKS

IoT Simulators Platform Open Simulation Context-aware Heterogeneous Intended Support
Independent Source Model Distribution Device for User-defined

(O/C/H/NA) Support (R/A/I)∗ Scheduling Algo.

SimpleIoTSimulator 1 × × C × × I ×

MobIoTSim [24] × C × × A/R ×

IBM BlueMix 2 Cloud-based × NA × × I ×

Google Cloud IoT 3 Cloud-based × NA × × I ×

iFogSim [25] C × × A/R

Cooja 4 × NA × × A,R ×

FogTorch [26] NA × × A/R

RECAP [27] - NA × × A/R ×

EmuFog [28] NA × × A/R

EdgeCloudSim [29] C × × A/R

VirtualFog [30] × C × × A/R

D2D fogging [31] - - C × R

FogNetSim++ [32] C Limited Limited R
∗R: Researchers, A: Academics, I: Industry, O: Optimistic, C: Conservative, H: Hybrid, NA: Not Available

node B supported by N heterogeneous IoT devices referred
to as the workers W . The heterogeneous devices W can be
of different types such as mobile Wm, static Ws devices, and
desktop systems Wd; that is, V = B ∪ (Wm ∪ Ws ∪ Wd).
Furthermore, the set of edges E represents the master-to-
worker and worker-to-worker links. The nodes can be located
at geographically distributed locations.

The master node B offloads simulation events as tasks to its
worker nodes that are available or registered with the network.
These tasks (events) are initially held within a queue termed
as the event queue Q. The queue is maintained at the master
node that communicates with its workers through simulation
messages M . Once the tasks are assigned, the master node
monitors their progress through heartbeat messages Mhb.
The messages make it possible to manage the activities and
status of worker nodes. Additionally, the messages keep track
communication delays dc between the nodes. Note that the
workers may be mobile keep changing the delay over time,
in turn, affecting the overall simulation system performance.
The average delay between the master B and devices W is ex-
pressed as the sum of individual link delays {d1c , d2c , · · · , dNc }
divided by the total number of worker nodes |W |.

µ =
1

|W |
∑
x∈W

dxc (1)

To balance workload, the proposed framework supports indi-
rect connections among devices V . Therefore, when assigning
tasks T , the master node takes into account the number of
hops h to the workers in W . Furthermore, the framework sup-
ports super-peer configuration where worker nodes can act as

1http://www.smplsft.com/
2https://console.ng.bluemix.net/
3http://www.contiki-os.org/
4https://cloud.google.com/solutions/iot/

masters to their nearby devices, to execute any supplementary
tasks generated during execution.

The master nodes B offload computations to their worker
nodes W , which send back results R upon completion of
execution. Most commonly used traffic model such as mas-
ter/slave configuration is employed, where the master commu-
nicates with its slave nodes at any point in time. Notably, there
is heterogeneity in such settings, that is due to the different
computation capabilities of slaves, the latency/bandwidths of
communication channels and/or both. In such heterogeneous
environments, heuristics are used as parameters for scheduling
to effectively minimize total response times [42].

Initially, the system comprises of one master node. Later
on other nodes can act as super-peers (master nodes) for
a limited number of devices and tasks. In the former case,
M/M/1 configuration is used with queue capacity denoted
by K. The mean rate of message arrival is denoted as λ
and mean service rate as µ, equaling 1/E[arrival time] and
1/E[service time], respectively. Here, E[·] is the expectation
operator. ρ is the ratio of arrival and service rate i.e. ρ = λ/µ.
In the implementation, we have assumed that λ and µ are
exponentially distributed. Therefore, the average queue length
lq for a single server queue is,

lq =
ρ2

(1− ρ)
(2)

Similarly, the average wait time in the queue tq is,

tq =
lq
λ

=
ρ

µ(1− ρ)
(3)

The average waiting time in the system tw is,

tw = tq +
1

µ
(4)

Every request generated from master node is a compute-
intensive event (e ∈ Q), which is offloaded using a message



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

(m ∈ M ) to a selected device (w ∈ W ). The events
offloaded to a particular device are stored in a local queue
for unprocessed events QU , while processed events are stored
in another local queue QP .

For all devices w ∈ W an efficiency η is computed using
different node-specific performance parameters, such as the
total number events to be executed m = |QU |+ |QP |, number
of events executed successfully n = |QP |, network latency
σ, and packet transfer rate δ. The efficiency η for any device
w ∈W is a weighted sum of these parameters given as,

η = α · n
m

+ β · 1
σ
+ γ ·

{
1.0 δ > 3Mbps
0.5 otherwise (5)

where (α, β, γ) is set to (0.50, 0.25, 0.25), respectively. As
discussed in [3], efficiency in distributed simulation is defined
as the ratio of committed to total events; therefore, a higher
weight is assigned to the success ratio. Moreover, a device
having more completed tasks shows its stability which is
a critical parameter to compute the efficiency of a node,
especially under high mobility environments. Similarly, 25%
of weight is assigned to each network feature i.e. network
latency and transfer rate. However, for PDES environments,
network stability in terms of successful task execution is given
a higher priority; otherwise, redistribution of tasks not only
increases the simulation execution time but also generates
more rollbacks; thus, can adversely impact the performance
of distributed simulations in the IoT paradigm.

The resulting efficiency value η ranges between [0−1]. In an
ideal situation, a node with η ≈ 1 is considered to be efficient
with high throughput, low latency, and high bandwidth, given
the maximum utilization of the node. This value is updated
over time using heartbeat messages Mhb and stored event
logs. When scheduling an event, the nodes are arranged in a
descending order based on their availability and the computed
value of η. In summary, the mechanism minimizes the overall
execution time and improves the reliability of the system.

IV. PROPOSED DISTRIBUTED SIMULATION FRAMEWORK
FOR HETEROGENEOUS DEVICES

The proposed DISim framework is designed to support dis-
tributed simulation over heterogeneous IoT devices as shown
in Figure 2. These devices are available in large numbers but
with limited resources and communication capabilities. Each
device has its own operating system and set of resources. To
achieve interoperability, a middle-ware is designed to facilitate
the integration of these IoT devices in the form of a network
of nodes. The nodes are permitted to join and leave the
network at any time, with a master node keeping a record of
their availability using control messages. Above the middle-
ware layer, core modules of the proposed framework are
implemented comprising of master and worker modules.

The framework implements a dynamic mechanism that
manages the joining and leaving of devices at simulation run-
time. Thus, it allows handling of newly connected devices to
become part of the simulation grid, either directly to the master
node or indirectly via other nodes. Similarly, both direct and
indirect task distributions are supported as shown in Figure 3.

Distributed Simulation Framework

Distributed Simulation Middleware 

Heterogeneous Operating System 

Fig. 2. High-level Architecture of the Proposed Framework

The master node initiates the simulation and manages
execution on all of its worker nodes. In addition to executing
the tasks assigned by the master node, a worker node can also
act as an intermediate node between the master and another
worker node, that is acting as a master for all other nodes
directly connected to it. Such intermediary nodes are generally
termed as super-peer nodes, capable of dynamically forming
a network of nearby devices used to execute received tasks
and/or other sub-tasks.

Master 

Event 
queue

Job schedular

Results 
queue

Results
Event 
queue

. . . 

Worker n 
Simulator

Event 
queue

Worker 1 
Simulator

Event 
queue

Fig. 3. Master-Worker Model - Worker Node can also be a Master Node

In summary, the master node is at the core of the pro-
posed framework managing the entire simulation tasks and its
outcomes. The master node manages the worker nodes, and
provides the facilities for new devices to join the framework at
any point in time. The framework can be divided into two types
of nodes based on their functionality i.e. master nodes and
worker nodes. The nodes architecture as used by the proposed
framework is detailed in the following sections.

A. Master Node

Master node is implemented as a demon process i.e. running
in the background, and manages the entire framework using
worker and super-peer nodes. All processes get initiated by
the master node, for instance, to track generated events, to
receive processed data, and to monitor worker nodes. The core
components of the master node are shown in Figure 4.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Master Node

Event queue

SIM 
register

Register 
device

Message 
handler

SIM 
results

Device pool

Rollback

Rollback manager

SIM 
events

Update status

Processed 
results

Result 
processor

SIM states

SIM logs

Network Manager

Job 
schedular

Fig. 4. Master Node’s Internal Architecture - Modules and their Interactions

The overall simulation involves all the components shown
in the master node, including the management of client-server
relationship between master and worker nodes. It is pertinent
to note that the master node acts as a client and worker nodes
provide the services i.e. the execution of simulation tasks.
Moreover, all workers directly communicate with their master
node. The master node maintains a hashmap data structure
based repository of all connected and available worker nodes.
The simulation events are distributed among the available
worker nodes by the master, with the help of super-peers,
wherever needed. The master node also keeps information
about the track record of all the connected devices/nodes, in
order to ensure task assignment to more reliable nodes during
the subsequent stages of simulation. The main modules of the
master node are detailed below:

a) Job Scheduler: manages event distribution among
available workers. The scheduling is performed based on
several parameters including network latency, packet transfer
rate, and history of the node. As the events are processed, their
states get updated in the repository maintained by the master
node. The states are stored to support rollbacks, if needed.
Furthermore, executed events are marked successful after
storing their outcomes. Note that the scheduler distributes tasks
based on context, a key feature of the proposed framework,
assigning tasks to workers with the highest response rate and
minimal communication delay. Thus, improving the overall
simulation system efficiency. The underlying algorithm used
to schedule events is presented in Algorithm 1.

Algorithm 1 Job Scheduler
Input S: current simulation
Output w: worker node

1: SetState(S, START)
2: while GetState(S) 6= FINISHED do
3: repeat
4: w ← GetWorker() . Find a suitable worker node
5: until w IS ELIGIBLE
6: e← GetEvent()
7: Send(e, w)
8: SetState(e, SCHEDULED)
9: end while

b) Reducer: manages the outcomes of events from all
of the involved worker nodes. It gathers and stores them
in the repository at the node level. Moreover, the module
also coordinates with the scheduler to keep track of events
and new assignments. This coordination is performed through
the shared repository. As mentioned earlier, the framework
supports super-peers, which can act as reducers for their
directly-connected devices. The implementation used by the
reducer is presented in Algorithm 2.

Algorithm 2 Reducer
Input S: current simulation; w: worker thread
Output e: executed event

1: while GetState(S) 6= FINISHED do
2: Wait() . Wait for message
3: e← ReceiveEvent()
4: if e = φ then
5: SetState(e, HANDLED)
6: else
7: SetState(e, EXECUTED)
8: SetState(w, AVAILABLE)
9: end if

10: end while

c) Network Manager: manages network connectivity
between the master and its workers. The objective is to provide
network interoperability among heterogeneous devices. The
underlying mechanism is presented in Algorithm 3. During
simulation execution, this module checks different simulation
state variables to maintain communication between nodes.
On simulation completion, the module closes all network
connections with the devices, except, to receive heartbeat
messages Mhb from the devices to show their availability.

Algorithm 3 Network Manager
Input S: current simulation
Output m: simulation message

1: SetupServerSocket()
2: while GetState(S) 6= FINISHED do
3: Wait() . Wait for connections
4: t← StartThread() . New thread for connection
5: m← Recv() . Receive message
6: if m 6= φ then
7: s← GetSender(m)
8: Process(m, s)
9: end if

10: end while

d) Simulation Module: runs a modified TW algorithm
over heterogeneous devices. In general, the TW algorithm uses
optimistic synchronization to support distributed simulation
in a cluster environment, where each Logical Process (LP)
executes events independently without coordinating with other
LPs [43]. Each LP executes a set of events without requiring
synchronization until a causality error occurs. This triggers
the rollback mechanism to undo the execution of any out-
of-order events. The events are re-executed in a time-stamped
order. Moreover, to cancel the generated events, the concept of
anti-messages is used. In summary, the algorithm is designed
to work in a peer-to-peer fashion where the same codes get
executed on a large number of processes without synchroniza-
tion. Clearly, this is unsuitable for the proposed framework
where low-energy devices can become part of the distributed



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

simulation at any instant of time. Moreover, to keep track of
device availability, master/worker paradigm is adopted.

The TW protocol is modified to work in a master/worker
paradigm. The resulting implementation minimizes the TW
overhead like memory usage and Global Virtual Time (GVT)
calculation cost. In the proposed framework, the history of
events and simulation states are stored at the master node;
thus, rollback can only occur at the master node. Moreover,
the rollback mechanism on devices can quickly drain their
energy, thus it makes these devices unsuitable for optimistic
simulation. Further, storing states and event history at a master
node can ease the GVT computation without the involvement
of worker nodes/devices. Thus, the above modifications allow
a device to participate in the simulation at any time instant.
On successful execution of an event, the GVT is checked and
updated accordingly. In case there are causality errors, mainly
due to network latency and/or device specifications, these
are handled by subsequent rollbacks initiated by the master
node. For this purpose, the master node uses a repository
containing information about all running and executed events.
The modified TW algorithm supporting optimistic simulation
over low energy devices arranged in a master/worker paradigm
is presented in Algorithm 4.

Algorithm 4 Modified TW using Master/Worker Paradigm
Input W : worker pool; tend: simulation end time
Output S: simulation state variables

1: tGV T ← 0 . Timer for GVT computation
2: QU ← QP ← {φ} . Unprocessed/Processed messages queue
3: Start tp
4: while tp < tend do
5: Enqueue(QU , j) . Enqueue job from buffer
6: m← Dequeue(QU )
7: if m IS REG MSG then . Registration message
8: count← RegisterDevice()
9: end if

10: if m PROCESSED then
11: Enqueue(W , GetDevice(m))
12: S ← UpdateStates()
13: end if
14: if antimessage ARRIVED then
15: Annihilate() and Rollback()
16: end if
17: if W 6= φ then
18: w ← Dequeue(W ) . Get available device
19: e← Dequeue(QU ) . Get unprocessed event
20: SendToDevice(w, e)
21: end if
22: if tGV T EXPIRED then
23: Reset(tGV T )
24: FlushEvents(Qp, ComputeGVT())
25: end if
26: end while

B. Worker Node

The worker node executes events assigned to it by the mas-
ter node. As mentioned earlier, any device in the distributed
environment can act as a worker i.e. it can be a mobile or
static device with varying processing and network connectivity
features. The main objective of using these nodes is to utilize
the processing power available on these devices. The basic
architecture of such a worker node is presented in Figure 5. In
case of worker nodes, the network manager is responsible for

establishing connections and sending regular heartbeat mes-
sages Mhb to their master node, which may be a super-peer.
Using a local simulation module, the worker node maintains
an events queue and a message log to complete assigned
tasks using the worker node Algorithm 5. The functionality
of different modules of a worker node is detailed as follows:

Worker Node

Event queue

Straggler 
messages

SIM logs

Message 
handler

Initiate 
worker

SIM 
events

SIM 
register 

Event 
executor

SIM 
results

Network Manager

Fig. 5. Worker Node Internal Architecture - Modules and their Interactions

Algorithm 5 Worker node – Simulation Model
Input S: current simulation
Output e: executed event; Sv : State variables

1: t← InitThread() . Initialize worker thread
2: success ← Register(t) . Send register message to master
3: if success then
4: SetupSocket() . To receive messages from master
5: Q← {φ} . Incoming message queue
6: while GetState(S) = RUNNING do
7: m← Recv() . Receive message
8: if m IS SIM END then
9: Q← {φ} and SetState(S, COMPLETED)

10: else . Normal message
11: if antimessage ARRIVED then
12: m← Dequeue(Q)
13: else
14: Enqueue(Q,m)
15: mt ← Dequeue(Q) . Pop top event
16: Process(mt)
17: Send(B, UpdateStates(mt))
18: end if
19: end if
20: end while
21: else
22: Quit() . Simulation not running on master
23: end if

a) Message Handler: deals with all communications
between the master and worker nodes. The communication
happens as different types of messages like simulation time-
stamp messages and messages related to registration with
the master nodes. In the later case, as worker nodes can
become part of the simulation grid at any time instant. For
this purpose, a worker node needs to send only a register
message with information of its available resources. Over the
course of simulation execution, the message handler receives
different messages and handles them accordingly. Once the
simulation is completed, the worker node receives an end of
the simulation message from master, that is the worker keeps
its communication channel open until it receives this message.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

b) Event Queue: maintains the events received from the
master node, for execution on the worker node. It commu-
nicates with the message handler to add or remove events
from the queue, particularly the case when straggler messages
are received. The events in this queue are arranged using
time-stamp messages, in their chronological order. The worker
process picks up the earliest event for execution, as per the
time-stamp order.

c) Event Executor: gets the top event (earliest) from
the queue, executes it and forwards the outcomes in the
form of state variables (Sv) to the result manager for onward
submission to the master node (B). The worker module takes
into account the available resources when executing events.
This is done according to the requirements of the simulation.

d) Result Manager: prepares the results as per agreed
format between master and worker node. This module is
added to provide interoperability among heterogeneous de-
vices. Thus, at the time of worker node registration, the master
and worker node also agree on the format of result exchange.

V. A MOTIVATING APPLICATION

Distributed simulation over embedded heterogeneous sys-
tems is an emerging area with many applications where
devices are used to process real-time information to predict
future states. Similarly, in many applications, a network of
sensors is used to dynamically monitor changes in a physical
system. In a real environment, the sensors/devices can be
used to run distributed coordinated simulation where real-time
information is used to project the outcome using models such
as dead reckoning and etc. Consider a collection of Unmanned
Aerial Vehicles (UAVs) monitoring urban traffic, forest fire, or
a chemical accident. These small battery-operated UAVs are
assigned a specific geographical area to monitor and commu-
nicate with a centralized system in case of an anomaly and/or
provide periodic updates. The distributed simulation model
implemented at each UAV can take real-time information to
predict traffic congestion or the direction of a forest fire. The
simulation model adopted for such scenarios is similar to time
warp protocol. In case the prediction is beyond some prede-
fined criterion, the entire simulation rollbacks and computes
new states. Such applications are classified as Dynamic Data-
driven Application Systems (DDAS), as they rely on data col-
lected from various channels, which gets processed to define
future tasks accordingly. However, energy is a major concern
for applications relying on UAVs. Over the years, significant
research has been undertaken to optimize or extend the battery
life of UAVs. The techniques such as UAV swapping, battery
hot-swapping, and wireless power transfer have been proposed
and extensively used [44]. In UAV swapping, the low-power
UAVs are sequentially switched out with fully charged UAVs.
However, in battery hot-swapping, fully-charged batteries are
plugged in; thus, reducing the charging time. In wireless
charging, electromagnetic field (EMF) charging is used to
transfer energy quickly over a short range. Thus, UAVs can
be charged in minutes by hovering over the grid. Whereas, in
non-EMF systems, solar radiation is used to charge the UAVs;
however, for solar charging, high altitude UAVs are suitable.

Fig. 6. Traffic monitoring system based on UAVs to predict future states using
real-time and shared information in a distributed simulation environment.

VI. SIMULATION RESULTS

In order to benchmark the proposed distributed simulation
framework over heterogeneous devices, the PHOLD bench-
mark application is used as an instrumentation tool. Table III
summarizes the master and worker node specification used to
create a heterogeneous architecture environment. The simula-
tion parameters used for the evaluation are listed in table IV.

TABLE III
SYSTEM SPECIFICATIONS: MASTER / WORKER NODES

Parameters Master node Device type 1 Device type 2

CPU i5 Hexa-core Octa-core Quad-core
Clock speed 2.8GHz 1.2GHz 1.4GHz
RAM 16GB 3GB 2GB
Storage 256GB 32GB 16GB
OS Windows Android Android
OS version 8.1 5.1 6.0
Manufacturer Intel Huawei Samsung

TABLE IV
SIMULATION PARAMETERS

Parameters Values

Number of processes 1024
Master node Dedicated system
Worker nodes Handheld devices and dedicated nodes
Communication TCP
Simulation message size 4096 bytes
Implementation language Java Android
Total execution time 1440 mins
Simulation model Optimistic approach
GVT computation 5 mins
Simulation topology Grid

Scheduling Algorithms – Event scheduling for heteroge-
neous devices plays an important role in improving the effi-
ciency of a PDES platform. In this study, we have implemented
two scheduling algorithms: (a) randomized scheduler selects
a free worker node randomly for event execution, and (b) the
context-aware scheduler selects a worker node based on certain
parameters, for example packet transfer rate, network delay,
channel quality and overall node efficiency. The efficiency of
a device is computed using eq. 5. This value is updated at the
master node over time using heartbeat messages Mhb. Thus, in
order to schedule an event, the available devices are arranged
in a descending order of their efficiency i.e. their computed
value of η. The topmost device is selected from the pool for
event execution.

Queuing Nodes and Grid Network Simulation – A bench-
mark application is implemented in this study, which is similar



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

2×2 4×4 8×8 16×16 32×320

5000

10000

Number of nodes

R
o
ll
b
a
ck

s
Scheduling

Context-aware

Random

Fig. 7. Rollbacks for 2×2, 4×4, 8×8, 16×16, and 32×32 worker nodes
over the entire simulation time.

to the one discussed earlier as a motivating example. The
application is a simulation of queuing network in a two-
dimensional grid where each process is assigned a specific area
on the grid. Jobs are maintained at the master node whereas
the worker nodes are logical processes allocated in the grid.
The minimum service time t is ensured through the scheduling
algorithms. Figure 7 represents the execution of the queuing
network for grid sizes: 4 (2×2), 16 (4×4), 256 (16×16), and
1024 (32×32) nodes. Here, the performance of the scheduling
algorithms in terms of rollbacks over different grid sizes is
presented. Similarly, Figure 8 presents the performance of the
scheduling algorithms with 1024 nodes (32×32) reported over
a time span of 24 hours (1440 minutes).

Figure 9 shows the efficiency comparison of scheduling
algorithms for PDES tasks over IoT devices. Recall that
efficiency is the ratio of committed events to the total number
of events. The result shows that the context-aware model
performs better compared to random device selection strategy.
Furthermore, the overall efficiency achieved is around 80%.
These results demonstrates that using more information im-
proves the efficiency of the distributed simulation.

Power consumption in embedded systems plays an impor-
tant role in considering the overall performance. During the
simulation execution, the power usage is benchmarked on
worker nodes. Figure 10 represent the power consumption of a
device used to simulate 1024 (32×32) nodes in a grid network.
The power consumption has highly related to the number of
events processed during the simulation. Furthermore, the num-
ber of event rollbacks is a critical factor that determines the
performance i.e. lesser the rollback events means less power
consumption and improved simulation efficiency. The overall
power consumption during the simulation varies between 30-
35% on mobile devices used for simulation. In comparison,
the context-aware approach performs slightly better than the
random approach in terms of power consumption, thanks to
the better rollbacks-to-event ratio.

VII. DISCUSSION

Traditional frameworks lack the support for heterogeneous
devices to become a part of the distributed simulation network.
In contrast, the proposed framework is designed to permit
joining of heterogeneous devices with varying degree of
computational resources and subsequently participating in the
distributed simulation. Moreover, as the devices are dispersed

0 200 400 600 800 1000 1200 1400
0

5000

10000

Simulation time (mins)

R
o
ll
b
a
ck

s

Scheduling

Context-aware

Random

Fig. 8. Rollbacks for 32×32 grid network with respect to simulation time.
Note that the simulation ran for 24 hours.

2×2 4×4 8×8 16×16 32×32
0

20

40

60

80

100

Number of nodes
E

ffi
ci

en
cy

(%
)

Scheduling

Context-aware

Random

Fig. 9. Efficiency of event scheduling on nodes for 2×2, 4×4, 8×8, 16×16,
and 32×32 grid networks.

over multiple networks, which requires extensive modifications
to the traditional systems in order to deal with the caveats and
problems of a large-scale heterogeneous system.

There is a significant difference between the computational
capabilities of a desktop machine as compared to a hand-held
mobile device, making it difficult to synchronize processes.
Therefore, a comprehensive approach is necessary to take
care of varying computational resources and network delays.
The goal is to utilize the available resources in an efficient
manner while completing a task. In the proposed framework,
statistics regarding each of the worker nodes and employ
locality information is maintained to ensure efficient usage of
simulation system resources. It is evident from the results that
the use of such scheduling algorithms have significant impact
on the performance of a distributed simulated system.

All in all, this study outlines the ground realities and issues
faced when working with an environment of diverse compu-

0 500 1,000 1,500
0

50

100

Simulation time (mins)

P
o
w
er

(m
A
h
)

Scheduling

Context-aware

Random

Fig. 10. Power consumption for 32×32 grid network with respect to
simulation progress. Note that 100% battery is used up during the runs.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

tational resources. The proposed framework demonstrates that
context-aware scheduling performs well by maintaining node
profiles improving simulation performance. Furthermore, the
framework can be extended to implement AI-based scheduling
using node profiles and simulation states. In the future, we
are looking to add more sophisticated scheduling techniques
into the framework and support for devices with specialized
computing capabilities like graphics processors.

VIII. AVAILABILITY

The framework is an open source project and is anony-
mously available on a source repository hosted by GitHub
at https://github.com/mhaseeb-seecs/dsim-simulator. We ex-
pect contributors to add new methods, models and ideas to
the framework. Nevertheless, the authors have an interest
in developing new modules for simulation management and
scheduling, and support specialized devices.

IX. CONCLUSIONS

The proposed PDES framework addresses the limitations of
traditional simulation frameworks and has been designed to in-
clude hand-held devices. The framework dynamically manages
the churn behavior of these devices as well as their sporadic
connectivity. More specifically, the framework has been de-
signed to use heterogeneous devices that are usually dispersed
over multiple networks and encounter frequent connectivity is-
sues. Moreover, the proposed implementation supports widely
used hand-held devices as well as desktop platforms, in order
to provide an inclusive simulation framework. It provides
a set of basic simulation tools with parameters to enhance
the performance of distributed simulations. The framework
manages fault tolerance and uses context-aware services to
improve the efficiency of distributed simulation over IoTs.

In terms of framework’s evaluation, the proposed context-
aware feature is compared with random task distribution over
IoT devices. Experimental results show a 28% reduction in
the overall rollbacks when simulated over a time span of 24
hours. Moreover, above 80% efficiency is observed when using
context-aware task distribution, which includes the dynamic
management of devices’ churn behavior. Similarly, as the
power consumption is directly proportional to total number of
events processed at any device, the overall power consumption
is reduced using the proposed framework due to lesser number
of rollbacks. This feature is especially important for battery
operated IoT devices participating in the PDES simulation. We
strongly believe that this framework can serve as a foundation
for researchers to design simulations and run them across
a network of heterogeneous IoT devices in a distributed
environment. This effort makes the overall process a cost-
effective one as it is able to deal-with node failures during
simulation runs.

In future, we would like to adopt the dynamic task migra-
tion feature using context-awareness and device constraints.
Moreover, artificial intelligence based techniques can be in-
corporated for selecting the most suitable worker nodes for
executing simulation events.

ACKNOWLEDGMENT

The work was supported by the Faculty Program, University
of Malaya, under Grant GPF019D-2019.

REFERENCES

[1] Q. He, M. Ammar, G. Riley, and R. Fujimoto, “Exploiting the pre-
dictability of tcp steady-state to speed up network simulation,” Perfor-
mance Evaluation, vol. 58, no. 2-3, pp. 163–187, 2004.

[2] R. M. Fujimoto, K. S. Perumalla, and G. F. Riley, Network simulation.
Morgan & Claypool Publishers, 2006, vol. 1, no. 1.

[3] A. Malik, A. Park, and R. Fujimoto, “Optimistic synchronization of
parallel simulations in cloud computing environments,” in 2009 IEEE
International Conference on Cloud Computing. IEEE, 2009, pp. 49–56.

[4] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla,
“Glomosim: A scalable network simulation environment,” UCLA com-
puter science department technical report, vol. 990027, no. 1999, p.
213, 1999.

[5] T. J. Delve and N. J. Smith, “Use of dassf in a scalable multiprocessor
wireless simulation architecture,” in 33rd Conference on Winter simula-
tion. IEEE Computer Society, 2001, pp. 1321–1329.

[6] L. Bononi, M. Bracuto, G. D’Angelo, and L. Donatiello, “Scalable and
efficient parallel and distributed simulation of complex, dynamic and
mobile systems,” in 2005 Workshop on Techniques, Methodologies and
Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05).
IEEE, 2005, pp. 136–145.

[7] G. D’Angelo and S. Ferretti, “Highly intensive data dissemination in
complex networks,” J. Parallel Distrib. Comput., vol. 99, pp. 28–50,
2017.

[8] A. I. McInnes and B. R. Thorne, “Scipysim: towards distributed hetero-
geneous system simulation for the scipy platform (work-in-progress),” in
2011 Symposium on Theory of Modeling & Simulation: DEVS Integra-
tive M&S Symposium. Society for Computer Simulation International,
2011, pp. 89–94.

[9] A. Pellegrini, R. Vitali, and F. Quaglia, “The rome optimistic simulator:
Core internals and programming model,” in 4th International ICST
Conference on Simulation Tools and Techniques, 2011, pp. 96–98.

[10] L. Toscano, G. D’Angelo, and M. Marzolla, “Parallel discrete event
simulation with erlang,” in 1st ACM SIGPLAN workshop on Functional
high-performance computing. ACM, 2012, pp. 83–92.

[11] P. F. Riley and G. F. Riley, “Spades—a distributed agent simulation
environmentwith software-in-the-loop execution,” in 2003 Winter Sim-
ulation Conference S. Chick, PJ Sánchez, D. Ferrin, and DJ Morrice,
eds, 2003, pp. 817–825.

[12] G. D’Angelo, S. Ferretti, and M. Marzolla, “Time warp on the go,” in 5th
International ICST Conference on Simulation Tools and Techniques, ser.
SIMUTOOLS ’12. ICST, Brussels, Belgium, Belgium: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2012, pp. 242–248.

[13] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM,
vol. 33, no. 10, pp. 30–53, 1990.

[14] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto, “Efficient
optimistic parallel simulations using reverse computation,” ACM Trans.
Model. Comput. Simul., vol. 9, no. 3, pp. 224–253, 1999.

[15] H. Rajaei, R. Ayani, and L.-E. Thorelli, “The local time warp approach
to parallel simulation,” in ACM SIGSIM Simulation Digest, vol. 23, no. 1.
ACM, 1993, pp. 119–126.

[16] D. Jefferson and R. Fujimoto, “A brief history of time warp,” in
Advances in Modeling and Simulation. Springer, 2017, pp. 97–134.

[17] A. C. Palaniswamy and P. A. Wilsey, “Parameterized time warp (ptw):
an integrated adaptive solution to optimistic pdes,” J. Parallel Distrib.
Comput., vol. 37, no. 2, pp. 134–145, 1996.

[18] G. D’Angelo, S. Ferretti, and V. Ghini, “Distributed hybrid simulation
of the internet of things and smart territories,” Concurrency and Com-
putation: Practice and Experience, vol. 30, no. 9, p. e4370, 2018.

[19] G. Fortino, R. Gravina, W. Russo, and C. Savaglio, “Modeling and
simulating internet-of-things systems: a hybrid agent-oriented approach,”
Comput. Sci. Eng., vol. 19, no. 5, pp. 68–76, 2017.

[20] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafind-
ralambo, “A survey on facilities for experimental internet of things
research,” IEEE Commun. Mag., vol. 49, no. 11, pp. 58–67, 2011.

[21] G. Brambilla, M. Picone, S. Cirani, M. Amoretti, and F. Zanichelli, “A
simulation platform for large-scale internet of things scenarios in urban
environments,” in 1st International Conference on IoT in Urban Space,
2014, pp. 50–55.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

[22] F. Maqbool, A. W. Malik, I. Mahmood, and G. D’Angelo, “Seecssim-a
parallel and distributed simulation framework for mobile devices,” in
2018 IEEE/ACM 22nd International Symposium on Distributed Simula-
tion and Real Time Applications (DS-RT). IEEE, 2018, pp. 1–7.

[23] E. Di Pascale, I. Macaluso, A. Nag, M. Kelly, and L. Doyle, “The
network as a computer: A framework for distributed computing over iot
mesh networks,” IEEE Internet Things J., vol. 5, no. 3, pp. 2107–2119,
2018.

[24] T. Pflanzner, A. Kertész, B. Spinnewyn, and S. Latré, “Mobiotsim:
towards a mobile iot device simulator,” in 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud Workshops (Fi-
CloudW). IEEE, 2016, pp. 21–27.

[25] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[26] A. Brogi and S. Forti, “Qos-aware deployment of iot applications
through the fog,” IEEE Internet Things J., vol. 4, no. 5, pp. 1185–1192,
2017.

[27] J. Byrne, S. Svorobej, A. Gourinovitch, D. M. Elango, P. Liston, P. J.
Byrne, and T. Lynn, “Recap simulator: Simulation of cloud/edge/fog
computing scenarios,” in 2017 Winter Simulation Conference (WSC).
IEEE, 2017, pp. 4568–4569.

[28] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, “Emu-
fog: Extensible and scalable emulation of large-scale fog computing
infrastructures,” in 2017 IEEE Fog World Congress (FWC). IEEE,
2017, pp. 1–6.

[29] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” vol. 29, no. 11.
Wiley Online Library, 2018, p. e3493.

[30] J. Li, J. Jin, D. Yuan, and H. Zhang, “Virtual fog: A virtualization
enabled fog computing framework for internet of things,” IEEE Internet
Things J., vol. 5, no. 1, pp. 121–131, 2018.

[31] L. Pu, X. Chen, J. Xu, and X. Fu, “D2d fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted d2d
collaboration,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3887–
3901, 2016.

[32] T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid, and S. U. Khan,
“Fognetsim++: A toolkit for modeling and simulation of distributed fog
environment,” IEEE Access, vol. 6, pp. 63 570–63 583, 2018.

[33] G. D’Angelo and M. Marzolla, “New trends in parallel and distributed
simulation: From many-cores to cloud computing,” Simulation Mod-
elling Practice and Theory, vol. 49, pp. 320–335, 2014.

[34] R. M. Fujimoto, “Research challenges in parallel and distributed simu-
lation,” ACM Trans. Model. Comput. Simul., vol. 26, no. 4, p. 22, 2016.

[35] S. Serrano-Iglesias, E. Gómez-Sánchez, M. L. Bote-Lorenzo, J. I.
Asensio-Pérez, and M. Rodrı́guez-Cayetano, “A self-scalable distributed
network simulation environment based on cloud computing,” Cluster
Comput., vol. 21, no. 4, pp. 1899–1915, Dec. 2018.

[36] M. Principe, T. Tocci, A. Pellegrini, and F. Quaglia, “Porting event
&cross-state synchronization to the cloud,” in 2018 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation. ACM,
2018, pp. 177–188.

[37] G. Peng, H. Wang, J. Dong, and H. Zhang, “Knowledge-based resource
allocation for collaborative simulation development in a multi-tenant
cloud computing environment,” IEEE Trans. Serv. Comput., vol. 11,
no. 2, pp. 306–317, 2018.

[38] M. Gütlein, R. German, and A. Djanatliev, “Towards a hybrid co-
simulation framework: Hla-based coupling of matsim and sumo,” in
2018 IEEE/ACM 22nd International Symposium on Distributed Simu-
lation and Real Time Applications (DS-RT). IEEE, 2018, pp. 1–9.

[39] X. Wang, S. J. Turner, M. Y. H. Low, and B. P. Gan, “Optimistic
synchronization in hla-based distributed simulation,” Simulation, vol. 81,
no. 4, pp. 279–291, 2005.

[40] L. Ziganurova and L. N. Shchur, “Synchronization of conservative
parallel discrete event simulations on a small-world network,” Phys. Rev.
E, vol. 98, no. 2, p. 022218, 2018.

[41] A. Falcone, A. Garro, S. J. Taylor, and A. Anagnostou, “Simplifying
the development of hla-based distributed simulations with the hla
development kit software framework (dkf),” in 2017 IEEE/ACM 21st
International Symposium on Distributed Simulation and Real Time
Applications (DS-RT). IEEE, 2017, pp. 1–2.

[42] J.-F. Pineau, Y. Robert, and F. Vivien, “The impact of heterogeneity on
master-slave scheduling,” Parallel Comput., vol. 34, no. 3, pp. 158–176,
2008.

[43] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. DiLoreto,
“Time warp operating system,” in SOSP ’87 Proceedings of the eleventh

ACM Symposium on Operating systems principles. ACM, 1987, pp.
77–93.

[44] B. Galkin, J. Kibilda, and L. A. DaSilva, “Uavs as mobile infrastructure:
Addressing battery lifetime,” IEEE Commun. Mag., 2019.

Muhammad Haseeb received the master’s degree
in parallel and distributed systems from National
University of Sciences and Technology (NUST),
Pakistan in 2019 and Bachelor degree in computer
science from Bahauddin Zakariya University (BZU),
Pakistan in 2015. His main research interests include
distributed simulation, cloud/fog computing, internet
of things, machine learning, automated systems, and
natural language processing.

Asad Waqar Malik is an Assistant Professor at
the Department of Computing (DOC), NUST School
of Electrical Engineering and Computer Science
(SEECS). Besides, he is also working as Senior
Lecturer at the Department of Information Systems,
Faculty of Computer Science & Information Tech-
nology, University of Malaya, Malaysia. He finished
his Ph.D. with majors in parallel and distributed
simulation/systems from National University of Sci-
ence and Technology (NUST), Pakistan in 2012.
His primary area of interest includes distributed

simulation, cloud/fog computing, and internet of things.

Anis ur Rahman received the master’s degree in
parallel and distributed systems from Joseph Fourier
University, France, and the Ph.D. degree in com-
puter science from Grenoble University, France, in
2013. He is currently an Assistant Professor with
the School of Electrical Engineering and Computer
Science, National University of Sciences and Tech-
nology, Pakistan. Besides, he is also working as
Research Fellow at the Department of Information
Systems, Faculty of Computer Science & Informa-
tion Technology, University of Malaya, Malaysia.

His main research interests include modeling of visual attention by assessing
the different mechanisms guiding it, salient multi-object image and video seg-
mentation and tracking, and efficient implementations of large-scale scientific
problems on commodity graphical processing units.

Mian Muhammad Hamayun completed his PhD
in Computer Science (System Modeling and Sim-
ulation) from University of Grenoble, France, in
2013. His PhD research focused on Native Sim-
ulation and Modeling of Multi-Processor System-
on-a-Chip (MPSoC) using Hardware-Assisted Vir-
tualization techniques. He is working as a Lecturer
at the School of Computer Science, University of
Birmingham Dubai, United Arab Emirates. His re-
search interests include Virtualization Techniques,
GPGPU Computing, SystemC/TLM based Virtual

Prototyping, Cloud Computing and Internet of Things (IoT).


