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This is an extended version of an article of the same name appearing in the proceedings of CSL-LICS 2014.

On the Pigeonhole and Related Principles
in Deep Inference and Monotone Systems

Anupam Das
INRIA & University of Bath

anupam.das@inria.fr

Abstract
We construct quasipolynomial-size proofs of the propositional pi-
geonhole principle in the deep inference system KS, addressing
an open problem raised in previous works and matching the best
known upper bound for the more general class of monotone proofs.

We make significant use of monotone formulae computing
boolean threshold functions, an idea previously considered in
works of Atserias et al. The main construction, monotone proofs
witnessing the symmetry of such functions, involves an implemen-
tation of merge-sort in the design of proofs in order to tame the
structural behaviour of atoms, and so the complexity of normal-
ization. Proof transformations from previous work on atomic flows
are then employed to yield appropriate KS proofs.

As further results we show that our constructions can be ap-
plied to provide quasipolynomial-size KS proofs of the parity
principle and the generalized pigeonhole principle. These bounds
are inherited for the class of monotone proofs, and we are fur-
ther able to construct nO(log logn)-size monotone proofs of the
weak pigeonhole principle with (1 + ε)n pigeons and n holes for
ε = 1/ logk n, thereby also improving the best known bounds for
monotone proofs.

1. Introduction
The pigeonhole principle states that if m pigeons are sitting in n
holes, and m > n, then two pigeons must be in the same hole. It
can be expressed in propositional logic as follows,

PHPmn :

m∧
i=1

n∨
j=1

pij →
n∨
j=1

m−1∨
i=1

m∨
i′=i+1

pij ∧ pi′j

where pij should be interpreted as “pigeon i sits in hole j”. 1 This
encoding forms a class of propositional tautologies, form > n, that
has become a benchmark in proof complexity [24]. For the case of

1 Notice that the above formula allows the mapping from pigeons to holes
to be many-many. Additional restrictions can be placed on the mapping,
demanding that it is a function or that it is onto, resulting in a logically
weaker formula, but here we consider only the version above.

[Copyright notice will appear here once ’preprint’ option is removed.]

m = n+ 1 many propositional proof systems, such as the cut-free
sequent calculus, Resolution and bounded-depth Frege, only have
proofs of size exponential in n [21] [23], whereas small proofs (of
size polynomial in n) have been constructed for Frege systems, and
so also sequent calculi with cut [11].

This paper presents a novel proof structure for PHPmn , inspired
by previous works of Atserias et al. [2] [3], implemented in a
representation of monotone proofs2 as rewriting derivations [18].
Consequently, we obtain quasipolynomial3-size proofs of PHPn+1

n

in the minimal deep inference system for propositional logic, KS.
This answers questions previously raised in [9] [18] [25] [13] on
the complexity of KS proofs of PHPmn by matching the best known
bound for the more general class of monotone proofs [2].

By making certain generalizations we are able to apply our
methods to obtain quasipolynomial-size KS proofs of the parity
principle and the generalized pigeonhole principle, bounds that
are inherited by the class of monotone proofs. Finally we show
that our proof structure can be applied to yield nO(log logn)-size
monotone proofs of PHP(1+ε)n

n where ε = 1/ = 1/ logk n for
k > 1, significantly improving the best known bound of nO(logn)

inherited from proofs of PHPn+1
n in [2].4 We point out that this

is the first example where considerations in the complexity of
deep inference have yielded improved results for more mainstream
systems in proof complexity.

Deep inference systems for classical propositional logic were
introduced by Guglielmi et al. [15] [8] and, despite significant
progress in recent years on the complexity of deep inference, the
classification of the system KS remains open.

In [9] it was shown that KS polynomially simulates (tree-like)
cut-free sequent calculi but not vice-versa. This result was strength-
ened in [13] where it was shown that KS polynomially simulates
certain fragments of Resolution and dag-like cut-free sequent cal-
culi, and it was also shown that these systems, as well as bounded-
depth Frege systems, cannot polynomially simulate KS. This work
made significant use of proof transformations induced by certain
graph rewriting techniques from [16]. In this way the complexity of
normalizing a monotone proof to a KS proof was reduced to count-
ing the number of paths in the associated atomic flow, the graph
obtained by tracing the journey of each atom through the proof.

It was asked in [25] and [9] whether polynomial-size proofs
of PHPmn exist in KS, and in [25] it was conjectured that no
polynomial-size proofs exist. On the other hand, in [18] Jeřábek
gives proofs in an extended system of weaker variants of the pi-

2 A monotone proof is a proof in the sequent calculus free of negation-steps.
3 A quasipolynomial in n is a function of size nlogΘ(1) n.
4 This result also supports the more general conjecture in the community
that the class of monotone proofs polynomially simulates Frege systems [3]
[19] [20].
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geonhole principle, where the mapping from pigeons to holes is
required to be functional or onto, which normalize to KS proofs of
polynomial size [13]. He uses an elegant black-box construction re-
lying on the existence of the aforementioned Frege proofs, although
he notes that this method does not seem to generalize to PHPmn .

In this work we rely heavily on a propositional encoding of
threshold functions, yielding formulae that count how many of
their arguments are true, and our construction is inspired by the
monotone proofs of PHPmn given by Atserias et al. [2]. They
use the same threshold formulae as us but our main construction,
short proofs that permute the arguments of a threshold formula, is
considerably more involved than the analogous construction in their
paper due to technicalities of the weaker system KS. The tradeoff
is that this more sophisticated proof structure enables us to later
achieve the aforementioned improvement in upper bounds on the
size of monotone proofs for the weak pigeonhole principle.

In [2] simple proofs are provided for each transposition, whence
the result follows since each permutation can be expressed as
a product of at most polynomially many transpositions, result-
ing in monotone proofs whose atomic flows have polynomial
length. However due to this length bound such proofs normalize to
exponential-size KS proofs under the aforementioned transforma-
tions. Instead we notice in Sect. 3 that the specific permutation re-
quired, corresponding to the transposition of a matrix, has a partic-
ularly simple decomposition into logarithmically many interleav-
ings, which we implement as monotone proofs whose atomic flows
have polylogarithmic length and hence normalize to KS proofs in
quasipolynomial time.

In Sect. 4 we generalize this construction by noticing that any
permutation can be decomposed into a product of logarithmically
many riffle shuffles; this is equivalent to the action of applying
merge-sort to the inverse of a permutation. In Sect. 5, we show that
these techniques can be applied to yield the aforementioned proofs
of the parity principle, generalized pigeonhole principle and the
weak pigeonhole principle. In the final result the polylogarithmic
length of the atomic flows of our proof structure is crucial since it
allows us to use smaller monotone formulae that only approximate
threshold functions, and to maintain a sufficiently accurate approx-
imation throughout the various permutations of their arguments.

2. Preliminaries
Deep inference systems for classical logic were introduced in [8]
and studied in detail in [6] and [9]. The representation of proofs we
use here was introduced in [17].

2.1 Propositional Logic
Propositional formulae are constructed freely from atoms (propo-
sitional variables and their duals), also known as literals, over the
basis {>,⊥,∧,∨}, with their usual interpretations. The variables
a, b, c, d range over atoms, with ā, b̄, . . . denoting their duals, and
A,B,C,D range over formulae. There is no object-level symbol
for negation; instead we may write Ā to denote the De Morgan
dual of A, obtained by the following rules:

⊥̄ = >, >̄ = ⊥, ¯̄a = a, A ∨B = Ā∧B̄, A ∧B = Ā∨B̄

For convenience, we consider formulae equivalent under the
smallest equivalence relation generated by the equations below.

[A ∨B] ∨ C = A ∨ [B ∨ C]
(A ∧B) ∧ C = A ∧ (B ∧ C)

A ∨B = B ∨A
A ∧B = B ∧A

A ∨⊥ = A
A ∧> = A
> ∨> = >
⊥ ∧⊥ = ⊥

If A = B, ? ∈ {∧,∨}, then C ? A = C ? B

For this reason we generally omit internal brackets of a formula,
under associativity, as well as external brackets. For clarity we
also use square brackets [, ] for disjunctions and round ones (, )
for conjunctions.

Remark 1 (Equality). Equality of formulae =, as defined above,
is usually implemented as an inference rule in deep inference. It is
decidable in polynomial time [9], and whether it is implemented
as an inference rule or equivalence relation is purely a matter of
convention. Nonetheless we sometimes use it as a ‘fake’ inference
rule, to aid the reader.

It will sometimes be convenient to represent the arguments of a
boolean function as a vector or matrix of atoms. However the order
in which the atoms are to be read is sensitive, and so we introduce
the following notation.

Notation 2 (Vectors and Matrices of Variables). We use bold low-
ercase letters a, b, . . . to denote (row-)vectors of atoms and bold
uppercase letters A,B, . . . to denote matrices of atoms. Vectors
are read in their natural order, and we associate a matrix with the
vector obtained by reading it rows-first. In this way the transpose of
a matrix is equivalent to the vector obtained by reading it columns-
first.

The notation (a, b) denotes the horizontal concatenation of
vectors a and b, and compound matrices are similarly written in the
usual way. The notation (ai)

n
i=1 denotes the vector (a1, . . . , an).

Definition 3 (Rules and Systems). An inference rule is a binary
relation on formulae decidable in polynomial time, and a system
is a set of rules. We define the deep inference system SKS as
the set of all inference rules in Fig. 1, and also the subsystem
KS = {ai↓, aw↓, ac↓, s,m}. Note in particular the distinction
between variables for atoms and formulae.

Remark 4. It is worth pointing out that the formulation of deep
inference with units is very convenient for proof-theoretic manipu-
lation of derivations, and we exploit this throughout. However we
could equally formulate our systems without units with no signif-
icant change in complexity; this approach is taken in [25] and the
equivalence of these two formulations is shown in [12].

Definition 5 (Proofs and Derivations). We define derivations, and
premiss and conclusion functions, pr, cn resp., inductively:

1. Each formula A is a derivation with premiss and conclusion A.
2. If Φ, Ψ are derivations and ? ∈ {∧,∨} then Φ?Ψ is a derivation

with premiss pr(Φ) ? pr(Ψ) and conclusion cn(Φ) ? cn(Ψ).

3. If Φ, Ψ are derivations and
cn(Φ)

ρ −−−−−−−
pr(Ψ)

is an instance of a rule

ρ then
Φ

ρ −−
Ψ

is a derivation with premiss pr(Φ) and conclusion

cn(Ψ).

If pr(Φ) = > then we call Φ a proof. If Φ is a derivation where
all inference steps are instances of rules in a system S with premiss

A, conclusion B, we write
A

Φ
∥∥∥∥∥S
B

. Furthermore, if A = >, i.e. Φ is a

proof in a system S, we write
−

Φ
∥∥∥∥∥S
B

.

We extend our structural rules beyond atoms, to general formu-
lae, below.

Proposition 6 (Generic Rules). Each rule below has polynomial-
size derivations in the system containing s, m, and its respective
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Atomic structural rules Logical rules

>
ai↓ −−−−−
a ∨ ā

⊥
aw↓ −−

a

a ∨ a
ac↓ −−−−−

a

A ∧ [B ∨ C]
s −−−−−−−−−−−−−−
(A ∧B) ∨ C

identity weakening contraction switch

a ∧ ā
ai↑ −−−−−
⊥

a
aw↑ −−
>

a
ac↑ −−−−−
a ∧ a

(A ∧B) ∨ (C ∧D)
m −−−−−−−−−−−−−−−−−−−−−−

[A ∨ C] ∧ [B ∨D]

cut coweakening cocontraction medial

Figure 1. Rules of the deep inference system SKS.

atomic structural rule.
>

i↓ −−−−−−−
A ∨ Ā

⊥
w↓ −−
A

A ∨A
c↓ −−−−−−−

A
A ∧ Ā

i↑ −−−−−−−
⊥

A
w↑ −−
>

A
c↑ −−−−−−−
A ∧A

Proof Sketch. See [8] for full proofs. We just consider the case for
contraction, since that is the only structural rule Gentzen calculi
cannot reduce to atomic form [5]. The proof is by induction on the
depth of the conclusion of a c↓-step.

[A ∨B] ∨ [A ∨B]
c↓ −−−−−−−−−−−−−−−−−−−−

A ∨B
→

[A ∨B] ∨ [A ∨B]
= −−−−−−−−−−−−−−−−−−−−−−−

A ∨A
c↓ −−−−−−−

A
∨

B ∨B
c↓ −−−−−−−

B

(A ∧B) ∨ (A ∧B)
c↓ −−−−−−−−−−−−−−−−−−−−−−

A ∧B
→

(A ∧B) ∨ (A ∧B)
m −−−−−−−−−−−−−−−−−−−−−−−

A ∨A
c↓ −−−−−−−

A
∧

B ∨B
c↓ −−−−−−−

B

Note that the case for c↑ is dual to this: one can just flip the
derivations upside down and replace every formula with its De
Morgan dual. c↓-steps become c↑-steps and s and m steps remain
valid.

We often use these ‘generic’ rules in proof constructions, which
should be understood as abbreviations for the derivations men-
tioned above.

Definition 7 (Complexity). The size of a derivation Φ, denoted |Φ|,
is the number of atom occurrences in it. For a vector a or matrix
A, let |a|, |A| denote its number of elements, respectively.

We will generally omit complexity arguments when they are
routine, for convenience. However we outline the main techniques
used to control complexity in the following sections.

2.2 Monotone and Normal Derivations
We define monotone and normal derivations and relate them to
proof systems in deep inference. We point out that the notion of
monotone derivation given here is polynomially equivalent to the
tree-like monotone sequent calculus [18], and so is consistent with
the usual terminology from the point of view of proof complexity.

Definition 8. A derivation is monotone if it does not contain the
rules ai↓, ai↑. A monotone derivation is said to be normal if it has
the following shape:

A∥∥∥∥∥{aw↑,ac↑,s,m}
B∥∥∥∥∥{aw↓,ac↓,s,m}
C

The significance of normal derivations is that they can be effi-
ciently transformed into KS-proofs of the implication they derive,
as demonstrated in the following proposition.

Proposition 9. A normal derivation

A
Φ
∥∥∥∥∥{aw↑,ac↑,s,m}
B

Ψ
∥∥∥∥∥{aw↓,ac↓,s,m}
C

can be trans-

formed in linear time to a KS-proof of Ā ∨ C.

Proof Sketch. Define the derivation
B̄

Φ̄
∥∥∥∥∥{aw↓,ac↓,s,m}
Ā

by flipping Φ

upside-down, replacing every atom with its dual, ∧ for ∨ and
vice-versa. aw↑-steps become aw↓-steps, ac↑-steps become ac↓-
steps and s and m steps remain valid. Now construct the required

derivation:

>
i↓ −−−−−−−−−
B̄

Φ̄
∥∥∥∥∥̄
A

∨
B

Ψ
∥∥∥∥∥
C

.

We emphasize that it is the existence of an ‘intermediate’ for-
mula in normal derivations, e.g. B in the proof above, that allows
us to isolate all the ↑ steps and flip them into ↓ steps, resulting in a
KS proof. If we started with an arbitrary monotone derivation there
may be no such formula, and so any choice of an intermediate for-
mula would also flip some ↓ steps into ↑ steps.

2.3 Atomic Flows and Normalization
We are particularly interested in those monotone derivations that
can be efficiently transformed to normal ones. A thorough analysis
of the complexity of such transformations is carried out in [13]
in the setting of graph rewriting. We state informally the main
concepts and results here.

Atomic flows and various rewriting systems on them were in-
troduced formally in [16].

Definition 10 (Atomic Flows and Dimensions). The atomic flow,
or simply flow, of a monotone derivation is the vertically directed
graph obtained by tracing the paths of each atom through the
derivation, designating the creation, destruction and duplication of
atom occurrences by the following nodes:

⊥
aw↓ −−

a

→
a ∨ a

ac↓ −−−−−

a

→

a

aw↑ −−

⊤
→

a

ac↑ −−−−−

a ∧ a

→
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→ , → , →

→ , →

, →

Figure 2. Graph rewriting rules for atomic flows.

We do not have nodes for s and m steps since they do not create,
destroy or duplicate any atom occurrences, and we generally con-
sider flows equivalent up to continuous deformation preserving the
vertical order of edges.

The size of a flow is its number of edges. The length of a
flow is the maximum number of times the node type changes in
a (vertically directed) path. The width of a flow is the maximum
number of input or output edges in a subgraph of a connected
component.

For intuition, the width of a flow can be thought of as a measure
of how much a configuration of ac↑ nodes increases the number
of edges in a connected component before a configuration of ac↓
nodes decreases it.

Example 11. We give an example of a monotone derivation and
its flow below:

a
ac↑ −−−−−
a ∧ a

∨

⊥
aw↑ −−

a
ac↑ −−−−−
a ∧ a

m −−−−−−−−−−−−−−−−−−−−−−−−−−
a ∨ a

ac↓ −−−−−
a

= −−−−−−−−−−−

a ∨
⊥

aw↓ −−
b

∧
a ∨ a

ac↓ −−−−−
a

s −−−−−−−−−−−−−−−−−−−−−−−−−−

a
ac↑ −−−−−
a ∧ a

∨

b
aw↑ −−
>
∧ a

= −−−−−−−−−−−
a

The flow has length 3, measured from the top-right aw↓ node to the
bottom-left ac↑ node, and width 4, measured either as the outputs
of the two top ac↑ nodes or the inputs of the two bottom ac↓ nodes.

Observation 12. A normal derivation has flow length 1.

Theorem 13 (Normalization). A monotone derivation Φ whose
flow has width w and length l can be transformed into a normal
derivation of size |Φ|·wl+O(1), preserving premiss and conclusion.

While the proof of the above theorem can be found in [13],
we outline the main ideas to give the reader an intuition of the
argument.

Proof Sketch. The graph rewriting rules in Fig. 2 induce transfor-
mations on monotone derivations by consideration of the corre-
sponding rule permutations; note that, due to atomicity of the struc-
tural rules, permutations with logical steps are trivial. The system
is terminating and the flows of normal derivations are all normal
forms of this system. Each rewrite step preserves the number of
maximal paths between pending edges, and a normal derivation has
size polynomial in this measure.

Consequently the complexity of normalizing a monotone deriva-
tion is polynomial in its size and the number of maximal paths in
its flow, and this is estimated by the given bound.

Notice, in particular, that any rewrite derivation on atomic flows
acts independently on different connected components. Therefore
the complexity of normalization is determined by the structural
behaviour of individual atoms - there is no interaction between
distinct atoms during normalization.

Finally, most of the proofs in this work are inductions, and
for the base cases it will typically suffice to build any monotone
proof of a single formula or simple class of formulae, since we are
interested in how the size (or width, length) of the proofs grow and
not their initial values. For this reason, the following result will be
useful, and we implicitly assume it when omitting base cases of
inductions.

Proposition 14 (Monotone Implicational Completeness). LetA,B
be negation-free formulae such that A→ B is valid. Then there is

a monotone derivation
A∥∥∥∥∥
B

.

Proof Sketch. Construct a disjunctive normal form A′ of A and
conjunctive normal form B′ of B by distributivity. Note that all
distributivity laws are derivable by Dfn. 19 and duality, so there

are monotone derivations
B′∥∥∥∥∥
B

and
A∥∥∥∥∥
A′

. Clearly each conjunction

of A′ logically implies each disjunction of B′ and so there must
be derivations in {aw↓, aw↑} witnessing this fact. Using these
derivations and applying c↓, c↑ appropriately we can construct a

monotone derivation
A′∥∥∥∥∥
B′

, whence the result follows by sequential

composition of these derivations.

By appealing to Thm. 13 we then obtain the following result.

Corollary 15. Normal derivations are monotone implicationally
complete.

3. Short Proofs of the Pigeonhole Principle
Throughout this section the variables m and n are powers of 2 and
m ≤ n. All proofs in this section are monotone unless otherwise
mentioned.

3.1 Threshold Formulae and Permutations
Threshold functions are a class of boolean functions THnk :
{0, 1}n → {0, 1} by THnk (σ1 · · ·σn) = 1 just if

∑n
i=1 σi ≥ k.

In this section we define quasipolynomial-size monotone for-
mulae computing such functions and construct derivations whose
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flows have length logO(1) n and width O(n) that conduct certain
permutations on the arguments of such formulae.

Definition 16 (Threshold Formulae). We define the formulae,

th1
k(a) :=


> k = 0

a k = 1

⊥ k > 1

th2n
k (a, b) :=

∨
i+j=k

thni (a) ∧ thnj (b)

for vectors a, b of length n.

Observation 17. thnk computes the threshold function THnk , and
has size nO(logn) and depth O(logn).

Definition 18 (Interleaving). For a = (a1, . . . , an), b = (b1, . . . , bn)
let a 9 b denote the interleaving of a with b: (a1, b1, . . . , an, bn).

More generally, we denote by a 9m b the m-interleaving:

(a1, . . . , am, b1, . . . bm, · · · , an−m+1, . . . , an, bn−m+1, . . . , bn)

Definition 19 (Distributivity). We define distributivity rules as
abbreviations for the following derivations:

dist ↑ :

A
c↑ −−−−−−−
A ∧A

∧ [B ∨ C]

2·s −−−−−−−−−−−−−−−−−−−−−
(A ∧B) ∨ (A ∧ C)

dist ↓ :

(A ∧B) ∨ (A ∧ C)
m −−−−−−−−−−−−−−−−−−−−−

A ∨A
c↓ −−−−−−−

A
∧ [B ∨ C]

Lemma 20. There are monotone derivations,

th2n
k (a, b)∥∥∥∥∥

th2n
k (a 9m b)

whose flows have length O(logn) and width O(n).

Proof. We use the following identity:

(a, b) 9m (c,d) = (a 9m c, b 9m d)

We give an inductive step from n to 2n in Fig. 3 where derivations
marked IH are obtained by the inductive hypothesis.

The dist ↑ steps duplicate each atom at most r times and
so, analyzing the associated flow, each inductive step adds O(r)
configurations of ac↑ and ac↓ nodes of width O(r) on top of
O(r) copies of the inductive hypothesis in parallel. The induction
terminates in log n

m
steps, whence the bound on length is obtained.

Observation 21. For matrices B and C of equal dimensions we
have:5 (

A B
C D

)ᵀ

=

(
Aᵀ Cᵀ

Bᵀ Dᵀ

)
Recall that a matrix of atoms is equivalent to the vector obtained

from a rows-first reading of it.

Theorem 22 (Transposition). There are monotone derivations,

thnk (X)∥∥∥∥∥∥∥∥∥∥
thnk (Xᵀ)

5 Of course, in any such situation, A and D will also have equal dimen-
sions.

whose flows have length O(log2 n) and width O(n).

Proof. Let A,B,C,D be the four quadrants of X . We give an
inductive step from n to 2n,

th2n
k

(
A B
C D

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
i+j=k


thni

(
A B

)
IH

∥∥∥∥∥∥∥∥∥∥
thni

(
Aᵀ

Bᵀ

) ∧

thnj
(
C D

)
IH

∥∥∥∥∥∥∥∥∥∥
thnj

(
Cᵀ

Dᵀ

)


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

th2n
k

((
Aᵀ

Bᵀ

)
,

(
Cᵀ

Dᵀ

))
interleave

∥∥∥∥∥∥∥∥∥∥
th2n
k

(
Aᵀ Cᵀ

Bᵀ Dᵀ

) interleave

IH · · · IH

where the derivations marked IH are obtained by the inductive
hypothesis and Obs. 21, and the derivation marked ‘interleave’ is
obtained by applying Lemma 20 to interleave the rows of the two
matrices.

Analyzing the associated flow, each inductive step adds an inter-
leaving below O(k) copies of the inductive hypothesis in parallel,
thereby adding O(logn) to the length and maintaining a width of
O(n), by Lemma 20. The induction terminates in O(logn) steps,
whence the upper bound on length is obtained.

3.2 From Threshold Formulae to the Pigeonhole Principle
The previous section showed that there are ‘short’ derivations trans-
posing a matrix of arguments of a threshold formula. We show
here how such derivations are used to obtain quasipolynomial-size
proofs of the pigeonhole principle.

In this section almost all derivations are normal, so we omit their
flows and complexity analysis.

Definition 23 (Pigeonhole Principle). We define the following:

LPHPn :=
n∧
i=1

n−1∨
j=1

pij RPHPn :=
n−1∨
j=1

n∨
i=1

n∨
i′=i+1

(pi′j ∧ pij)

PHPn := LPHPn → RPHPn

Definition 24. Let⊥⊥⊥mn be the (m × n) matrix with the constant
⊥ at every entry. Define P n =

(
(pij) ⊥⊥⊥n1

)
, with i, j ranging

as in Dfn. 23. I.e. P n is obtained by extending (pij) with an extra
column of ⊥-entries, so that it is a square matrix.

Our aim in this section is to prove the following theorem, from
which we can extract proofs of PHPn in KS by the results in earlier
sections.

Theorem 25. There are normal derivations,
LPHPn∥∥∥∥∥∥∥∥∥∥

thn
2

n (P n)

,

thn
2

n (P ᵀ
n)∥∥∥∥∥∥∥∥∥∥

RPHPn

of size nO(logn).

Before we can give a proof, we need some intermediate results.
It should be pointed out that similar results were provided in [2]
for the monotone sequent calculus, which could be translated to
deep inference by [7] [18], but we include them for completeness.
Indeed, similar results appeared in [10]. These intermediate results
are fairly routine, and there is nothing intricate from the point of
view of complexity.
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th4n
r (a, b, c,d)

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
s+t=r



th2n
s (a, b)

= −−−−−−−−−−−−−−−−−−−−−−−−−−∨
i+j=s

thni (a) ∧ thnj (b) ∧
th2n
t (c,d)

= −−−−−−−−−−−−−−−−−−−−−−−−−−∨
k+l=t

thnk (c) ∧ thnl (d)∥∥∥∥∥∥∥∥∥∥dist↑∨
i+j=s
k+l=t

(
thni (a) ∧ thnj (b)

)
∧ (thnk (c) ∧ thnl (d))


= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
s+t=r



∨
i+k=s
j+l=t

(thni (a) ∧ thnk (c)) ∧ (thnj (b) ∧ thnl (d))

∥∥∥∥∥∥∥∥∥∥dist↓
th2n
s (a, c)

IH

∥∥∥∥∥∥∥∥∥∥
th2n
s (a 9m c)

∧

th2n
t (b,d)

IH

∥∥∥∥∥∥∥∥∥∥
th2n
t (b 9m d)


= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

th4n
r ((a, b) 9m (c,d))

· · ·O(r) · · ·

· · ·

· · ·O(r) · · ·

IH IH

Figure 3. Interleaving the arguments of a threshold formula.

Proposition 26. For l ≥ k there are normal derivations,

thnl (a)∥∥∥∥∥∥∥∥∥∥
thnk (a)

of size nO(logn).

Proof. We give an inductive step from n to 2n,

th2n
l (a, b)

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∨
i+j=l

thni (a)

IH

∥∥∥∥∥∥∥∥∥∥
thni′(a)

∧

thnj (b)

IH

∥∥∥∥∥∥∥∥∥∥
thnj′(b)


∥∥∥∥∥∥∥∥∥∥{w↓,c↓}

th2n
k (a, b)

where i′ and j′ are chosen such that i′ ≤ i, j′ ≤ j and i′ +
j′ = k, and derivations marked IH are obtained by the inductive
hypothesis.

Lemma 27 (Evaluation). There are normal derivations,

th2n
r+s(a, b)∥∥∥∥∥∥∥∥∥∥

thnr+1(a) ∨ thns (b)

of size nO(logn).

Proof. Notice that if i+ j = r + s then i > r or j ≥ s. We give a
construction in Fig. 4, where Φ and Ψ denote derivations obtained
by Prop. 26.

Lemma 28. For vectors a1, . . . ,am of atoms there are normal
derivations,

m∨
r=1

thnk (ar)∥∥∥∥∥
thmnk (ar)nr=1

,

m∧
r=1

thnk (ar)∥∥∥∥∥
thmnmk (ar)nr=1

of size nO(logn).

Proof. By induction on m. Simply apply = and w↓ to fill out the
formula.

We are now in a position to prove Thm. 25.

Proof Sketch of Thm. 25. Repeatedly apply Lemma 27 to thn
2

n (P ᵀ
n),

always setting r = s or r = s+ 1, until a disjunction of threshold
formulae with n arguments each is obtained. By the ordering of
the atoms in P ᵀ

n these threshold formulae will have as arguments
(pij)

n
i=1 for some j, or all ⊥; in the latter case any such formula is

equivalent to ⊥, since the threshold will be at least 1.
In the former case, by the choice of r and s at each stage, we

have that the threshold of each of these formulae is at least 2. From
here Prop. 26 can be applied so that all thresholds are 2, whence
RPHPn can be easily derived.

For the other direction, construe each variable pij as a threshold
formula th1

1(pij) and apply Lemma 28 to obtain a derivation from
LPHPn to thn

2

n (P ).
In both cases normality is established by the normalization

procedure of Thm. 13. We have chained together finitely many
normal derivations so the length of the associated flows is bounded
by a constant, whence the upper bound on size is obtained.

Theorem 29. There are normal derivations,

LPHPn∥∥∥∥∥∥∥∥∥∥
RPHPn

of size nO(log2 n).

Proof. By Thms. 22 and 25 there are monotone derivations with
same premiss and conclusion of lengthO(log2 n) and widthO(n).
The result then follows by Thm. 13.

Corollary 30. There are KS proofs of PHPn of size nO(log2 n).

Proof. By Prop. 9.
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th2n
r+s(a, b)

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−∨
i+j=r+s

thni (a) ∧ thnj (b)

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
i>r

j=r+s−i


thni (a) ∧

thnj (b)
w↑ −−−−−−−

>
= −−−−−−−−−−−−−−−−−−−−−−

thni (a)

Φ

∥∥∥∥∥∥∥∥∥∥
thnr+1(a)


s·c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

thnr+1(a)

∨

∨
j≥s

i=r+s−j


thni (a)

w↑ −−−−−−−−
>

∧ thnj (b)

= −−−−−−−−−−−−−−−−−−−−−−
thnj (b)

Ψ

∥∥∥∥∥∥∥∥∥∥
thns (b)


r·c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

thns (b)

Figure 4. Proof of Lemma 27.

3.3 The Case when n is not a Power of 2

Though we have assumed that n is a power of 2 throughout this
section, the proof is actually sufficient for all n, as pointed out in
[2].

Definition 31. For r ≤ s given, define LPHPs(r) by substituting
⊥ for every atom pij where i > r or j ≥ r. Define RPHPs(r)
analogously.

Observation 32. For all r ≤ s we have that LPHPs(r) = LPHPr
and RPHPs(r) = RPHPr .6 Consequently a proof of PHPr is just
a proof of PHPn, where n is the power of 2 such that r ≤ n < 2r.

4. Arbitrary Permutations
Interleavings by themselves do not form a generating set for the
symmetric group, and so cannot be used to generate derivations for
arbitrary permutations of arguments of threshold formulae. How-
ever a generalization of them, corresponding to the set of riffle shuf-
fles on a deck of cards, do form such a set. In this section we show
how they may be used to generate arbitrary permutations on the
arguments of threshold formulae.

The proofs in this section are similar to those in Sect. 3, and
so we omit them for brevity, instead providing the general proof
structure as intermediate results.

Recall that our original definition of threshold formulae used a
symmetric divide-and-conquer strategy, generated from a complete
binary tree in the natural way. In this section it will be useful to
have a more general definition of threshold formulae, based on any
tree decomposition of the divide-and-conquer strategy.

Throughout this section we assume all trees are binary.

Definition 33. For a tree T , let d(T ) denote its depth, l(T ) its
number of leaves and |T | denote its number of nodes. For a binary
tree T , let T0 denote its left subtree (from the root) and T1 its right.
Thus any string σ ∈ {0, 1}k determines a unique subtree Tσ of T ,
for k ≤ d(T ).

Definition 34 (General Threshold Formulae). For a binary tree T
and vectors a, b with |a| = l(T0), |b| = l(T1), define

thTk (a, b) =
∨

i+j=k

thT0
i (a) ∧ thT1

j (b)

with the base case the same as in Dfn. 16.

The following proposition gives an estimate of the size of these
threshold formulae.

Proposition 35. For a binary tree T , |thTk (a)| = l(T )O(d(T )).

6 Recall that formulae are equivalent up to =.

Proof. In the worst case, every level of the binary tree is full,
whence the bound is obtained by Obs. 17.

What we define as a shuffle below corresponds to the common
riffle method of shuffling a deck of cards: cut the deck anywhere,
partitioning it into a left and right part, and then interleave these in
any way, maintaining the relative order of cards in either partition.
Under this analogy each card of the deck will correspond to a leaf
of the tree determining a threshold formula.

Definition 36 (Cuts and Shuffles). A cut of a vector (a1, . . . , an) is
a pair {(a1, . . . , am), (am+1, . . . , an)}. A riffle shuffle, or simply
shuffle, of length n is a string σ ∈ {0, 1}n.

For a vector a and shuffle σ of length n = |a| we write σ(a)
to denote the following action of σ on a: let Σi denote the number
of 1s in σ1 · · ·σi, so that i − Σi is the number of 0s in σ1 · · ·σi
and k = Σn is the number of 1s in σ; we give a componentwise
definition of σ(a):

(σ(a))i =

{
ai−Σi σi = 0

an−k+Σi σi = 1

In the above definition, one should think of σ determining a cut
{(a1, . . . , an−k), (an−k+1, . . . , an), and where each bit indicates
which side of the cut the next element of σ(a) comes from.

Lemma 37 (Cutting). For any tree T and cut {a, b} there are trees
S0, S1 with d(S0), d(S1) ≤ d(T ) such that there are monotone
derivations,

thTk (a, b)∥∥∥∥∥∥∥∥∥∥∨
i+j=k

thS0
i (a) ∧ thS1

j (b)

whose flows have length O(d(T )) and width O(l(T )).

Proof of Lemma 37. By induction on l(T ). Without loss of general-
ity, suppose b is contained entirely in T1 (otherwise, a is contained
entirely in T0 and the argument is symmetric). We construct the
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following derivation,

thTr (a, b)
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
s+t=r



thT0
s

(
a1
)
∧

thT1
t (a2, b)

IH

∥∥∥∥∥∥∥∥∥∥∨
i+j=t

th
S′

0
i

(
a2
)
∧ thS1

j (b)


∥∥∥∥∥∥∥∥∥∥dist↑∨

i+j=t

thT0
s

(
a1
)
∧ th

S′
0
i

(
a2
)
∧ thS1

j (b)


= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
s′+t′=r



∨
k+l=s′

thT0
k

(
a1
)
∧ th

S′
0
l

(
a2
)
∧ thS1

t′ (b)

∥∥∥∥∥∥∥∥∥∥dist↓ ∨
k+l=s′

thT0
k

(
a1
)
∧ th

S′
0
l

(
a2
)

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
thS0
s′ (a)

∧ thS1
t′ (b)




where the derivation marked IH is obtained by the inductive hy-
pothesis.

Lemma 38 (Shuffling). Let S be a tree and σ a shuffle of length
l(S). There is a tree T with d(T ) = O(d(S)) and monotone
derivations,

thSk (v)∥∥∥∥∥
thTk (σ(v))

whose flows have length O(d(S)2) and width O(l(S)).

Proof of Lemma 38. By induction on l(S), we give the inductive
step in Fig. 5. In the construction we set v = (w,x), defined by
l(S0) and l(S1), and σ(v) = (y,z). The argument is analogous to
the one in Lemma 3, with derivations marked ‘cut’ obtained from
Lemma 37 and derivations marked IH obtained from the inductive
hypothesis.

In particular the cuts are chosen7 such that |b2| = |c1| and so
that there are shuffles σ1, σ2 with

σ(v) = (σ1(a, b1, c1), σ2(b2, c2,d))

Theorem 39 (Merge Sort). For any tree S and permutation π
on {1, . . . , l(S)} there is a tree T with d(T ) = O(d(S)) and
monotone derivations,

thSk (aiπ)ni=1∥∥∥∥∥
thTk (ai)

n
i=1

whose flows have length O(d(S)3) and width O(l(S)).

Proof of Thm. 39. By induction on l(S) = l(T ). We construct the
following derivation,

thSr (aiπ)ni=1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
s+t=r


thS0
s (aiπ)mi=1

IH

∥∥∥∥∥∥∥∥∥∥
th
T ′

0
s (a1)

∧

thS1
t (aiπ)ni=m+1

IH

∥∥∥∥∥∥∥∥∥∥
th
T ′

1
t (a2)


shuffle

∥∥∥∥∥∥∥∥∥∥
thTr (ai)

n
i=1

7 Such a choice exists (and is unique) by the discrete intermediate value
theorem.

where the derivations marked IH are obtained from the inductive
hypothesis, sorting the inputs of the left and right subtrees of S
to vectors a1 and a2 resp., and the derivation marked ‘shuffle’,
obtained from Lemma 38, carries out the unique shuffle on (a1,a2)
resulting in a completely sorted vector.

Proposition 40 (Repartitionings). For trees S, T with the same
number of leaves there are monotone derivations,

thSk (a)∥∥∥∥∥
thTk (a)

whose flows have length O(d(S)2) and width O(l(S)).

Proof of Prop. 40. By induction on l(S) = l(T ). Let {b, c} be the
cut of a such that |b| = l(T0) and |c| = l(T1). We construct the
following derivation,

thSk (a)

cut

∥∥∥∥∥∥∥∥∥∥
∨

i+j=k


thR0
i (b)

IH

∥∥∥∥∥∥∥∥∥∥
thT0
i (b)

∧

thR1
j (c)

IH

∥∥∥∥∥∥∥∥∥∥
thT1
j (c)


= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

thTk (b, c)

where the derivation marked ‘cut’ is obtained from Lemma 37
and the derivations marked IH are obtained from the inductive
hypothesis.

Corollary 41. For any tree T and permutation π on {1, . . . , l(T )}
there are normal derivations,

thTk (ai)
n
i=1∥∥∥∥∥

thTk (aiπ)ni=1

of size l(T )O(d(T )3).

Proof. By Thm. 39, Prop. 40 and Thm. 13.

5. Further Results and Applications
We give some examples of how the techniques developed in pre-
vious sections can be applied to yield further results, namely
quasipolynomial-size normal proofs of the Generalized Pigeonhole
principle and the Parity principle. Both bounds are also inherited
for monotone proofs although, while these have not appeared in the
literature, we point out that such monotone proofs could also have
been constructed using the permutation arguments of Atserias et al.
in [2].

More interestingly we provide nO(log logn)-size monotone
proofs for the weak pigeonhole principle, with (1+ε)n pigeons and
n holes for every ε = 1/ logΩ(1) n, improving the previous best
known bound of nO(logn) inherited from the proofs of PHPn+1

n

given in [2].

5.1 Generalized Pigeonhole Principle
If there are 45 hats that are either red or green, then there must be
23 of the same colour. This exemplifies a generalization of the pi-
geonhole principle where sufficiently many pigeons may guarantee
more than two in some hole [14]. If k+ 1 pigeons in some hole are
required then nk+1 pigeons are necessary, so this principle can be
encoded as follows:

nk+1∧
i=0

n∨
j=1

aij →
∨

ir<ir+1

k+1∧
r=1

airj
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thSr (w,x)
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
s+t=r




thS0(w)

cut

∥∥∥∥∥∥∥∥∥∥∨
i+j=s

th
S′

0
i (a, b1) ∧ thR0

j (b2)

∧

thS1(x)

cut

∥∥∥∥∥∥∥∥∥∥∨
k+l=t

thR1
k (c1) ∧ th

S′
1
l (c2,d)


dist↑

∥∥∥∥∥∥∥∥∥∥∨
i+j=s
k+l=t

(
th
S′

0
i

(
a, b1

)
∧ thR0

j

(
b2
))
∧
(
thR1
k

(
c1 ∧ th

S′
1
l

(
c2,d

)))


= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
s+t=r



∨
i+k=s
j+l=t

(
th
S′

0
i

(
a, b1

)
∧ thR1

k

(
c1
))
∧
(
thR0
j

(
b2
)
∧ th

S′
1
l

(
c2,d

))
∥∥∥∥∥∥∥∥∥∥dist↓

th
T ′

0
s (a, b1, c1)

IH

∥∥∥∥∥∥∥∥∥∥
thT0
s (y)

∧

th
T ′

1
t (b2, c2,d)

IH

∥∥∥∥∥∥∥∥∥∥
thT1
t (z)




= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

thTr (y,z)

Figure 5. Riffle shuffling the inputs of a threshold formula.

This formula has sizeO(nk+1), polynomial for fixed k. If, however
k is large relative to n, e.g. n/2 or

√
n, then one can always express

the right hand side using threshold formulae to obtain an encoding
of quasipolynomial-size.

It is simple to see that our proofs of PHPn can be generalized
to this class of tautologies, by the same arguments as in Sect. 3.

5.2 Parity Principle
The parity principle states that one cannot partition an odd-size set
into pairs, and is usually encoded by the following tautologies,

PARn :

2n∧
i=0

∨
j 6=i

a{i,j} →
∨

j 6=i>i′ 6=j

a{i,j} ∧ a{i′,j}

where a{i,j} should be interpreted as “element i is paired with
element j”.

These tautologies have similar structure to PHPn, but in many
proof systems these tautologies are in fact harder to prove. For
example, in bounded-depth Frege systems PHPn can be efficiently
derived from PARn but not vice-versa [1] [4].

However, in KS, we can construct quasipolynomial-size proofs
of PARn using similar methods to those for PHPn, and we give an
outline of these constructions in this subsection.

We omit proofs corresponding to basic properties of threshold
functions, since they are fairly routine inductions of which Sect. 3
has given many examples, and also often do not specify precise
orderings of variables or tree-structures of a threshold formulae,
since these can all be reduced to any other in quasipolynomial time,
by the results of Sect. 4.

Let LPARn and RPARn denote the left and right hand sides of
PARn respectively. By a similar argument to Prop. 25 we obtain
normal derivations of the following form,

LPARn∥∥∥∥∥
th

2n(2n+1)
2n+1 (a2)

where a2 is an appropriate sequence of the variables a{i,j} in
which each variable occurs exactly twice, as in LPARn.

Let (a,a) be a permutation of a2 so that each variable occurs
exactly once in a. Now we can construct the following derivation,

th
2n(2n+1)
2n+1 (a2)

permute

∥∥∥∥∥∥∥∥∥∥
th

2n(2n+1)
2n+1 (a,a)

evaluate

∥∥∥∥∥∥∥∥∥∥
th
n(2n+1)
n+1 (a) ∨ th

n(2n+1)
n+1 (a)

c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
th
n(2n+1)
n+1 (a)

where the derivation marked ‘permute’ applies the results of
Sect. 4, namely Cor. 41, to permute the arguments of a thresh-
old formula, and the derivation marked ‘evaluate’ is obtained by
Lemma 27, setting r = n and s = n+ 1.

Now notice that, if n+ 1 of the variables a{i,j} are true, i.e. we
have n + 1 pairs out of 2n + 1 variables, we must have some j
which is paired with two distinct variables, and this can be realized
as derivations,

th
n(2n+1)
n+1 (a)∥∥∥∥∥
RPARn

in a similar way to Prop. 25.
Chaining all these normal derivations together gives us mono-

tone derivations
LPARn∥∥∥∥∥
RPARn

of quasipolynomial size and with flows of

bounded length, and from here we can construct quasipolynomial-
size KS-proofs of PARn in the usual way.

5.3 Monotone Proofs of the Weak Pigeonhole Principle
The results of this section provide the first example of considera-
tions in the complexity of deep inference yielding new results for
more mainstream systems in proof complexity. Unlike the previous
two results our proofs of the weak pigeonhole principle rely cru-
cially on the fact that the proofs permuting threshold arguments we
constructed have flows of polylogarithmic length. The basic idea
is to begin with formulae approximating threshold functions and
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bound how much worse the approximation develops as the inter-
leaving and transposition arguments of Sect. 3.1 are applied.

5.3.1 Approximating Threshold Functions
It is not quite correct to call the formulae we define below as
ε-approximators of threshold functions, since in fact they output
incorrectly on a large proportion of inputs. Rather they output 1 just
if the actual threshold is within some predetermined factor of the
threshold being measured. The tradeoff is that we are able to define
monotone formulae that are much smaller than the usual threshold
formulae we have used until now.

Definition 42 (Threshold Approximators). Let |a| = |b| = n. We
define the (p, q)-approximator Tnk [p, q] of THnk as follows,

Tnk [p, q](a, b) =
∨

i+j=p

Tnik
q

[p, q](a) ∧ Tnjk
q

[p, q](b)

where we assume that k is some power of q and n is a power of 2,
for example by adding a string of >s and ⊥s of appropriate format
to the arguments.8

It is not easy to understand the semantics of these approxima-
tors, and in the next section we provide solely proof-theoretic ar-
guments rather than semantic intuition. We do, however, make the
following observations, provable by straightforward inductions.

Observation 43. We have the following properties,

1. THnk ⇒ Tnk [p, q] for all p < q.
2. Tnk [p, q]⇒ THnk(p/q)log n .

3. |Tnk [p, q](a)| = O(plogn)

where⇒ denotes logical implication.

5.3.2 Manipulating Arguments in Threshold Approximators
In this section we return to the derivations proved in Sect. 3.1 on
interleaving and transposing arguments of a formula. Since the ap-
proximators we now consider do not exactly compute threshold
functions, they are no longer symmetric and so similar derivations
cannot be constructed. Rather we show that witnessing certain per-
mutations requires a bounded deterioration in the accuracy of the
approximation. Ultimately we will choose an initial approximation
that is accurate enough to ensure that this deterioration does not
become too excessive.

We first state a basic fact allowing us to infer weaker approxima-
tions from stronger ones. The proof is straightforward and follows
the same kind of induction argument as previous proofs.

Lemma 44. For p ≥ p′, k ≥ k′ there are normal derivations,

Tnk [p, q](a)∥∥∥∥∥
Tnk′ [p

′, q](a)

of size pO(logn).

The following is the main result that will control the deteriora-
tion in approximation throughout our overall argument.

Lemma 45. There are normal derivations,

Tnk [p, q](a, b, c,d)∥∥∥∥∥
Tnk [p− 1, q](a, c, b,d)

of size pO(logn).

We first need the following result, whose proof is straightfor-
ward.

8 This increases the number of arguments by at most multiplication by 2q.

Proposition 46. For x, y ≥ 0, if (x + y) ∈ N then (x + y) −
(bxc+ byc) ≤ 1.

Proof of Lemma 45. We construct appropriate derivations in Fig. 6
where,

s′ = b is+kt
p
c

t′ = b js+lt
p
c

and,
i′ = b isp

is+kt
c

j′ = b jsp
js+lt

c
k′ = b ktp

is+kt
c

l′ = b ltp
js+lt

c
so we have s′ + t′, i′ + j′, k′ + l′ ≥ p − 1 by Prop. 46 and also
i′s′ ≤ is, j′t′ ≤ js, k′s′ ≤ kt, l′t′ ≤ lt, so that the derivations
marked ‘decrease’ are obtained by Lemma 44.

The following result has proof similar to that of Lemma 20,
using the above lemma in the inductive steps to measure the deteri-
oration of the approximator.

Proposition 47. There are monotone derivations,

Tnk [p, q](a, b)∥∥∥∥∥
Tnk [p− logn, q](a 9 b)

of size pO(logn) whose flows have lengthO(logn) and widthO(p).

The following result has proof similar to that of Thm. 22.

Theorem 48. There are monotone derivations,

Tnk [p, q](X)∥∥∥∥∥
Tnk [p− log2 n, q](Xᵀ)

of size pO(logn) whose flows have length O(log2 n) and width
O(p).

5.3.3 From Approximators to the Weak Pigeonhole Principle
Recall the definition of PHPmn , where m denotes an arbitrary
number of pigeons greater than the number of holes n, and define
LPHPmn and RPHPnm analogously to Dfn. 23. In this section we
essentially mimic the results of Sect. 3.2 to complete our proofs of
the weak pigeonhole principle.

First we will need the following well known result whose proof
follows, for example, by consideration of the inclusion-exclusion
principle in the binomial expansion.

Proposition 49. For ε ≤ 1 we have that (1− ε)k ≥ 1− εk.

Proof. Let X0, . . . , Xk−1 be independent identically distributed
Bernoulli random variables with Pr[Xi = 1] = ε and Pr[Xi =
0] = (1− ε) for each i. Then:

(1− ε)k = Pr

[ ⋂
i<k

Xi = 0

]
by independence.

= Pr

[ ⋃
i<k

Xi = 1

]
by De Morgan laws.

= 1− Pr

[ ⋃
i<k

Xi = 1

]
by complements.

≥ 1−
∑
i<k

Pr [Xi = 1] by the union bound.

≥ 1− εk

The following result has proof similar to that of Thm. 25.
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T4n
r [p, q](a, b, c,d)

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
s+t=p



T2n
sr
q

[p, q](a, b)
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∨
i+j=p

Tnisr
q2

[p, q] (a) ∧ Tnjsr
q2

[p, q] (b)
∧

T2n
tr
q

[p, q](c,d)
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∨
k+l=p

Tnktr
q2

[p, q] (c) ∧ Tnltr
q2

[p, q] (d)

∥∥∥∥∥∥∥∥∥∥dist↑

∨
i+j=p
k+l=p

(
Tnisr

q2
[p, q] (a) ∧ Tnjsr

q2
[p, q] (b)

)
∧

(
Tnktr

q2
[p, q] (c) ∧ Tnltr

q2
[p, q] (d)

)
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Tnisr
q2

[p, q](a)∥∥∥∥∥∥∥∥∥∥decrease

Tni′s′r
q2

[p− 1, q](a)

∧

Tnktr
q2

[p, q](c)∥∥∥∥∥∥∥∥∥∥decrease

Tnk′s′r
q2

[p− 1, q](c)

 ∧


Tnjsr
q2

[p, q](b)∥∥∥∥∥∥∥∥∥∥decrease

Tnj′t′r
q2

[p− 1, q](b)

∧

Tnltr
q2

[p, q](d)∥∥∥∥∥∥∥∥∥∥decrease

Tnl′t′r
q2

[p− 1, q](d)




= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∨
s+t=p−1



∨
i+k=p−1
j+l=p−1

(
Tnisr

q2
[p− 1, q] (a) ∧ Tnktr

q2
[p− 1, q] (c)

)
∧

(
Tnjsr

q2
[p− 1, q] (b) ∧ Tnltr

q2
[p− 1, q] (d)

)
∥∥∥∥∥∥∥∥∥∥dist↓∨

i+k=p−1

Tnisr
q2

[p− 1, q] (a) ∧ Tnksr
q2

[p− 1, q] (c)

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
T2n

sr
q

[p− 1, q](a, c)
∧

∨
i+k=p−1

Tnjtr
q2

[p− 1, q] (b) ∧ Tnltr
q2

[p− 1, q] (d)

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
T2n

tr
q

[p− 1, q](b,d)


= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

T4n
r [p− 1, q](a, c, b,d)

Figure 6. Single interleaving step for threshold approximators.

Lemma 50. For q > p and k > n
(p/q)log n there are normal

derivations,

LPHPmn∥∥∥∥∥
Tmnm [p, q](pij)

,
Tmnk [p, q](pij)

ᵀ∥∥∥∥∥
RPHPmn

of size pO(logn).

Theorem 51. For ε = 1/ logΩ(1) n there are monotone deriva-
tions,

LPHPn(1−ε)n∥∥∥∥∥
RPHPn(1−ε)n

of size nO(log logn), width O(logn) and length O(log2 n).

Proof. For ε = 1/ logd n, choose q = 3 logd+3 n and p =
q − 1. Since ε > 1

q
, there is a trivial derivation from LPHPn(1−ε)n

to LPHPn
(1− 1

q
)n

in w↓, and by chaining this to the derivations
from Lemmata 50 and 48 we obtain monotone derivations from
LPHPn(1−ε)n to T

(1− 1
q

)n2

n [p− log2 n, q](pij)
ᵀ.

We now need to check that n > (1−ε)n
((p−log2 n)/q)log n before

applying Lemma 50. Now we have that,(
p−log2 n

q

)logn

=
(

3 logd+3 n−log2 n−1

3 logd+3 n

)logn

=
(

1− log2 n+1

3 logd+3 n

)logn

≥
(

1− 2
3 logd+1 n

)logn

≥ 1− 2 logn

3 logd+1 n
≥ 1− 2

3 logd n

by Prop. 49. Consequently we have that,

(1− ε)
((p− log2 n)/q)logn

≤
1− 1

logd n

1− 2
3 logd n

< 1

giving monotone derivations from LPHPn(1−ε)n to RPHPn(1−ε)n by
Lemma 50. From previous bounds, the size of these derivations is
pO(logn) = (logn)O(logn) = nO(log logn) as required.

Since the width of these derivations is O(logn) we also gain a
minor improvement in the complexity of KS proofs of PHPn(1−ε)n
over those appearing in Sect. 3.

Corollary 52. There are KS proofs of PHPn(1−ε)n, for ε =

1/ logΩ(1) n, of size nO(logn log logn).

6. Final Comments
We constructed explicit quasipolynomial-size proofs of the pigeon-
hole principle in KS, and generalized our techniques to further yield
quasipolynomial-size proofs of the parity principle and quite strong
variants of the weak pigeonhole principle. In particular the exis-
tence of nO(log logn)-size monotone proofs of the most common
variant, with 2n pigeons and n holes, are implied by our construc-
tion. We repeat that this is the first time when considerations in the
complexity of deep inference proofs have led to improvements for
systems in mainstream proof complexity.

The various proof structures used throughout this work are sim-
ilar in concept and fairly uniform, and so it might be pertinent
to design high-level tools to more easily manipulate deep infer-
ence proofs, respecting certain complexity properties. One such ap-
proach might be to design an associated theory of bounded artith-
metic, as done for other propositional proof systems, e.g. the theory
I∆0 for bounded-depth Frege systems [22]. Work in this direction
is ongoing.

A natural question is whether the methods used here could be
generalized to yield a simulation of Frege proofs, as done for KS+

in [10] [18]. That construction is also relies heavily on threshold
formulae, however it is not clear how to restrict the length of flows
in the same way as we did here.

Note that the proofs we have given, albeit nO(log2 n) so quasipoly-
nomial in size, are not in polynomial correspondence with those
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constructed in [2] for the monotone sequent calculus, and so KS+,
which have smaller quasipolynomial size nO(logn). In fact it is
conjectured that there are polynomial-size proofs in KS+, due to
the more general conjecture that the monotone sequent calculus
polynomially simulates the full sequent calculus over monotone se-
quents. Consequently we cannot rule out the possibility that proofs
of PHPn witness a superpolynomial separation between KS and
KS+.

References
[1] M. Ajtai. Parity and the pigeonhole principle. In S. Buss and

P. Scott, editors, Feasible Mathematics, volume 9 of Progress in Com-
puter Science and Applied Logic, pages 1–24. Birkhuser Boston, 1990.
ISBN 978-0-8176-3483-4. . URL http://dx.doi.org/10.1007/
978-1-4612-3466-1_1.

[2] A. Atserias, N. Galesi, and R. Gavaldà. Monotone proofs of the pigeon
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[20] E. Jeřábek. Proofs with monotone cuts. Mathematical Logic Quar-
terly, 58(3):177–187, 2012.
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