

University of Birmingham

Many-objective test suite generation for software
product lines
Hierons, Robert M.; Li, Miqing; Liu, Xiaohui; Parejo, Jose Antonio ; Segura, Sergio; Yao, Xin

DOI:
10.1145/3361146

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Hierons, RM, Li, M, Liu, X, Parejo, JA, Segura, S & Yao, X 2020, 'Many-objective test suite generation for
software product lines', ACM Transactions on Software Engineering and Methodology, vol. 29, no. 1, 2.
https://doi.org/10.1145/3361146

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2020 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on Software Engineering and Methodology,
http://dx.doi.org/ 10.1145/3361146

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.1145/3361146
https://doi.org/10.1145/3361146
https://birmingham.elsevierpure.com/en/publications/dd5b4946-7eff-4145-adcc-963033530e34

Many-Objective Test Suite Generation for Software Product
Lines

ROBERT M. HIERONS, The University of Sheffield
MIQING LI, The University of Birmingham
XIAOHUI LIU, Brunel University
JOSE ANTONIO PAREJO, Universidad de Seville
SERGIO SEGURA, Universidad de Seville
XIN YAO, Southern University of Science and Technology; and The University of Birmingham

A Software Product Line (SPL) is a set of products built from a number of features, the set of valid products
being defined by a feature model. Typically, it does not make sense to test all products defined by an SPL and
one instead chooses a set of products to test (test selection) and, ideally, derives a good order in which to test
them (test prioritisation). Since one cannot know in advance which products will reveal faults, test selection
and prioritisation are normally based on objective functions that are known to relate to likely effectiveness
or cost. This paper introduces a new technique, the grid-based evolution strategy (GrES), which considers
several objective functions that assess a selection or prioritisation and aims to optimise on all of these. The
problem is thus a many-objective optimisation problem. We use a new approach, in which all of the objective
functions are considered but one (pairwise coverage) is seen as the most important. We also derive a novel
evolution strategy based on domain knowledge. The results of the evaluation, on randomly generated and
realistic feature models, were promising, with GrES outperforming previously proposed techniques and a
range of many-objective optimisation algorithms.

CCS Concepts: • Software and its engineering → Software testing and debugging; Empirical software
validation.

Additional Key Words and Phrases: Software Product Line, Test Selection, Test Prioritisation, Multi-objective
optimisation

ACM Reference Format:
Robert M. Hierons, Miqing Li, XiaoHui Liu, Jose Antonio Parejo, Sergio Segura, and Xin Yao. 2019. Many-
Objective Test Suite Generation for Software Product Lines. ACM Trans. Softw. Eng. Methodol. 1, 1 (Septem-
ber 2019), 45 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A Software Product Line (SPL) is a set of products, which are built from a number of features, a
feature being some aspect of functionality [11]. A product can be seen as being a set of features
and feature models are often used to define the allowed combinations of features and so the valid

Authors’ addresses: Robert M. Hierons The University of Sheffield, r.hierons@sheffield.ac.uk; Miqing Li The University
of Birmingham, m.li.8@cs.bham.ac.uk; XiaoHui Liu Brunel University, XiaoHui.Liu@brunel.ac.uk; Jose Antonio Parejo
Universidad de Seville, japarejo@us.es; Sergio Segura Universidad de Seville, sergiosegura@us.es; Xin Yao Southern
University of Science and Technology; The University of Birmingham, xiny@sustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1049-331X/2019/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

products. There is evidence of a number of companies using feature models, including Boeing [65],
Siemens [35], and Toshiba [56].
Ideally one would test all of the products in an SPL defined by a feature model. However, a

feature model might specify a vast number of products; often it is not feasible to test every valid
product. In addition, since the products of an SPL are built from a common set of features, one
would expect that the testing of all valid products would introduce significant redundancy. Thus,
even if one could test all valid products, this is likely to be inefficient and, assuming a limited
testing budget, might also be ineffective. These observations have led to two problems being
investigated: the problem of choosing a set of products to test (the test selection problem) and
the problem of choosing a good order in which products should be tested (the test prioritisation
problem). Test selection aims to choose products that are likely to reveal any faults that are present,
while prioritisation aims to find faults as early as possible. Previous work in this area has taken
the view that these problems complement each other and has therefore considered selection and
prioritisation together [24, 29, 50, 74]. This is the approach we also take in this paper.
The selection and prioritisation problems, as described above, are expressed in terms of the

actual faults in the products of an SPL. However, normally the tester does not have access to
this information before testing begins. Thus, the problem is to find a test suite (sequence of valid
products) that is likely to be a good solution (in terms of selection and prioritisation). It has been
observed that a number of properties of good test suites can be captured by objective functions that
map a test suite to a value that represents how ‘good’ this test suite is according to the properties
(see, for example [19, 23, 29, 31, 32, 48, 51, 58, 61, 71, 72, 74]). For example, a fault might be associated
with the interaction of a pair of features and so we might want to test as many such interactions as
possible (pairwise coverage). This is an example of a functional objective; one associated with the
functionality of the features and how the features are combined in the feature model. There are
also non-functional objectives (quality attributes) such as the cost of a feature.
Since a number of objectives/fitness functions have been identified, the problem of finding a

good solution has been expressed as a multi-objective optimisation problem [19, 23, 24, 31, 47,
48, 55, 58, 71, 72, 74]. Previous work developed test generation approaches based on evolutionary
multi-objective algorithms and found these to be effective [19, 23, 31, 48, 58, 71, 72, 74]; a recent
survey was provided by Herrejon et al. [49].
The literature on test generation from feature models has three important limitations that we

address in this paper. First, most previous work has looked at multi-objective optimisation prob-
lems, in which there are two or three objectives, but only a few have explored the benefits of
many-objective optimisation, with four [23, 74] and five objectives [72]. In fact, Herrejon et al.
[49] explicitly mentioned many-objective search in SPL testing as an open challenge. Second,
previous work has typically addressed the problem by either weighting the objectives or separ-
ately considering test selection and prioritisation. Third, all previous approaches have resorted to
standard state-of-the-art optimisation algorithms neglecting the potential benefits of exploiting the
knowledge of the problem to develop more powerful algorithms. As a result, such approaches may
either be unable to provide a set of good trade-offs for the tester or fail to guarantee the quality of
the test suite on some objectives.

In this paper we address the many-objective optimisation problem and devise a novel approach
to this optimisation problem, the grid-based evolution strategy (GrES). In addition, the proposed
approach is inspired by the observation that typically, when testing the products of a product line,
the tester will want to ensure that all pairs of features are tested. The motivation for this is that
combinatorial testing, and specifically pairwise testing, is the main coverage criterion considered
in the SPL literature (e.g., in [53] the authors identified over forty approaches for combinatorial
testing in SPL). The essential idea is that we have a type of coverage that should be achieved and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 3

we want the ‘best’ solution that achieves this coverage. Naturally, it would be straightforward to
generalise the approach to the case where one wants to achieve a certain level of pairwise coverage
that is less than 100%. As a result of our approach, the proposed evolution strategy prioritises
pairwise coverage: when comparing two solutions, it first compares them on pairwise coverage
and only then (if they have the same pairwise coverage) on the other objectives. In Section 3 we
further explain and justify this decision.
An alternative approach would be to weight the different objectives, in order to turn a multi-

objective optimisation problem into a single-objective optimisation problem (see, for example,
[19, 31, 71, 74]). However, the multi-objective approach has a number of advantages. In the single-
objective approach, when giving a high weight to a particular objective (such as pairwise coverage)
one is making this ‘more important’ but by a fixed multiplier. Thus, for example, if we have two
objectives and we give the first a weighting ten times that of the second then (under minimisation)
we prefer (3,12) to (4,3) but we do not prefer (3,12) to (4,1). In contrast, in our approach we always
prefer a solution with higher pairwise coverage – we are saying that pairwise coverage is more
important than the other objectives, rather than it being X times more important for some fixed X.
This better captures the nature of the problem. In addition, the multi-objective approach provides
a range of trade-offs between the other objectives (those other than pairwise coverage) and the
developer can then assess these alternatives and choose from them. Note also that GrES does not
require the developer to choose values for weights; for the single-objective approach it is unclear
how a developer would choose weights without, for example, some initial experiments/tuning.
This paper makes the following main contributions. It proposes a novel approach to many-

objective test suite generation for software product lines, in whichwe consider nine fitness functions.
Novelty is also provided by the algorithm design, which uses a rarely used class of evolutionary
algorithms (evolution strategy) that works on a small population and does not have a crossover
operation (i.e., asexual reproduction - variance being introduced only by mutation). We also
customised the evolution strategy by taking advantage of domain knowledge in selecting individuals
for variation. The paper then reports on the results of experiments that compared the proposed
GrES with two algorithms previously devised for this problem and a range of multi-objective
optimisation algorithms. The evaluation used randomly generated feature models, in order to
enable us to explore the effect of the size of the feature model. It also used 19 realistic feature
models: feature models from the literature with randomly generated attribute values. Finally, the
paper reports on the results of an experiment using a realistic feature model with real attribute
values.

In the experiments, we found that the proposed approach for comparing individuals always led
to a population in which all individuals (test suites) provided full pairwise coverage; in contrast, the
other approaches returned populations in which at most 10% of individuals provided full pairwise
coverage. In addition, GrES returned populations that had higher quality, as assessed by their
hyper-volume (HV)1 [82], with many of the effect sizes being large. In order to evaluate whether
the use of an evolution strategy was a good choice, we also had experiments in which a number
of different multi-objective approaches were adapted to use our novel comparison mechanism. In
these experiments, all approaches returned a population whose individuals all had full pairwise
coverage. However, the evolution strategies returned the highest HV values, with most differences
being statistically significant. Two previous multi-objective approaches used variants of NSGA-II
but with fewer objectives [48, 58]. We had experiments in which we compared GrES with these
two approaches, restricting the objectives considered in the evaluation to those previously used.

1HV is a metric which can reflect the quality of a solution set in both approaching the optimal solution set and diversifying
its solutions.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

4 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

Unsurprisingly, the results more mixed: GrES produced lower HV values for the smaller models but
higher HV values for the larger models. Note that we did not change the set of objectives that GrES
was attempting to optimise and so GrES had the disadvantage of considering additional objectives
that were not used in the comparison. Finally, experiments were performed to assess scalability; in
this it was found that GrES is faster than the two previous approaches and that the approaches
that use our novel comparison mechanism had similar execution times.

The paper is structured as follows. In Section 2 we review background material and in Section 3
we describe our novel many-objective approach. Section 4 then outlines the experimental design
while Section 5 gives the results of the experiments and discusses these. In Section 6 we discuss
threats to validity and Section 7 then places our work in the context of the literature. Finally, in
Section 8 we draw conclusions and discuss possible lines of future work.

2 BACKGROUND
2.1 Feature Models
Software Product Lines (SPL) engineering focuses on the systematic development of families of
software products [11]. Products in SPLs are represented in terms of features where a feature is
any distinguishable characteristic relevant for the stakeholders [37]. A feature model is a tree-like
representation of all the products of an SPL in terms of features and relationships among them.
These relationships constrain the way in which features can be combined to form valid products.
Feature models were first introduced as a part of the Feature-Oriented Domain Analysis method
(FODA) by Kang back in 1990 [37]. Since then, feature modelling has become the de-facto standard
for variability management in SPLs. Fig. 1 depicts a sample feature model representing an SPL for
mobile phones [58]. The software loaded into the mobile phone is determined by the features that
it supports, e.g., Camera. The root feature (“Mobile Phone”) identifies the SPL. The following types
of relationships constrain how features can be combined in a product.
• Mandatory. If a feature has a mandatory relationship with its parent feature, it must be
included in all the products in which its parent feature appears. In Fig. 1, all the products of
the SPL must provide support for the mandatory feature Calls.
• Optional. If a feature has an optional relationship with its parent feature, it can be optionally
included in the products that include its parent feature. For instance, GPS is defined as an
optional feature in Fig. 1.
• Alternative. The children of a feature are defined as alternatives if exactly one feature should
be selected when its parent feature is part of the product. In the example, mobiles phones
must support a Basic or a High Definition (HD) screen, but not both in the same product.
• Or-Relation. Child features are said to have an or-relation with their parent when one or
more of them can be included in the products in which its parent feature appears. In Fig. 1,
mobiles phones may include a Camera, an MP3 player, or both of them.

In addition to hierarchical relationships, feature models can also contain Cross-Tree Constraints
(CTCs) between features. These are typically of the form “Feature A requires feature B” or “Feature
A excludes feature B”. In Fig. 1, mobiles phones including a Camera require an HD screen.

Feature models can be extended with extra-functional information by means of feature attributes.
These models are referred to as attributed feature models. An attribute usually consists of a name, a
domain and a value, e.g. GPS.cost = 20. Attributes are usually represented either graphically in the
feature model or as a table indicating the values of the attributes for each feature. Table 1 depicts
four sample numeric attributes and random values for the features of the model in Fig. 1, namely
Changes (number of changes), Cost (estimated cost of the resources needed to test the feature),
Faults (number of reported defects), and Size (number of lines of code).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 5

Fig. 1. Mobile phone feature model [58]

Table 1. Mobile phone feature attributes

Feature Changes Cost Faults Size
Basic 1 25 0 270
Calls 6 20 5 1,000
Camera 12 35 7 680
GPS 8 45 11 460
HD 3 25 2 510
Media 9 5 5 1,100
MP3 4 10 3 390
Screen 2 5 1 930

Feature models can be automatically analysed to extract information from them. Catalogues with
up to 30 analysis operations on feature models have been published [9]. Typical analysis operations
allow us to know whether a feature model is consistent (it represents at least one product), the
number of products represented by a feature model, or whether a feature model contains any errors.
The analysis of feature models is supported by a number of tools including the FaMa framework
[69], FeatureIDE [68], PLEDGE [30], and Clafer [8].
SPL testing approaches typically follow a model-based approach, where the feature model

represents the testing space of the product line, and the products represent potential test cases. In
this paper, a test case is a product and so we use these two terms interchangeably. Likewise, we
define a test suite to be a sequence of test cases, i.e., products. The number of products represented
by a feature model tends to increase exponentially with the number of features. Hence, for instance,
the Drupal feature model, derived from the popular Web framework Drupal, has 48 features and 21
cross-tree constraints, and it represents 2.09 · 109 potential products [60]. Thus, typically it is not
feasible to test every single product. To address this problem, several test case selection techniques
have been proposed to select a representative subset of the products to be tested. Among them,
pairwise testing is a highly-used technique that selects test suites that contain all the possible
combinations of pairs of features [53]. For instance, Table 2 depicts a pairwise suite for the model in
Fig. 1, where the number of products is reduced from 12 (total number of products represented by

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

6 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

the model) to 5 containing all the possible feature pairs. However, as will be explained later, there
are many other properties of a good selection or prioritisation that can be captured by a range of
fitness functions. For example, recently changed features tend to be more fault prone and so ideally
should be included in products that are tested relatively early in the process.

Table 2. Mobile phone pairwise test suite with pairwise coverage of features

ID Test Case
TC1 Mobile Phone, Calls, Screen, Basic, Media, MP3
TC2 Mobile Phone, Calls, Screen, HD, GPS, Media, Camera, MP3
TC3 Mobile Phone, Calls, Screen, HD, Media, Camera
TC4 Mobile Phone, Calls, Screen, HD
TC5 Mobile Phone, Calls, Screen, Basic, GPS

2.2 Evolutionary Multi-Objective Optimisation
In multi-objective optimisation we have two or more objectives/fitness functions that we wish to
optimise. Let us suppose that we have a multi-objective optimisation problem in which the search
space is X . The classic approach to comparing two candidate solutions A ∈ X and B ∈ X is to use
Pareto dominance [12], where A is said to Pareto dominate B if A is better than B on at least one
objective and at least as good as B on all other objectives. Thus, if A Pareto dominates B and we
have already found A then there is no point in considering B; A is preferable to B. In contrast, if A
and B are not related under Pareto dominance then they represent different trade-offs between the
objectives. Under Pareto dominance, the “best” candidate solutions are those in the Pareto optimal
set (called Pareto front) in the objective space, which is the set of elements in X that are not Pareto
dominated by any other element in X .
Evolutionary algorithms (EAs) are a class of stochastic search and optimisation methods that

mimic the process of natural evolution. Over the past two decades, there has been significant interest
in the use of EAs to solve multi-objective optimisation problems (MOPs) [12, 16, 80], the resulting
research branch being called evolutionary multi-objective optimisation (EMO). The success of
EMOs can be attributed to two major advantages of EAs. One is that they have low requirements
on the problem characteristics and are capable of handling large and highly complex search spaces.
The other is that their population-based search can achieve an approximation of the problem’s
whole Pareto front. The population returned represents a set of alternative trade-offs between the
objectives.

In general, evolutionary algorithms can be loosely categorised into three metaheuristics: genetic
algorithm (GA), evolution strategy (ES), and genetic programming (GP) [4]. GA and ES are commonly
used to generate solutions to optimisation and search problems, while the solutions in GP are in
the form of computer programs. GA often operates on a relative large population (e.g., with 100
individuals), and performs both crossover and mutation to produce new individuals. In contrast,
ES is based on ideas of self-adaptation, and often has a very small population and no crossover
in its variation operation [63]. Formally, an ES has a (µ+λ) evolution form, where µ and λ are the
number of parental individuals and offspring individuals, respectively. In EMO, most algorithms
are GAs; very few are based on the ES principles and the most popular multi-objective ES is the
Pareto archived evolution strategy (PAES) [38, 39].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 7

Many-objective optimisation refers to the simultaneous optimisation of four or more object-
ives [40]. There are a number of differences between many-objective optimisation and multi-
objective optimisation with two or three objectives. The increase in objective dimensionality can
bring many difficulties, such as the ineffectiveness of the Pareto dominance criterion, aggravation
of the conflict between convergence and diversity, inaccuracy of density estimation, inefficiency of
recombination operation, increasing sensitivity to parameter settings, and rapid increase of time
or space requirement. These issues cause significant challenges when using EAs in dealing with
many-objective optimisation problems, especially for Pareto-based approaches.

3 THE PROPOSED ALGORITHM
In this section, we describe the proposed algorithm, the grid-based evolution strategy (GrES). We
start by presenting an approach to optimisation (i.e., how to view the objectives to be optimised)
that takes into account domain knowledge. We then explain the motivation for using an evolution
strategy (rather than a generic genetic algorithm), and also what makes GrES different from
existing evolution strategies. Next we describe the method used for selecting parental individuals
for variation in the evolutionary process. This is followed by an explanation of the individual
encoding and variation operators. Finally, we give the main procedure of GrES.

3.1 Optimisation Approach
As stated previously, SPL test suite generation can be seen as a combination of two problems, the
test selection problem and the prioritisation problem. Test selection aims to choose products (as
few as possible) that are likely to reveal any faults that are present, while prioritisation aims to
find faults as early as possible. These problems result in two groups of objectives to be optimised
in test suite generation: selection (including pairwise coverage), and prioritisation. Note that the
two groups often have several objectives, and this thus forms an optimisation problem with many
objectives.
Much of the previous work in the area has integrated all (or some) of the above objectives into

one single fitness function with weighting factors (see, for example, [31, 55, 71, 74]). As previously
discussed, when giving a high weight to a particular objective (such as pairwise coverage) one is
making this more important by a fixed multiplier. This less effectively represents the nature of the
problem, in which one objective is more important than the others (and not by a fixed ratio).
Another (complementary) approach that has been used is to separately consider test selection

and prioritisation (see, for example, [1, 19, 29, 31, 47, 48, 55, 58, 61]). These approaches can decrease
the difficulty of the considered problem from many objectives to multiple objectives. However,
they may either be unable to provide a set of good trade-offs for the tester or fail to guarantee the
quality of the test suite on some objectives (i.e., those not being considered in the optimisation).
In this paper, we use nine fitness functions that represent both groups of objectives and aim to

achieve a set of good trade-offs between them. Yet, we do not treat all the objectives equally, instead
we consider pairwise coverage first and then optimise the remaining objectives simultaneously.
This was motivated by the fact that pairwise coverage can be seen as the main aim in test suite
generation — we want to achieve full pairwise coverage and ideally also do well for other objectives.
Another advantage of this approach is that it avoids the simultaneous optimisation of heavily
conflicting objectives (i.e., pairwise coverage versus cost), thus enabling Pareto-based approaches
(those using Pareto dominance to assign individuals’ fitness) to work well on this many-objective
problem. This can be seen in the proposed Pareto-based algorithm GrES.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

8 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

Specifically, we use two simple rules to compare two individuals in the (environmental) selection
process of GrES2: 1) preferring the individual with higher pairwise coverage and 2) preferring the
individual with better fitness (determined by the other objectives) when their pairwise coverage is
equal.

3.2 Why use an Evolution Strategy
We ran some initial experiments with EAs on the considered SPL testing problem, with a seeding
strategy that used the CASA tool to generate an initial test suite that achieves full pairwise coverage,
as in [48]. In these initial experiments we observed that, with the seeding strategy, evolutionary
search that had no crossover operation performed better than (or at least as well as) search that used
crossover. And we also observed that the crossover between the seed individual and a randomly-
generated individual typically produced offspring with worse performance (i.e., prioritisation
objectives and cost objectives) than the seed individual. One explanation for this is that a crossover
operation, which typically brings a big change to the individual, could disturb some good building
blocks of chromosomes in the seed individual.

In addition, we also observed that in an algorithm without crossover the individuals in the final
population were all from the seed individual (i.e., all being offspring of the seed individual). This
means that randomly-generated individuals in the initial population make no contribution to the
final result.
Given these two observations, evolution strategy, which has a very small population size and

no crossover operator, seems a good option. That is, we continually do some variations around
the seed individual and its offspring during the evolutionary process in an effort to produce
some new promising individuals. This has the potential to significantly reduce the number of
evaluations, resulting from the randomly-generated individuals, and make the search focus on the
seed individual.

Like PAES [39], GrES uses a grid-based archive (see Figure 2) to store promising solutions (non-
dominated solutions3) generated during the evolutionary process. However, GrES significantly
differs from PAES (and other ESs) in that the current population (i.e., the solutions that act as
parental individuals to generate offspring) is not based on the last-generation population and their
offspring, but rather its elements are selected carefully from the archive set. In each generation,
GrES selects three specific individuals from the archive according to some domain knowledge (this
will be explained in detail in the next subsection) to form the current population and mutates them
to form three new individuals, thus resulting in a (3+3) evolution form.

Finally, it is worth mentioning that the grid-based archive of GrES is managed by an individual-
centred calculation environment (inspired by [77]) whose computational cost is virtually inde-
pendent of the number of hyperboxes in the grid and only increases linearly with the number
of objectives. This contrasts with many grid-based EAs (such as PAES) whose selection opera-
tion entails a traversal of all the hyperboxes in the grid; the number of such hyperboxes grows
exponentially with the number of objectives [14].

3.3 Selection for Variation
In an evolving population, the selection of the individuals from which to produce offspring (called
mating selection) is crucial. Unlike existing ESs, whose population always comes from either the
last-generation population or their offspring, GrES constructs the population by selecting some
2These two rules can apply to any EMO algorithm, and in our experimental studies, the peer EMO algorithms used the
same rules in their selection process.
3Note that the dominance rule is based on the proposed optimisation approach; i.e., for two solutions p and q , if p dominates
q , then either p has a better coverage than q , or p has the same coverage as q but dominates q on the remaining objectives.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 9

 f2

f1

A

B C D

E

Fig. 2. Grid-based archive in a bi-objective case, where the grid degree of nondominated solutions A, B, C, D
and E is 1, 1, 2, 2 and 1 respectively. For selection (i.e., Selection_I I I (Q) in Step 3 of Algorithm 1), only the
solution with the lowest grid degree (A, B or E) is considered. For archive truncation (i.e., Algorithm 5), only
the solution with the highest grid degree (C or D) is considered. The grid environment was constructed by
predefined divisions and the boundaries of the nondominated solutions adaptively, see [77] for details.

specific solutions from the archive set. Here, we explain how domain knowledge was used to design
the mating selection of the algorithm. Specifically, GrES takes advantage of the fact that in the
test suite generation problem the cost objectives are not directly in conflict with the prioritisation
objectives. That is, removing a product in a test suite does not necessarily worsen the prioritisation
objectives of the suite, and changing the order of products in a test suite for a better prioritisation
does not increase the cost of the test suite. This also means that a test suite may achieve both a
high prioritisation and a low cost. In light of this, we consider the following two operations.

One operation randomly performs some variations on an individual in the archive to achieve a
better cost or prioritisation. For better cost, a test case removal operation (which will be explained
in the next subsection) is carried out in order to tentatively reduce the suite size. For better
prioritisation, a test case swap operation is carried out to give a perturbation. Note that in each
generation of GrES, only one individual in the archive set is selected to perform the above variations.
The selection is based on the grid; this process is like the one in PESA-II [13]. First we randomly
select one non-empty hyperbox in the grid and then randomly select one individual from this
hyperbox.

The other operation is applied to the individual having the best prioritisation under one specific
size of the current test suites; i.e., from a set of test suites with the same number of test cases in
the population, the operator selects one with the best prioritisation (determined by the sum of the
normalised prioritisation objectives). For this individual, one of the four variations, test case swap,
test case removal, test case addition and test case substitution, is randomly performed. The test
case removal operation is to tentatively reduce the suite size of the individual. The test case swap
and addition operations are to tentatively increase the prioritisation values of the individual. The
test case substitution is for both.
Finally, as the archive only allows the entry of new individuals that are not dominated by the

existing individuals in the archive, it contains the best individuals produced so far. Individuals
located in sparse areas of the archive tend to have not been developed well, e.g., they are probably
newly produced individuals that just entered the archive. Here, we try to explore such individuals.
To do so, we consider a well-known density estimator, grid degree [13]. Specifically, we first consider
a non-empty hyperbox with the fewest individuals in the archive (randomly select one if there

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

10 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

Algorithm 1 GrES(s,N)
1: Q ← {s} /∗ s is the seed individual ∗/
2: while termination criterion not fulfilled do
3: µ1 ← Selection_I (Q), µ2 ← Selection_I I (Q), µ3 ← Selection_I I I (Q)
4: λ1 ← VariationSR(µ1), λ2 ← VariationSRAS(µ2), λ3 ← VariationSRAS(µ3)
5: Q ← Join(Q, λ1), Q ← Join(Q, λ2), Q ← Join(Q, λ3)

/∗ N is the capacity of the archive set ∗/
6: if |Q | > N then
7: Q ← Truncate(Q,N)
8: end if
9: end while
10: return Q

are two or more such hyperboxes) and then randomly select one individual from this hyperbox;
see an illustration in Figure 2. After the selection, one of the above four variations are randomly
performed on the selected individual for a better cost or prioritisation.

3.4 Encoding and Variation Operators
We used the same binary string encoding as in [58]. A chromosome (individual) is formed by a
sequence of test cases, where each test case is represented by l bits (l being the number of features
in the feature model). Thus, a test suite with k test cases has k × l bits. The order of features in
each test case corresponds to the depth-first traversal order of the tree. A value of 1 means that the
corresponding feature is included in the test case, while a value of 0 means the feature not being
included. Note that all of the products (tests) used are valid products as a result of using two tools
that generate valid products: CASA [25] in seeding and PLEDGE [30] (where internally a modified
version of SAT4j [29] is used) when adding products.

We used four simple mutation operators from [58] to produce new individuals: test case swap,
test case removal, test case substitution, and test case addition. Test case swap, which changes the
order of test cases, exchanges the order of two randomly chosen test cases in an individual. The
three test case selection operators (test case removal, test case substitution and test case addition)
remove, substitute and add one test case at a randomly chosen place of the test suite (i.e., the
individual), respectively.

3.5 Procedure of the Proposed Algorithm GrES
Algorithm 1 gives the framework of the proposed algorithm GrES. Step 1 is the archive initialisation.
Steps 2–9 is the main part of the algorithm. First, the current evolutionary population {µ1, µ2, µ3}
is selected from the archive set by three selection operations (explained previously in Section 3.3),
as stated in Step 3. Then, three variation operations (Algorithms 2 and 3) are carried out on µ1, µ2
and µ3 and obtain three offspring λ1, λ2 and λ3 (Step 4). Step 5 compares these three offspring with
the individuals in the archive set. The comparison operation, which is based on the approach in
Section 3.1, is described in Algorithm 4. Finally, Steps 6–8 maintain the archive set — if its size
exceeds the predefined maximum threshold then a truncation operation is performed to remove the
individual(s) in the current most crowded area. Note that this truncation (described in Algorithm 5)
is the same as in PAES [39].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 11

Algorithm 2 VariationSR(µ)
1: if random(0, 1) ≤ 0.5 then
2: λ← TestCase_Swap(µ)
3: else
4: λ← TestCase_Removal(µ)
5: end if
6: return λ

Algorithm 3 VariationSRAS(µ)
1: prob ← random(0, 1)
2: if prob ≤ 0.25 then
3: λ← TestCase_Swap(µ)
4: else if 0.25 < prob ≤ 0.5 then
5: λ← TestCase_Removal(µ)
6: else if 0.5 < prob ≤ 0.75 then
7: λ← TestCase_Addition(µ)
8: else
9: λ← TestCase_Substitution(µ)
10: end if
11: return λ

Algorithm 4 Join(Q, λ)

1: for all q ∈ Q do
2: if Coveraдe(q) > Coveraдe(λ) then
3: return Q
4: else if Coveraдe(q) < Coveraдe(λ) then
5: Q ← Q \ {q}
6: else if q ≺ λ then
7: return Q
8: else if λ ≺ q then
9: Q ← Q \ {q}
10: end if
11: end for
12: Q ← Q ∪ {λ}

13: return Q

Algorithm 5 Truncate(Q,N)
1: while |Q | > N do
2: Qc ← FindMostCrowded(Q)

/∗ Pick out the most crowded hyperbox, in which the solution set are denoted as Qc
∗/

3: q ← RandomPick(Qc)

4: Q ← Q \ {q}
5: end while
6: return Q

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

12 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

3.6 The Optimisation Problem
In this subsection, we present nine state-of-the-art objective functions for search-based test case
generation in SPLs. Three of the functions concern test case selection (i.e., selecting a subset of
products to be tested) and six functions address test case prioritisation (i.e., ordering products to
detect bugs as soon as possible). All the functions receive an attributed feature model representing
the SPL under test (fm) and a test suite (ts) as inputs and return a value measuring the quality of
the suite with respect to the optimisation objective. Each function is illustrated using the feature
model fm from Fig. 1 and the test suite ts = [TC1, TC2] shown in Table 3. Table 4 summarises the
objective functions used in our study, indicating for each objective the section where it is described
and whether it will maximised or minimised.

Table 3. Example Test Cases

ID Test Case
TC1 Mobile Phone, Calls, Screen, Basic, Media, MP3
TC2 Mobile Phone, Calls, Screen, HD, GPS, Media, Camera, MP3

Table 4. Objective functions

Objective function Goal Optimization Section

Pairwise coverage Test selection Maximise 3.6.1
Test suite size Test selection Minimise 3.6.2
Test suite cost Test selection Minimise 3.6.3
Coefficient of connectivity-density Test prioritisation Maximise 3.6.4
Dissimilarity Test prioritisation Maximise 3.6.5
Variability coverage and cyclomatic complexity Test prioritisation Maximise 3.6.6
Number of changes Test prioritisation Maximise 3.6.7
Number of faults Test prioritisation Maximise 3.6.8
Feature size Test prioritisation Maximise 3.6.9

We use the following objective functions for test case selection in SPLs.

3.6.1 Pairwise Coverage (PC). This function counts the number of feature pairs covered by the
input test suite. It has been extensively used in related work in SPL testing [53]. In this paper,
we use the most common approach where the function pc(fm, tci) returns the number of pairs of
features covered by the test case tci at position i in test suite ts, that were not covered by preceding
test cases tc1, . . . tci−1. This objective function is defined as follows:

PC(fm, ts) =
|ts |∑
i=1

pc(fm, tci) (1)

Test case TC1 covers 36 different pairs of features such as the pair [Calls,¬GPS], which indicates
that the feature Calls is selected in TC1 and the feature GPS is not selected. Analogously, test case
TC2 covers 27 different pairs of features, e.g., [HD, GPS]. Therefore, the function is calculated as
PC(fm, ts)=36+27=63.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 13

3.6.2 Test Suite Size (TSS). This function returns the number of products in the input test suite
ts [31, 47, 48]. This objective function is defined as follows:

TSS(ts) = |ts | (2)
In the example, where ts = [TC1, TC2], TSS(ts)=2.

3.6.3 Test Suite Cost (TSC). This function returns the cost of testing the products in a suite as the
sum of the cost of testing each product [31, 72]. The cost of testing a product is equal to the sum of
the cost of the features in the product. Recall that the cost attribute represents an estimation of the
resources needed to test the feature (e.g., execution time). Let the function cost(fm, tci) return the
sum of the costs of the features included in the test case tci . The test suite cost is defined as follows:

TSC(fm, ts) =
|ts |∑
i=1

cost(fm, tci) (3)

As an example, based on the feature attribute values depicted in Table 1, the cost of the features
in TC1 is 20 for the feature Calls, 5 for Screen, 25 for Basic, 5 for Media and 10 for MP3, adding
up 65 in total. Analogously, the sum of the cost of the features of TC2 is 145. Therefore, the value
of the function is calculated as TSC(fm, ts)=65+145=210.

In the following, we present the objective functions for test case prioritisation in SPLs used in
our work, proposed by Parejo et al. [58]. We start by introducing the prioritisation objectives based
on the information extracted from the feature tree.

3.6.4 Coefficient of Connectivity-Density (CoC). The coefficient of connectivity-density metric
calculates the complexity of a feature model in terms of the number of edges and constraints of
the model [7]. Sánchez et al. [61] adapted this metric to calculate the complexity of a feature by
measuring the number of edges and constraints in which the feature is involved. For a feature f ,
the complexity of f is the number of edges (including those for cross-tree constraints) that are
associated with f in the feature model. For example, Mobile Phone has complexity 4 (there are
four children of Mobile Phone in the feature model) and Camera has complexity 2 (one for the
edge to its parent and one for the cross-tree constraint).

This function calculates the CoC of the features of a suite, thus giving priority to those test cases
covering features with higher CoC more quickly. Let the function coc(fm, tci) return the sum of
the CoC metric of the features included in the test case tci, considering only those features not
included in preceding test cases tc1 . . . tci−1. This objective function is defined as follows:

CoC(fm, ts) =
|ts |∑
i=1

coc(fm, tci)
i

(4)

As an example, test case TC1 has a CoC of 13 calculated as follows: 4 edges in Mobile Phone, 1
edge in Calls, 3 edges in Screen, 1 edge in Basic, 3 edges in Media and 1 edge in MP3. The features
in TC2 that are not included in TC1 are HD, GPS, and Camera. Hence TC2 has a value of 5 computed
as follows: 2 edges in HD, 1 edge in GPS, and 2 edges in Camera. Considering that TC1 is placed in
position 1 and TC2 in position 2, the function is calculated as CoC(fm, ts) = (13/1) + (5/2) = 13 + 2.5
= 15.5

3.6.5 Dissimilarity (D). Some authors have shown that dissimilar products are likely to detect
more faults than similar ones [3, 29, 61]. Based on this idea, we let the dissimilarity of a test case be
the number of features of this test case that have not been included in the preceding test cases,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

14 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

giving priority to those test cases that cover more new features more quickly. Let the function
df (fm, tci) return the number of features in test case tci that were not included in the preceding
test cases tc1 . . . tci−1. The dissimilarity objective function is defined as follows:

D(fm, ts) =
|ts |∑
i=1

df (fm, tci)
i

(5)

As an example, test case TC1 has a dissimilarity value of 6, equal to the number of its features.
Test case TC2 has a dissimilarity value of 3, equal to the number of features not included in TC1: HD,
GPS and Camera. Considering that TC1 is placed in position 1 and TC2 in position 2, the function is
calculated as D(fm, ts)= (6/1) + (3/2) = 6 + 1.5 = 7.5

3.6.6 Variability Coverage and Cyclomatic Complexity (VCCC). The variability coverage and the
cyclomatic complexity metrics of a product have been used as effective drivers for the selection [22]
and prioritisation [61] of test cases in SPLs. The cyclomatic complexity of a product is measured as
the number of cross-tree constraints enforced by the product. The variability coverage is measured
as the number of variation points in the products, where a variation point is any feature that
provides different variants to create a product, i.e. optional features and non-leaf features with one
or more non-mandatory subfeatures. This objective function calculates the value of both metrics
for each product of the suite, giving a higher weight to those products at the top of the suite.
Let function vc(fm, tci) return the number of different cross-tree constraints and the number of
variation points involved on the features included in test case tci that were not included in preceding
test cases tc1 . . . tci−1. The VCCC objective function is defined as follows:

VCCC(fm, ts) =
|ts |∑
i=1

vc(fm, tci)
i

(6)

As an example, TC1 has 3 variation points, namely Mobile Phone, Screen and Media. Analog-
ously, the features in TC2 not included in TC1 include 1 variation point (GPS) and a cross-tree
constraint between HD and Camera, which counts as 2. Since TC1 is placed in position 1 and TC2 in
position 2, the function is calculated as VCCC(fm, ts) = (3/1) + (3/2) = 3 + 1.5 = 4.5
The following objective functions are based on the extra-functional information provided by

feature attributes. To illustrate each function, the feature attribute values depicted in Table 1 are
used.

3.6.7 Number of Changes (NC). The number of changes has been proposed as a good indicator of
error proneness and can be used to predict faults in later versions of systems [78]. This objective
function counts the number of changes that have been made to the (code of the) features contained
in the products of a test suite, giving more weight to the features included in the products at the
top of the test suite. Let the function nc(fm, tci) return the number of code changes covered by
features of the test case tci at position i that were not covered by preceding test cases tc1 . . . tci−1.
Note that we say that a test case covers a change if it includes the feature where the change was
made. The NC objective function is defined as follows:

NC(fm, ts) =
|ts |∑
i=1

nc(fm, tci)
i

(7)

As an example, test case TC1 covers 6 changes in the feature Calls (see feature attribute values
in Table 1), 2 changes in Screen, 1 change in Basic, 9 changes in Media and 4 in the feature MP3,
22 changes in total. Test case TC2 includes three new features HD, GPS and Camera, with 3, 8, and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 15

12 changes respectively, 23 changes in total. Considering that TC1 is placed in position 1 and TC2
in position 2, the function is calculated as NC(fm, ts) = (22/1) + (23/2) = 22 + 11.5 = 33.5

3.6.8 Number of Faults (NF). The number of faults in previous versions of the system has also
been proposed as an effective bug predictor [78]. This objective function calculates the number of
known faults in the features of a test suite and the speed in covering those faults (features), giving
a higher value to those test cases that cover more faults faster. We may recall that this objective
function uses historical data about the faults reported in previous versions of the products under
test. Let function nf (fm, tci) return the number of faults detected by the test case tci that were not
detected by preceding test cases tc1 . . . tci−1. Note that we consider that a test case (product) detects
a fault if it includes the feature(s) that triggered the fault. The NF objective function is defined as
follows:

NF(fm, ts) =
|ts |∑
i=1

nf (fm, tci)
i

(8)

As shown in Table 1, test case TC1 covers 5 faults in the feature Calls, 1 fault in feature Screen,
0 faults in feature Basic, 5 faults in feature Media and 3 faults in feature MP3; 14 faults in total. Test
case TC2 covers 2 known faults in HD, 11 faults in GPS, and 7 faults in Camera; 20 faults in total.
Assuming that TC1 and TC1 are placed at the first and second positions of the suite respectively,
the function is calculated as NF(fm, ts) = (14/1) + (20/2) = 14 + 10 =24

3.6.9 Feature Size (FS). The size of a feature has also been suggested as a measure that provides a
rough idea of the complexity of the feature and its error proneness [60]. This objective function
measures the number of lines of code in the features involved in a test suite, giving priority to
test suites covering code faster. Let function fs(fm, tci) return the sum of the sizes of the features
included in the test case tci that were not included in preceding test cases tc1 . . . tci−1. The FS
objective function is defined as follows:

FS(fm, ts) =
|ts |∑
i=1

fs(fm, tci)
i

(9)

Based on the feature attribute values shown in Table 1, test case TC1 has 3, 690 lines of code
calculated as follows: 1,000 in the feature Calls, 930 in Screen, 270 in Basic, 1,100 in Media and
390 in MP3. The new features included in TC2 have a total of 1, 650 lines of code: 510 in HD, 460
in GPS, and 680 in Camera. Assuming that TC1 is placed in position 1 and TC2 in position 2, the
function is calculated as FS(fm, ts) = (3,690/1) + (1,650/2) = 3,690 + 825 = 4,515

4 EXPERIMENTAL DESIGN
4.1 Performance Metrics
We used a comprehensive performance metric, hypervolume (HV) [82], to study the results of
the experiments. HV measures the volume of the objective space enclosed by a solution set and a
reference point. A large value is preferable and reflects the solution set achieving good quality in
all three aspects, convergence, extensity and uniformity; an illustration can be seen in [34]. HV is
arguably the most popular metric in the area due to its good theoretical and practical properties,
such as being compliant with Pareto dominance between solution sets and not requiring a good
representation of the problem’s Pareto front. There do exist other performance metrics frequently
used in software engineering, such as those presented in [73] including GD, IGD, PFS, C, ED, GS
and epsilon-indicator. However, each metric has its own working range and applying metrics to

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

16 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

problems for which they are not suitable may easily lead to inaccurate evaluation [45]. For example,
the metrics GD and IGD need a Pareto front representation with densely and uniformly distributed
points [45], which is not available in our problem. The metrics PFS and C consider the number of
nondominated solutions in the final population; however in many-objective optimisation, almost
all the solutions in the population are nondominated. The metric ED can only partially reflect
convergence [42] and GS only works for bi-objective problems [42]. The metric epsilon-indicator
tends to give very similar results to HV, as shown theoretically [10] and experimentally [59].

In the calculation of HV, two crucial issues are the scaling of the objective space and the choice
of the reference point. Since the objectives in the considered problems take different ranges of
values, we normalised the objective values of the obtained solutions according to the ranges of
an estimated Pareto front. Following common practice, the estimated Pareto front consists of the
nondominated solutions of the collection of all the solutions produced on a given problem. The
reference point was set to 1.1 times the upper bound of the estimated Pareto front (i.e., r = 1.1m)
to emphasise the quality balance between convergence and diversity. In addition, since an exact
calculation of the HV metric can be computationally expensive in many-objective optimisation, we
estimated the HV result by Monte Carlo sampling. Here, 10,000,000 sampling points were used to
ensure accuracy [5].
Since the software engineer is typically only interested in test suites that achieve full pairwise

coverage, we also introduced a metric to evaluate the ability of each algorithm to return such
test suites, called full coverage ratio (FCR), namely, the proportion of solutions with full pairwise
coverage in the final population. In addition, it is necessary to note that in computing HV, we only
used solutions with full pairwise coverage. That is, we computed HV of only the solutions with full
pairwise coverage in the population, considering all objectives except the first one (the pairwise
coverage).

4.2 Overview
The proposed approach, GrES, was evaluated through experiments that compared it with several
alternatives. The experiments compared FCR and HV values and addressed the following five
research questions.

• Research Question 1 (RQ1): How does GrES perform, in terms of FCR and HV, when compared
with current solutions to the problem (the two variants of NSGA-II and PLEDGE)?
• Research Question 2 (RQ2): How large are the HV values of the populations returned by
the evolution strategy, when compared with the results of alternative representative multi-
objective optimisation algorithms using the same approach (first optimise on pairwise cover-
age)?
• Research Question 3 (RQ3): How large are the HV values of the populations returned by
GrES when compared with previous approaches if we restrict the set of objectives to those
previously considered?
• Research Question 4 (RQ4): How large are the differences in the HV values of the populations
returned in the experiments used for RQ1-3?
• Research Question 5 (RQ5): How long do the different algorithms take?

The initial experiments, addressing the first research question (RQ1) compared GrES with two
related approaches proposing the use of different instances of NSGA-II, which we call NSGA-IIH [48]
and NSGA-IIP [58]. We chose these approaches because we found them easy to reproduce and
because they are both closely related to our work (they addressed the problems of test selection [48]
and test prioritisation [58] in SPL).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 17

We also used PLEDGE (Product Line Editor and Test Generation Tool) [30] in the experiments
that addressed the first research question. PLEDGE is an open-source tool for the selection and
prioritisation of SPL products maximising the feature interactions covered. The key feature of
PLEDGE is that it maximises the dissimilarity among products as a proxy to achieve high coverage,
allowing it to scale to large SPLs. More specifically, the tool works in two steps. First, a set of products
maximising dissimilarity is selected. Second, the products are ordered (i.e. prioritised) based on
dissimilarity, i.e. the most different products are ranked first. In practice, PLEDGE aims to optimise
two of the objectives presented in Section 3.6: pairwise coverage (selection) and dissimilarity
(prioritisation).

PLEDGE receives as inputs a feature model, the number of products to be generated, and the
time allowed for generating them. In our experiment, we set the number of products equal to the
size of the pairwise suite generated by CASA, used as seed in GrES (between 6 and 61 products).
For the execution time limit, we used the median of the execution times of all the other techniques
under evaluation for a model (reported in the next sections). Note that, when comparing PLEDGE
and GrES, GrES has the advantage that it starts with a seed that provides full pairwise coverage.
GrES, however, is required to optimise over nine objectives whereas PLEDGE only has to optimises
on two (a multi-objective problem)

We then performed additional experiments that addressed the second research question (RQ2) and
so compared GrES with alternative multi-objective optimisation algorithms when using the same
approach (i.e. by first considering pairwise coverage). The aim of these experiments was to evaluate
our novel evolution strategy (i.e. if RQ1 found that GrES outperformed the current techniques then
we wanted to know whether this was entirely due to it first optimising on pairwise coverage). These
alternative evolutionary algorithms were NSGA-II [17], IBEA [81], MOEA/D [79], SPEA2+SDE [44],
and PAES [39]. The first three are representative approaches of Pareto-based, indicator-based and
decomposition-based genetic algorithms, respectively. The main difference among them lies in the
environmental selection operation (i.e., selection for survival), which uses the Pareto dominance,
performance indicator and decomposition (by a set of weight vectors), respectively. SPEA2+SDE is
a genetic algorithm designed for many-objective optimisation. Very recently, it has been found
to perform in general best out of various state-of-the-art many-objective algorithms in several
experimental studies [41, 43]. PAES is the most popular evolution strategy which has a (1+1)
evolution form. It shares the grid-based environmental selection with our algorithm. In these
experiments, all approaches returned populations will 100% FCR and so we only compared the HV
values.

The parameter settings used in the experiments will be discussed along with implementation
details in Section 4.4. In order to address RQ3, we compared the HV values of populations returned
by GrES with those produced by previous approaches that only aim to optimise a subset of the
objectives. We are not only interested in the relative HV values but also whether the differences
are substantial and so we computed effect sizes (RQ4). Finally, we recorded execution times for a
range of experiments (RQ5).

In the rest of this section we outline the experimental setup; in the next section we explain what
experiments were performed and give the results of these.

4.3 Experimental Subjects
For the evaluation of the approach we used a set of 20 realistic feature models whose characteristics
are depicted in Table 5. By realistic we mean that all the models are related to actual SPLs whose
code is publicly available or accessible under request to the respective authors [52, 60]. For each
model, the number of features, number of CTCs, number of products and application domain are

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

18 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

presented. These models have been used as benchmarks to assess related SPL testing techniques [47,
48, 52, 58, 60].

Table 5. Realistic feature models

Feature model Features CTC Products Domain

Apache 10 0 256 Web server
argo-uml-spl 11 0 192 UML tool
BerkeleyDatabase (BDB) 117 282 32 Database
BDBFootprint 9 0 256 Database
BDBMemory 19 0 3,840 Database
BDBPerformance 27 0 1,440 Database
Curl 14 0 1,024 Data transfer
DesktopSearcher 22 0 462 File search
Drupal 48 21 2.09 ·109 Web framework
fame_dbms_fm 20 0 320 Database
gpl 18 13 73 Graph algorithms
LinkedList 27 0 1,344 Data structures
LLVM 12 0 1,024 Compiler
PKJab 12 0 72 Messenger
Prevayler 6 0 32 Object persistence
SensorNetwork 27 7 16,704 Networking
TankWar 37 0 1,741,824 Game
Wget 17 0 8,192 File retrieval
x264 17 0 2,048 Video encoding
ZipMe 8 0 64 Data compression

Experiments were also performed on three groups of 10 randomly-generated feature models,
with 30, 50 and 100 features, respectively. These models were generated using the tool BeTTy [64]
with the following parameters: 25% mandatory features; 25% optional features; 25% disjunctive
relationships; 25% alternative relationships; maximum branching factor of 12; maximum of 5
subfeatures; and 10% CTC (with respect to the number of features). These values have been found
to be common in feature models [67]. All models are valid (i.e., they represent at least one valid
product) and have no dead features, i.e. all features are part of at least one valid product. Additional
feature models, with 500 features, were also used to address the last research question (regarding
scalability).
For the calculation of the objective functions, the subject models were extended with four

attributes with randomly generated values: cost, number of faults, number of changes and code size.
This is a common approach to evaluate optimisation approaches on attributed feature models [27,
57, 62]. The cost attribute was assigned real values between 0 and 10. The rest of the attributes
were assigned integer values between 0 and 10. Additionally, for each model, we generated a matrix
of feature pairs representing integration faults. In particular, for each valid feature pair (calculated
using the tool SPLCAT [36]), we randomly simulated either 1 or 2 faults with a probability of 0.03.
This probability is based on the percentage of integration faults observed in a recent case study [60].
Exceptionally, the Drupal feature model is provided with real values for the aforementioned
attributes (except cost) and integration faults extracted from the Drupal Git repository and the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 19

Drupal issue tracking system [60]. In this subject, we used the real values for all the attributes
except the cost, for which random values were generated as previously described.

4.4 Implementation Details
All the peer algorithms were executed 30 times for each experiment to reduce the impact of their
stochastic nature. The termination criterion used in all the algorithms was a predefined number of
evaluations, which was set to 10,000. The size of the population for the genetic algorithms except
MOEA/D was set to 100. The population size in MOEA/D, which is the same as the number of
weight vectors, cannot be specified arbitrarily, so we followed the common practice of using the
closest integer to 100 amongst the possible values. The evolution form of PAES was (µ+λ) with
µ = λ = 1, and the archive size was set to 100. Some of the algorithms require several parameters
to be set. As suggested in their original papers, the neighbourhood size was set to 10% of the
population size in MOEA/D and the scaling factor κ to 0.05 in IBEA. The number of grid divisions in
PAES and GrES was set to 10. In addition, it is worth noting that the cell-centred calculation in the
original PAES makes it unable to work in many-objective optimisation [14]. To address this issue,
we modified the implementation of PAES by considering the individual-centred calculation [77], as
the same used in GrES. All the algorithms under evaluation searched over valid products only, i.e.
all the test cases meet the constraints defined in the feature model.
The single point crossover and four mutation operators from [58] (test case swap, test case

removal, test case substitution and test case addition) were used to produce offspring in all the
genetic algorithms. To mutate a solution, the four operators were randomly selected and the
mutation probability was 1/n, where n denotes the number of the solution’s decision variables
(i.e., its suite size). As for crossover probability, 0.8 was used according to the practice in [48]. As a
result of using standard values from the literature, we did not require a tuning phase.
All algorithms except one were implemented using C++. The one exception, NSGA-IIP , was

coded in Java. C++ programs were executed in a notebook computer equipped with an Intel(R)
Core(TM)i5-5200U CPU@2.20GHz and 8GB of RAM runningWindow 7 Ultimate. The Java program
was executed in a desktop computer equipped with Intel(R) Core(TM)i7-4770 CPU@3.40 GHz and
16GB of RAM, running Windows 10 Education.

5 RESULTS
In this section, we outline the experiments carried out to evaluate GrES and the results of these
experiments. The experiments used the settings described in the previous section. The HV results
in all tables give the mean and standard deviation over 30 independent runs, and the best/better
mean for each problem instance is highlighted in boldface. Moreover, in order to have statistically
sound conclusions, we adopted the Wilcoxon’s rank sum test at a 0.05 significance level to examine
the significance of the difference between the results obtained by GrES and its competitors. Symbol
“†” indicates that the difference is statistically significant.

5.1 ResearchQuestion 1: Comparison with Existing Approaches
The main purpose of this comparison was to verify the proposed optimisation framework in
Section 3 (i.e., first consider pairwise coverage and then the other objectives). In order to do this,
we compared the proposed (GrES) approach with the two previous approaches (NSGA-IIH and
NSGA-IIP) and the well-established tool (PLEDGE) as a baseline algorithm. As previously explained,
we used two metrics: full coverage ratio FCS (the proportion of solutions in the final population
that had full pairwise coverage) and the hypervolume (HV) of these solutions. No results are given
for NSGA-IIP for models with 100 features since the computation time was excessive. Note that
since on most of the models there is no solution obtained by PLEDGE reaching the full pairwise

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

20 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

coverage (consequently both FCS and HV being zero), for comparing GrES with PLEDGE we show
the objective values of the best solution in terms of pairwise and dissimilarity.

Consider first the comparison with NSGA-IIH and NSGA-IIP . The results of the experiments with
randomly generated feature models can be found in Tables 6, 7, and 8. The first observation is that
GrES always returned a population in which all test suites provided 100% pairwise coverage. This
is in contrast with the other two approaches, which in all cases had a mean FCR of less than 10%.
Thus, the GrES approach provides the Software Engineer with more test suites that are suitable
(that provide full pairwise coverage).

If we consider the HV values then we can see that the proposed approach is best in the majority
of experiments with models that had 30 features and was best in all experiments with larger feature
models. The differences were found to be statistically significant. Thus, not only does GrES provide
more suitable solutions (test suites), it also provides a relatively diverse set of solutions. As a result,
the Software Engineer has more test suites to choose from and also a wider range of trade-offs
between objectives.

Table 6. FCR and HV of NSGA-IIH , NSGA-IIP and GrES on the 10 random models with 30 features.

Problem NSGA-IIH NSGA-IIP GrES

FCR HV FCR HV FCR HV

Model30-1 7.03% 1.371E-03(8.7E-04)† 1.80% 4.121E-02(1.0E-01)† 100% 2.218E-02(3.2E-02)
Model30-2 7.27% 5.315E-03(2.1E-02)† 2.17% 3.612E-02(6.0E-02)† 100% 1.875E-01(7.4E-02)
Model30-3 7.13% 2.342E-04(3.5E-04)† 1.03% 2.707E-03(1.4E-02)† 100% 3.943E-02(1.8E-02)
Model30-4 7.07% 1.115E-04(1.9E-04)† 2.93% 4.694E-02(1.0E-01)† 100% 3.466E-02(1.0E-02)
Model30-5 6.80% 7.145E-07(1.4E-06)† 1.07% 4.264E-02(2.3E-01)† 100% 2.783E-03(2.7E-03)
Model30-6 6.70% 4.502E-06(1.7E-05)† 1.13% 6.076E-02(2.9E-01)† 100% 2.057E-01(4.4E-02)
Model30-7 6.13% 3.838E-04(2.1E-03)† 1.07% 1.143E-06(6.3E-06)† 100% 5.731E-01(2.9E-01)
Model30-8 7.10% 2.844E-05(1.6E-04)† 1.27% 1.066E-03(5.8E-03)† 100% 4.512E-02(5.8E-02)
Model30-9 6.30% 4.813E-02(1.6E-03)† 1.17% 2.648E-02(1.2E-02)† 100% 3.230E-01(1.2E-01)
Model30-10 7.70% 0.000E+00(0.0E+00)† 1.13% 5.536E-04(2.6E-03)† 100% 1.970E-01(8.5E-02)

Table 7. FCR and HV of NSGA-IIH , NSGA-IIP and GrES on the 10 random models with 50 features.

Problem NSGA-IIH NSGA-IIP GrES

FCR HV FCR HV FCR HV

Model50-1 8.93% 1.467E-03(8.0E-03)† 1.03% 2.758E-02(3.9E-02)† 100% 2.481E-01(6.7E-02)
Model50-2 5.77% 0.000E+00(0.0E+00)† 1.03% 0.000E+00(0.0E+00)† 100% 5.370E-01(2.2E-01)
Model50-3 5.63% 0.000E+00(0.0E+00)† 1.07% 1.072E-05(5.6E-05)† 100% 2.707E-01(2.1E-01)
Model50-4 5.77% 0.000E+00(0.0E+00)† 1.07% 8.574E-07(2.7E-06)† 100% 9.165E-01(7.6E-02)
Model50-5 7.17% 1.055E-04(5.8E-04)† 1.03% 2.065E-05(9.4E-05)† 100% 5.901E-01(1.9E-01)
Model50-6 5.20% 0.000E+00(0.0E+00)† 1.10% 6.552E-03(3.6E-02)† 100% 1.517E-02(3.0E-03)
Model50-7 5.37% 0.000E+00(0.0E+00)† 1.00% 0.000E+00(0.0E+00)† 100% 4.768E-01(6.9E-02)
Model50-8 6.20% 3.676E-02(2.5E-02)† 1.03% 3.688E-02(1.6E-02)† 100% 5.056E-01(5.1E-02)
Model50-9 6.87% 2.144E-07(1.2E-06)† 1.03% 6.236E-03(1.5E-02)† 100% 4.272E-01(1.6E-01)
Model50-10 6.23% 0.000E+00(0.0E+00)† 1.07% 1.168E-02(1.7E-02)† 100% 4.933E-01(1.3E-01)

The potential weakness of using randomly generated experimental subjects is that they might
not be representative of real examples (feature models). It is therefore promising that similar results
were found for the realistic feature models (Table 9). Specifically, in all cases GrES had an FCR of
100%, while the other approaches always had an FCR of less than 10%. In addition, in 16 of the 19
cases, the HV of GrES was highest and the differences were found to be statistically significant.
Overall, it is clear that GrES outperformed the other two approaches in terms of both FCR and HV.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 21

Table 8. FCR and HV of NSGA-IIH and GrES on the 10 random models with 100 features.

Problem NSGA-IIH GrES

FCR HV FCR HV

Model100-1 2.27% 1.572E-06(8.6E-06)† 100% 5.076E-01(1.9E-01)
Model100-2 2.67% 0.000E+00(0.0E+00)† 100% 6.737E-01(1.2E-01)
Model100-3 2.80% 5.773E-03(3.2E-02)† 100% 9.572E-01(6.8E-02)
Model100-4 3.33% 0.000E+00(0.0E+00)† 100% 8.153E-01(8.4E-02)
Model100-5 4.17% 7.860E-07(4.3E-06)† 100% 2.087E-01(8.1E-02)
Model100-6 4.07% 0.000E+00(0.0E+00)† 100% 2.519E-01(1.8E-01)
Model100-7 4.90% 0.000E+00(0.0E+00)† 100% 6.107E-01(3.7E-02)
Model100-8 1.90% 1.149E-03(1.3E-04)† 100% 1.199E+00(1.7E-01)
Model100-9 3.60% 3.573E-07(9.9E-07)† 100% 8.971E-01(8.2E-02)
Model100-10 3.67% 0.000E+00(0.0E+00)† 100% 1.802E-01(4.9E-02)

Table 10 gives the results for the Drupal feature model with real attribute values, with GrES again
being most effective.

Table 9. FCR and HV of NSGA-IIH , NSGA-IIP and GrES on the 19 realistic models.

Problem NSGA-IIH NSGA-IIP GrES

FCR HV FCR HV FCR HV

Apache 5.53% 0.000E+00(0.0E+00)† 1.10% 0.000E+00(0.0E+00)† 100% 3.417E-02(7.3E-02)
argo-uml-spl 6.00% 4.746E-04(5.9E-04)† 2.53% 4.657E-03(1.0E-02)† 100% 2.322E-05(7.6E-06)
BerkeleyDB 7.83% 1.915E-05(3.4E-05)† 5.27% 1.004E-02(3.8E-02)† 100% 7.753E-05(7.2E-05)
BerkeleyDBFootprint 6.47% 1.273E-04(2.8E-05)† 1.77% 1.054E-03(1.6E-03)† 100% 9.718E-03(1.1E-02)
BerkeleyDBMemory 3.47% 0.000E+00(0.0E+00)† 1.03% 1.864E-04(1.0E-03)† 100% 1.232E-01(1.0E-01)
BerkeleyDBPerformance 6.30% 1.118E-04(4.0E-04)† 2.30% 1.608E-02(3.7E-02)† 100% 1.522E-01(5.2E-02)
Curl 9.40% 0.000E+00(0.0E+00)† 3.57% 3.614E-02(1.2E-01)† 100% 1.263E-01(4.4E-02)
DesktopSearcher 5.87% 7.159E-03(1.5E-02)† 3.73% 6.168E-03(7.8E-03)† 100% 1.196E-01(6.0E-02)
fame-dbms-fm 6.73% 2.144E-07(6.5E-07)† 1.27% 1.859E-02(4.6E-02)† 100% 4.048E-01(2.9E-02)
gpl 7.47% 0.000E+00(0.0E+00)† 2.90% 4.254E-02(1.9E-01) 100% 4.269E-04(1.0E-04)
LinkedList 6.20% 1.140E-03(3.8E-03)† 1.70% 2.732E-03(4.2E-03)† 100% 2.950E-02(1.4E-02)
LLVM 6.10% 1.225E-04(1.6E-05)† 3.60% 1.766E-03(2.7E-03)† 100% 1.234E-01(1.6E-01)
PKJab 6.57% 5.923E-05(2.5E-04)† 4.13% 5.785E-04(4.6E-04)† 100% 5.550E-02(1.1E-01)
Prevayler 7.60% 5.922E-04(3.2E-03)† 0.87% 1.899E-03(8.3E-03)† 100% 5.039E-02(5.9E-02)
SensorNetwork 6.67% 1.058E-05(5.8E-05)† 1.40% 2.843E-03(8.0E-03)† 100% 1.009E-01(7.3E-02)
TankWar 6.73% 0.000E+00(0.0E+00)† 1.00% 1.770E-03(6.7E-03)† 100% 3.395E-01(1.6E-01)
Wget 7.60% 0.000E+00(0.0E+00)† 1.73% 1.663E-03(3.7E-03)† 100% 1.968E-02(2.1E-02)
x264 5.33% 0.000E+00(0.0E+00)† 1.87% 2.237E-02(4.5E-02)† 100% 5.057E-02(5.4E-03)
ZipMe 6.40% 8.860E-06(3.9E-05)† 1.33% 0.000E+00(0.0E+00)† 100% 4.124E-02(5.3E-02)

Table 10. FCR and HV of NSGA-IIH , NSGA-IIP and GrES on the real model DrupalFM.

Problem NSGA-IIH NSGA-IIP GrES

FCR HV FCR HV FCR HV

DrupalFM 8.93% 5.097E-03(1.6E-03)† 1.00% 6.722E-03(8.2E-03)† 100% 6.789E-01(2.2E-01)

Regarding the comparison between PLEDGE and GrES, since on most of the models there is no
solution returned by PLEDGE having full pairwise coverage (thus both FCS and HV were zero),
we do not show the FCS and HV results here. Instead, we show the objective values of the best
solution in terms of the pairwise coverage and the dissimilarity which PLEDGE aims to optimise,
on the random models and the realistic/real models in Table 11 and Table 12, respectively. For

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

22 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

PLEDGE, the best solution is determined first by coverage and then by dissimilarity; for GrES, the
best solution is by dissimilarity as all solutions produced have the same coverage. As can be seen
in the tables, indeed the pairwise coverage of the solution of PLEDGE on all of the random models
is close to but not up to the full value, with some exceptions on realistic models. But we need to
note that a seed with full coverage was used in GrES’s search. For the objective dissimilarity, GrES
always has a better result; similar patterns can be seen in the other five prioritisation objectives.
One interesting exception is on the model BerkeleyDB where the two algorithms have the same
values on all the prioritisation objectives. As for the two cost objectives, the solution of PLEDGE
does perform better on some models, 12 and 5 respectively on the test suite cost and test suite size
out of all the 50 test models. Nevertheless, it is worth mentioning that even for the models where
the solution of PLEDGE in the tables is better in terms of the costs, there may exist other solutions
obtained by GrES that were better than PLEDGE’s solution for all nine objectives (they were not
shown in the tables since they are not the best on dissimilarity).

5.2 ResearchQuestion 2: Comparison with Representative Multi-objective
Evolutionary Approaches

The results in the previous subsection did not specifically evaluate the evolution strategy used in
GrES. As a result, we also carried out experiments that compared two evolution strategies (GrES and
PAES [39]) with four representative genetic algorithms (NSGA-II [17], IBEA [81], MOEA/D [79] and
SPEA2+SDE [44]). In order to focus the evaluation on the use of an evolution strategy, all techniques
used our optimisation framework in which one first compares solutions based on pairwise coverage
and only then (if they have the same pairwise coverage) use the other objectives. The optimisation
framework led to an FCR of 100% in all cases and so we only report the HV values.
Tables 13, 14 and 15 give the results with randomly generated models. In all cases, the best

technique was one of those that used an evolution strategy (PAES or GrES) and the difference
between the best of PAES/GrES and the other multi-objective optimisation algorithms was stat-
istically significant. Interestingly, GrES tended to produce higher HV values than PAES: this was
the case in seven out of ten experiments with 30 features and nine out of ten cases in each of the
two other experiments (with 50 and 100 features). Interestingly, although GrES had higher HV
values in the same number of experiments with models with 50 and 100 features, only four of these
differences were statistically significant for models with 50 features, while all of the differences
were statistically significant for models with 100 features.

For a visual understanding of the solutions’ distribution and also of what a higher HV means,
in Figure 3 we use parallel coordinates [46] to plot the final population of one typical run on the
random model Model100-1. Parallel coordinates map a set of solutions in a high-dimensional space
onto a 2D graph. A point is represented as a polyline connecting the values of the objectives. Parallel
coordinates can reflect the convergence, coverage and uniformity to some extent [46]. As we can
see in Figure 3, NSGA-II, IBEA, MOEA/D and SPEA2+SDE fail to maintain diversity, with their
solutions concentrated in a tiny area. In contrast, PAES and GrES are able to find solutions within
different regions, providing multiple options for the decision-maker. If we compare GrES with
PAES, it appears that GrES performs better than PAES in terms of both convergence and diversity,
particularly on the prioritisation objectives (objectives no. 1–6), with more diverse solutions being
obtained. In addition, for practical understanding, in Table 16 we give the range of raw objective
values of the six populations shown in Figure 3 and their HV results. As can be seen in the table,
GrES achieves the maximum values in six prioritisation objectives and shares the minimum values
in the two cost objectives.
Table 17 gives the results with realistic models. Again, the best technique tended to be one

of PAES and GrES; this was the case in 17 of the 19 experiments. GrES was also best for the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 23

Table 11. Objective values of the best solution (in terms of pairwise coverage and dissimilarity) obtained
by PLEDGE and GrES on the 30 random models. For PLEDGE, the best solution is determined first by
coverage and then by dissimilarity; for GrES, the best solution is by dissimilarity as all solutions have the same
coverage. A better value is highlighted in boldface. PC: Pairwise coverage, NF: Number of faults, FS: Feature
size, NC: Number of changes, VCCC: Variability coverage and cyclomatic complexity, CoC: Coefficient of
connectivity-density, D: Dissimilarity, TSC: Test suite cost, TSS: Test suite size.

Problem Algorithm PC NF FS NC VCCC CoC D TSC TSS

Model30-1 PLEDGE 1226.0 131.3 102.3 87.2 7.2 51.7 23.5 1490.1 16.0
GrES 1230.0 155.3 125.0 106.5 9.0 61.5 28.5 1234.4 12.0

Model30-2 PLEDGE 1031.0 125.1 111.0 131.9 6.6 46.3 20.3 1238.1 15.0
GrES 1033.0 177.2 148.7 175.3 9.8 60.3 27.6 860.5 10.0

Model30-3 PLEDGE 1182.0 121.3 137.5 114.8 8.7 54.4 23.8 1366.4 14.0
GrES 1191.0 139.6 145.7 141.2 10.3 58.5 26.7 1265.4 12.0

Model30-4 PLEDGE 764.0 149.7 146.4 105.3 7.6 54.5 22.1 1164.7 16.0
GrES 767.0 160.8 153.8 118.3 7.4 57.0 24.8 784.4 10.0

Model30-5 PLEDGE 1391.0 138.6 105.0 92.0 8.2 47.1 20.6 870.9 13.0
GrES 1393.0 186.1 140.8 115.0 9.9 59.2 26.7 843.1 12.0

Model30-6 PLEDGE 1180.0 138.6 123.8 108.6 9.2 58.4 25.5 1440.2 14.0
GrES 1184.0 141.6 126.1 113.9 9.9 59.6 26.1 1259.4 12.0

Model30-7 PLEDGE 1223.0 99.9 102.0 97.0 7.0 45.6 19.6 1001.6 17.0
GrES 1232.0 122.8 128.2 115.5 9.5 59.3 25.8 870.4 15.0

Model30-8 PLEDGE 1266.0 115.0 119.8 108.0 10.2 53.8 23.8 1172.7 13.0
GrES 1269.0 139.8 138.8 125.0 12.4 62.3 28.3 1016.6 11.0

Model30-9 PLEDGE 1408.0 116.3 106.3 152.4 11.5 54.4 23.9 1288.3 14.0
GrES 1416.0 139.0 125.0 171.3 12.5 61.3 27.8 1123.2 12.0

Model30-10 PLEDGE 1434.0 101.6 90.1 95.6 7.4 42.8 18.8 1229.4 16.0
GrES 1439.0 156.5 138.5 134.3 10.7 59.8 26.8 1076.8 14.0

Model50-1 PLEDGE 3030.0 238.6 204.5 190.5 13.7 95.2 40.3 2116.4 11.0
GrES 3041.0 284.8 235.0 210.5 16.3 105.0 47.5 1958.6 10.0

Model50-2 PLEDGE 4299.0 208.2 148.3 166.7 12.2 79.6 34.1 2284.6 17.0
GrES 4321.0 292.2 195.1 220.5 15.7 99.3 43.4 2324.9 17.0

Model50-3 PLEDGE 4204.0 174.2 150.3 143.7 10.9 71.9 31.4 2689.0 22.0
GrES 4237.0 255.5 205.4 213.7 15.3 100.6 44.1 2514.1 20.0

Model50-4 PLEDGE 4352.0 169.5 149.7 167.6 12.3 73.7 31.9 2016.9 18.0
GrES 4436.0 226.1 201.1 224.9 13.3 91.3 41.1 2067.5 19.0

Model50-5 PLEDGE 3791.0 129.8 137.2 133.8 9.3 58.9 26.0 2094.7 17.0
GrES 3819.0 206.1 240.3 217.4 15.3 100.3 43.9 2422.4 16.0

Model50-6 PLEDGE 3824.0 145.9 143.3 189.2 12.8 77.6 32.8 2593.7 21.0
GrES 3842.0 203.1 203.7 250.3 18.0 101.3 44.3 2729.1 22.0

Model50-7 PLEDGE 3929.0 211.6 196.4 200.9 12.6 88.2 38.5 2010.1 22.0
GrES 3974.0 211.9 202.7 210.4 16.5 94.0 40.5 1704.0 20.0

Model50-8 PLEDGE 3656.0 186.1 208.7 190.3 15.0 97.0 40.6 2696.4 17.0
GrES 3684.0 204.6 211.1 208.3 14.3 99.1 43.5 2610.1 16.0

Model50-9 PLEDGE 3964.0 171.8 157.9 140.2 11.8 74.1 31.5 1862.2 15.0
GrES 3976.0 256.6 228.2 204.2 15.9 101.2 44.7 1984.3 15.0

Model50-10 PLEDGE 3667.0 129.9 122.0 150.2 8.9 64.8 28.4 1615.0 13.0
GrES 3706.0 219.3 192.6 221.2 14.5 100.9 44.4 1823.5 13.0

Model100-1 PLEDGE 18187.0 548.6 374.5 345.7 27.1 175.2 72.8 11001.3 52.0
GrES 18429.0 632.4 392.8 376.4 28.6 182.0 76.8 9013.2 52.0

Model100-2 PLEDGE 18211.0 442.5 302.9 226.2 19.9 123.4 52.0 9290.8 41.0
GrES 18298.0 788.4 391.4 367.7 30.7 196.9 82.5 8380.6 39.0

Model100-3 PLEDGE 15483.0 356.4 214.6 225.7 17.4 102.0 44.3 9564.6 42.0
GrES 15626.0 747.3 416.2 444.8 32.2 200.0 86.0 7891.1 36.0

Model100-4 PLEDGE 18114.0 772.7 364.0 395.7 26.1 191.0 81.2 8158.5 33.0
GrES 18256.0 734.3 445.5 420.7 26.8 196.7 86.4 7532.8 31.0

Model100-5 PLEDGE 17516.0 529.3 312.3 314.6 21.6 153.1 65.9 6920.4 28.0
GrES 17559.0 717.2 419.7 400.3 27.5 193.2 82.6 6173.4 28.0

Model100-6 PLEDGE 16323.0 391.0 223.8 228.2 18.2 106.4 46.2 7499.7 31.0
GrES 16433.0 718.6 406.1 430.4 31.4 198.3 84.9 8355.8 29.0

Model100-7 PLEDGE 18090.0 530.2 371.2 316.2 22.9 160.9 66.9 5823.5 22.0
GrES 18204.0 737.0 441.3 375.6 26.2 195.4 84.5 6596.2 24.0

Model100-8 PLEDGE 17511.0 429.1 289.7 263.2 22.1 134.7 54.9 10982.6 63.0
GrES 17694.0 552.8 365.9 343.8 23.8 166.2 69.0 9578.4 58.0

Model100-9 PLEDGE 17474.0 401.6 243.0 228.1 16.1 108.9 47.7 7698.0 35.0
GrES 17560.0 733.3 416.1 396.4 27.8 194.2 82.7 8760.8 38.0

Model100-10 PLEDGE 17836.0 544.6 321.0 305.8 26.9 159.5 66.4 6821.9 31.0
GrES 18041.0 712.2 391.1 375.7 30.3 186.7 80.9 7329.1 33.0

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

24 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

Table 12. Objective values of the best solution (in terms of pairwise coverage and dissimilarity) obtained by
PLEDGE and GrES on the 20 realistic and real models. For PLEDGE, the best solution is determined first by
coverage and then by dissimilarity; for GrES, the best solution is by dissimilarity as all solutions have the same
coverage. A better value is highlighted in boldface. PC: Pairwise coverage, NF: Number of faults, FS: Feature
size, NC: Number of changes, VCCC: Variability coverage and cyclomatic complexity, CoC: Coefficient of
connectivity-density, D: Dissimilarity, TSC: Test suite cost, TSS: Test suite size.

Problem Algorithms PC NF FS NC VCCC CoC D TSC TSS

Apache PLEDGE 145.0 51.3 32.0 40.5 1.0 16.0 8.0 177.6 8.0
GrES 145.0 61.0 40.0 53.0 1.0 18.0 10.0 133.2 6.0

argo-uml-spl PLEDGE 161.0 39.0 46.0 52.5 3.0 18.5 9.5 379.9 8.0
GrES 162.0 48.0 53.0 60.0 3.0 20.0 11.0 339.5 7.0

BerkeleyDB PLEDGE 14138.0 722.0 539.0 554.0 568.0 778.0 111.0 2900.1 8.0
GrES 14138.0 722.0 539.0 554.0 568.0 778.0 111.0 2169.9 6.0

BerkeleyDBFootprint PLEDGE 128.0 33.3 31.0 42.0 1.0 13.8 6.8 167.1 8.0
GrES 128.0 38.0 41.0 58.0 1.0 16.0 9.0 125.3 6.0

BerkeleyDBMemory PLEDGE 618.0 71.5 45.9 58.5 3.0 28.9 11.9 1216.0 32.0
GrES 623.0 82.2 59.0 71.7 3.0 31.4 14.4 1144.3 30.0

BerkeleyDBPerformance PLEDGE 903.0 121.0 117.0 96.3 8.0 40.5 20.0 834.7 11.0
GrES 908.0 148.2 142.7 126.3 10.0 49.8 24.8 851.7 10.0

Curl PLEDGE 288.0 58.6 62.6 45.3 1.5 21.1 10.6 478.0 10.0
GrES 292.0 70.7 80.3 56.5 2.0 24.8 12.8 438.6 9.0

DesktopSearcher PLEDGE 573.0 62.2 74.3 64.8 6.0 29.5 14.5 733.3 11.0
GrES 574.0 96.8 113.5 89.2 8.0 39.8 19.8 517.6 7.0

fame-dbms-fm PLEDGE 544.0 88.3 83.7 72.6 6.5 32.3 15.3 841.6 12.0
GrES 554.0 90.4 81.4 77.0 6.5 32.8 15.8 697.7 10.0

gpl PLEDGE 411.0 86.9 84.8 83.5 22.5 50.3 15.1 900.6 14.0
GrES 411.0 89.5 86.0 84.7 23.2 51.3 15.3 642.9 10.0

LinkedList PLEDGE 780.0 94.5 144.3 114.1 9.0 48.2 23.2 1015.5 14.0
GrES 793.0 107.8 161.3 123.3 9.0 49.6 24.6 900.2 12.0

LLVM PLEDGE 219.0 49.8 61.2 52.5 1.0 19.8 9.8 276.6 8.0
GrES 220.0 59.0 71.0 65.0 1.0 22.0 12.0 274.8 7.0

PKJab PLEDGE 177.0 55.9 51.0 59.0 3.0 21.0 11.0 380.1 9.0
GrES 177.0 64.0 53.0 66.0 3.0 22.0 12.0 255.0 6.0

Prevayler PLEDGE 50.0 34.5 35.0 26.0 1.0 9.5 5.5 175.4 10.0
GrES 50.0 39.0 35.0 30.0 1.0 10.0 6.0 100.0 6.0

SensorNetwork PLEDGE 1211.0 83.4 88.3 86.7 13.1 44.8 17.7 1142.3 14.0
GrES 1213.0 135.0 126.5 134.5 21.5 65.0 26.0 854.2 11.0

TankWar PLEDGE 2150.0 176.6 152.8 131.2 10.0 60.6 28.1 2089.1 16.0
GrES 2157.0 200.6 180.7 162.0 11.0 67.8 32.8 1953.2 15.0

Wget PLEDGE 473.0 58.2 57.0 69.8 2.0 28.3 13.3 645.4 14.0
GrES 475.0 70.5 70.5 88.0 2.0 30.8 15.8 576.4 13.0

x264 PLEDGE 465.0 67.8 69.4 56.3 3.0 28.0 13.0 763.7 19.0
GrES 469.0 77.8 76.5 63.7 3.0 29.7 14.7 572.8 16.0

ZipMe PLEDGE 85.0 34.5 39.5 42.5 1.0 13.5 7.5 256.3 9.0
GrES 85.0 39.0 41.0 45.0 1.0 14.0 8.0 152.9 6.0

DrupalFM PLEDGE 3726.0 2545.3 254567.3 348.3 34.4 105.8 33.8 1652.6 13.0
GrES 3748.0 3326.5 325334.0 450.0 50.1 135.0 45.0 1693.8 13.0

case (Drupal) where we had real attribute values (Table 18). Almost all the differences between
GrES/PAES and the genetic algorithms were statistically significant. However, very few of the
differences between GrES and PAES were statistically significant.

Overall, it seems that evolution strategies lead to higher HV values than the genetic algorithms.
In fact, all four types of genetic algorithms (whether based on Pareto dominance or dedicated
for many-objective optimisation) produced similar HV values, as their difference lies in how to
select solutions for survival (i.e., forming the next population), which does not matter much for
the considered problem. What matters here is how to select solutions for variation (i.e., producing
offspring). In this regard, continually doing variations around the seed individual and its offspring
differentiates PAES and GrES from the others. In addition, GrES tended to lead to higher HV values
than PAES. The randomly generated models provided us with the opportunity to see how patterns
develop as the model size increases (all other parameters were fixed). It seems that the improvement

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 25

that GrES provided over PAES was greater for the larger models. Most likely this is because the
selection operation, with the help of problem-specific knowledge, has a greater chance of producing
promising offspring, particularly for problems with a larger search space.

1 2 3 4 5 6 7 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

No
rm

ali
se

d V
alu

e

O b j e c t i v e N o .

1 2 3 4 5 6 7 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

No
rm

ali
se

d V
alu

e
O b j e c t i v e N o .

(a) NSGA-II (b) IBEA

1 2 3 4 5 6 7 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

No
rm

ali
se

d V
alu

e

O b j e c t i v e N o .

1 2 3 4 5 6 7 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

No
rm

ali
se

d V
alu

e

O b j e c t i v e N o .

(c) MOEA/D (d) SPEA2+SDE

1 2 3 4 5 6 7 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

No
rm

ali
se

d V
alu

e

O b j e c t i v e N o .

1 2 3 4 5 6 7 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

No
rm

ali
se

d V
alu

e

O b j e c t i v e N o .
(e) PAES (f) GrES

Fig. 3. The final population of one run of the six algorithms on random model Model100-1, shown by the
parallel coordinates plot [46]. In each figure, the first six objectives are prioritisation objectives and the last
two are cost and size objectives; the first objective pairwise coverage is not shown as all the solutions achieve
the same value.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

26 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

Ta
bl
e
13
.
H
V
of

th
e
si
x
al
go
ri
th
m
s
on

th
e
10

ra
nd

om
m
od

el
s
w
it
h
30

fe
at
ur
es
.

Pr
ob
le
m

N
SG

A
-II

IB
EA

M
O
EA

D
SP

EA
2+

SD
E

PA
ES

G
rE
S

M
od

el
30
-1

9.
18
2E

-0
3(
1.
9E

-0
3)
†

9.
15
7E

-0
3(
1.
9E

-0
3)
†

6.
20
8E

-0
3(
2.
9E

-0
3)
†

8.
88
8E

-0
3(
1.
7E

-0
3)
†

1.
62
5E

-0
2(
2.
4E

-0
2)

2.
21

8E
-0
2(
3.
2E

-0
2)

M
od

el
30
-2

1.
11
9E

-0
1(
6.
4E

-0
2)
†

1.
19
4E

-0
1(
8.
7E

-0
2)
†

8.
14
9E

-0
2(
1.
0E

-0
1)
†

1.
53
1E

-0
1(
1.
1E

-0
1)
†

2.
49

5E
-0
1(
7.
7E

-0
2)
†

1.
87
5E

-0
1(
7.
4E

-0
2)

M
od

el
30
-3

5.
38
5E

-0
3(
2.
5E

-0
3)
†

5.
36
7E

-0
3(
1.
7E

-0
3)
†

4.
20
9E

-0
3(
7.
8E

-0
3)
†

5.
83
2E

-0
3(
3.
1E

-0
3)
†

2.
69
5E

-0
2(
2.
6E

-0
2)
†

3.
94

3E
-0
2(
1.
8E

-0
2)

M
od

el
30
-4

1.
15
7E

-0
2(
4.
8E

-0
3)
†

1.
24
1E

-0
2(
5.
8E

-0
3)
†

6.
37
0E

-0
3(
4.
7E

-0
3)
†

1.
34
6E

-0
2(
6.
1E

-0
3)
†

3.
14
0E

-0
2(
1.
3E

-0
2)

3.
46

6E
-0
2(
1.
0E

-0
2)

M
od

el
30
-5

1.
41
9E

-0
4(
2.
8E

-0
4)
†

1.
24
6E

-0
4(
3.
5E

-0
4)
†

8.
73
9E

-0
5(
2.
7E

-0
4)
†

9.
41
0E

-0
5(
1.
9E

-0
4)
†

2.
46
6E

-0
3(
3.
7E

-0
3)

2.
78

3E
-0
3(
2.
7E

-0
3)

M
od

el
30
-6

9.
24
2E

-0
2(
3.
0E

-0
2)
†

1.
09
1E

-0
1(
3.
1E

-0
2)
†

5.
30
8E

-0
2(
4.
3E

-0
2)
†

1.
04
2E

-0
1(
2.
7E

-0
2)
†

1.
48
6E

-0
1(
4.
6E

-0
2)
†

2.
05

7E
-0
1(
4.
4E

-0
2)

M
od

el
30
-7

4.
77
6E

-0
2(
1.
4E

-0
1)
†

7.
17
0E

-0
2(
1.
3E

-0
1)
†

3.
71
6E

-0
2(
1.
3E

-0
1)
†

3.
12
6E

-0
2(
3.
4E

-0
2)
†

5.
48
7E

-0
1(
2.
2E

-0
1)

5.
73

1E
-0
1(
2.
9E

-0
1)

M
od

el
30
-8

9.
28
9E

-0
3(
4.
2E

-0
2)
†

2.
04
6E

-0
3(
8.
2E

-0
3)
†

1.
22
8E

-0
4(
5.
6E

-0
4)
†

1.
07
5E

-0
3(
2.
7E

-0
3)
†

7.
34

3E
-0
2(
9.
6E

-0
2)

4.
51
2E

-0
2(
5.
8E

-0
2)

M
od

el
30
-9

1.
39
6E

-0
1(
1.
0E

-0
1)
†

1.
01
6E

-0
1(
4.
0E

-0
2)
†

7.
74
8E

-0
2(
6.
8E

-0
2)
†

1.
00
7E

-0
1(
3.
0E

-0
2)
†

2.
78
8E

-0
1(
1.
4E

-0
1)

3.
23

0E
-0
1(
1.
2E

-0
1)

M
od

el
30
-1
0

8.
60
8E

-0
2(
4.
4E

-0
2)
†

7.
20
5E

-0
2(
2.
6E

-0
2)
†

4.
34
1E

-0
2(
2.
6E

-0
2)
†

7.
21
5E

-0
2(
2.
6E

-0
2)
†

2.
21

4E
-0
1(
1.
7E

-0
1)

1.
97
0E

-0
1(
8.
5E

-0
2)

Ta
bl
e
14
.
H
V
of

th
e
si
x
al
go
ri
th
m
s
on

th
e
10

ra
nd

om
m
od

el
s
w
it
h
50

fe
at
ur
es
.

Pr
ob
le
m

N
SG

A
-II

IB
EA

M
O
EA

D
SP

EA
2+

SD
E

PA
ES

G
rE
S

M
od

el
50
-1

1.
23
0E

-0
1(
9.
1E

-0
3)
†

1.
36
8E

-0
1(
3.
9E

-0
2)
†

1.
00
5E

-0
1(
5.
1E

-0
2)
†

1.
28
9E

-0
1(
2.
6E

-0
2)
†

2.
07
3E

-0
1(
6.
9E

-0
2)
†

2.
48

1E
-0
1(
6.
7E

-0
2)

M
od

el
50
-2

1.
30
1E

-0
1(
1.
1E

-0
1)
†

7.
88
2E

-0
2(
9.
0E

-0
2)
†

3.
17
4E

-0
2(
6.
0E

-0
2)
†

1.
17
4E

-0
1(
8.
1E

-0
2)
†

4.
27
8E

-0
1(
1.
8E

-0
1)

5.
37

0E
-0
1(
2.
2E

-0
1)

M
od

el
50
-3

2.
51
8E

-0
3(
2.
8E

-0
3)
†

9.
71
9E

-0
3(
2.
0E

-0
2)
†

1.
47
4E

-0
3(
2.
6E

-0
3)
†

9.
19
5E

-0
3(
2.
2E

-0
2)
†

2.
17
9E

-0
1(
2.
2E

-0
1)

2.
70

7E
-0
1(
2.
1E

-0
1)

M
od

el
50
-4

3.
13
7E

-0
1(
3.
1E

-0
1)
†

2.
56
0E

-0
1(
2.
7E

-0
1)
†

4.
12
8E

-0
2(
1.
1E

-0
1)
†

2.
26
6E

-0
1(
3.
0E

-0
1)
†

8.
54
0E

-0
1(
9.
1E

-0
2)
†

9.
16

5E
-0
1(
7.
6E

-0
2)

M
od

el
50
-5

1.
23
2E

-0
1(
1.
1E

-0
1)
†

1.
21
3E

-0
1(
9.
4E

-0
2)
†

3.
92
6E

-0
2(
3.
4E

-0
2)
†

9.
37
7E

-0
2(
4.
5E

-0
2)
†

4.
33
7E

-0
1(
1.
3E

-0
1)
†

5.
90

1E
-0
1(
1.
9E

-0
1)

M
od

el
50
-6

4.
67
5E

-0
3(
3.
0E

-0
3)
†

4.
64
5E

-0
3(
3.
4E

-0
3)
†

1.
06
6E

-0
3(
1.
9E

-0
3)
†

5.
18
0E

-0
3(
2.
9E

-0
3)
†

9.
88
7E

-0
3(
7.
2E

-0
3)
†

1.
51

7E
-0
2(
3.
0E

-0
3)

M
od

el
50
-7

6.
25
0E

-0
2(
1.
1E

-0
1)
†

4.
72
9E

-0
2(
1.
0E

-0
1)
†

2.
67
4E

-0
2(
6.
2E

-0
2)
†

8.
56
8E

-0
2(
1.
2E

-0
1)
†

4.
16
2E

-0
1(
1.
2E

-0
1)

4.
76

8E
-0
1(
6.
9E

-0
2)

M
od

el
50
-8

2.
99
1E

-0
1(
6.
1E

-0
2)
†

3.
03
2E

-0
1(
4.
5E

-0
2)
†

1.
18
8E

-0
1(
9.
6E

-0
2)
†

2.
97
9E

-0
1(
5.
4E

-0
2)
†

4.
93
3E

-0
1(
5.
4E

-0
2)

5.
05

6E
-0
1(
5.
1E

-0
2)

M
od

el
50
-9

5.
40
7E

-0
2(
4.
6E

-0
2)
†

6.
94
9E

-0
2(
5.
5E

-0
2)
†

1.
19
4E

-0
2(
1.
9E

-0
2)
†

4.
83
1E

-0
2(
2.
3E

-0
2)
†

3.
75
1E

-0
1(
2.
0E

-0
1)

4.
27

2E
-0
1(
1.
6E

-0
1)

M
od

el
50
-1
0

1.
42
8E

-0
1(
6.
8E

-0
2)
†

1.
47
6E

-0
1(
7.
1E

-0
2)
†

8.
36
0E

-0
2(
9.
0E

-0
2)
†

1.
24
3E

-0
1(
4.
5E

-0
2)
†

5.
05

9E
-0
1(
2.
1E

-0
1)

4.
93
3E

-0
1(
1.
3E

-0
1)

Ta
bl
e
15
.
H
V
of

th
e
si
x
al
go
ri
th
m
s
on

th
e
10

ra
nd

om
m
od

el
s
w
it
h
10
0
fe
at
ur
es
.

Pr
ob
le
m

N
SG

A
-II

IB
EA

M
O
EA

D
SP

EA
2+

SD
E

PA
ES

G
rE
S

M
od

el
10
0-
1

7.
17
7E

-0
3(
2.
5E

-0
2)
†

7.
52
0E

-0
3(
3.
0E

-0
2)
†

5.
77
8E

-0
4(
3.
1E

-0
3)
†

8.
13
5E

-0
3(
2.
9E

-0
2)
†

2.
86
3E

-0
1(
1.
9E

-0
1)
†

5.
07

6E
-0
1(
1.
9E

-0
1)

M
od

el
10
0-
2

1.
75
1E

-0
1(
2.
0E

-0
1)
†

1.
52
0E

-0
1(
2.
2E

-0
1)
†

1.
14
4E

-0
2(
6.
3E

-0
2)
†

1.
99
6E

-0
1(
2.
0E

-0
1)
†

4.
37
1E

-0
1(
1.
7E

-0
1)
†

6.
73

7E
-0
1(
1.
2E

-0
1)

M
od

el
10
0-
3

1.
19
1E

-0
1(
1.
8E

-0
1)
†

3.
89
3E

-0
2(
1.
2E

-0
1)
†

2.
13
3E

-0
2(
6.
8E

-0
2)
†

1.
47
6E

-0
1(
2.
1E

-0
1)
†

7.
91
4E

-0
1(
2.
4E

-0
1)
†

9.
57

2E
-0
1(
6.
8E

-0
2)

M
od

el
10
0-
4

5.
55
6E

-0
2(
1.
5E

-0
1)
†

5.
32
3E

-0
2(
1.
5E

-0
1)
†

2.
07
4E

-0
2(
7.
9E

-0
2)
†

5.
25
2E

-0
2(
1.
5E

-0
1)
†

6.
69
4E

-0
1(
1.
4E

-0
1)
†

8.
15

3E
-0
1(
8.
4E

-0
2)

M
od

el
10
0-
5

2.
77
8E

-0
2(
4.
7E

-0
2)
†

2.
26
7E

-0
2(
4.
7E

-0
2)
†

2.
15
6E

-0
3(
1.
1E

-0
2)
†

1.
76
8E

-0
2(
4.
0E

-0
2)
†

1.
75
0E

-0
1(
7.
2E

-0
2)
†

2.
08

7E
-0
1(
8.
1E

-0
2)

M
od

el
10
0-
6

4.
58
9E

-0
3(
1.
1E

-0
2)
†

9.
44
6E

-0
3(
2.
0E

-0
2)
†

3.
54
2E

-0
4(
1.
1E

-0
3)
†

5.
35
4E

-0
3(
1.
3E

-0
2)
†

2.
92

3E
-0
1(
2.
8E

-0
1)

2.
51
9E

-0
1(
1.
8E

-0
1)

M
od

el
10
0-
7

3.
15
2E

-0
2(
7.
8E

-0
2)
†

6.
00
4E

-0
2(
1.
1E

-0
1)
†

6.
41
6E

-0
3(
2.
1E

-0
2)
†

6.
84
0E

-0
2(
1.
0E

-0
1)
†

5.
65
9E

-0
1(
6.
3E

-0
2)
†

6.
10

7E
-0
1(
3.
7E

-0
2)

M
od

el
10
0-
8

3.
39
1E

-0
2(
7.
1E

-0
2)
†

6.
58
1E

-0
2(
9.
9E

-0
2)
†

5.
68
6E

-0
2(
1.
2E

-0
1)
†

4.
77
1E

-0
2(
7.
6E

-0
2)
†

8.
01
8E

-0
1(
3.
0E

-0
1)
†

1.
19

9E
+0

0(
1.
7E

-0
1)

M
od

el
10
0-
9

1.
66
6E

-0
1(
1.
9E

-0
1)
†

1.
80
4E

-0
1(
1.
9E

-0
1)
†

3.
35
5E

-0
2(
9.
2E

-0
2)
†

9.
92
9E

-0
2(
1.
7E

-0
1)
†

6.
69
0E

-0
1(
1.
7E

-0
1)
†

8.
97

1E
-0
1(
8.
2E

-0
2)

M
od

el
10
0-
10

3.
66
3E

-0
4(
1.
1E

-0
3)
†

3.
75
2E

-0
3(
1.
6E

-0
2)
†

4.
08
7E

-0
5(
2.
2E

-0
4)
†

4.
93
0E

-0
5(
2.
4E

-0
4)
†

1.
64
0E

-0
1(
6.
8E

-0
2)

1.
80

2E
-0
1(
4.
9E

-0
2)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 27

Table 16. HV and [min,max] raw objective values of the populations obtained by the six algorithms in Figure 3.
Overall maximum and minimum values are highlighted in boldface in those objectives being maximised
and minimised, respectively. PC: Pairwise coverage, NF: Number of faults, FS: Feature size, NC: Number of
changes, VCCC: Variability coverage and cyclomatic complexity, CoC: Coefficient of connectivity-density, D:
Dissimilarity, TSC: Test suite cost, TSS: Test suite size.

Algorithm HV Objectives

PC NF FS NC VCCC CoC D TSC TSS

NSGA-II 1.8E-04 18429[558.5, 561.8] [352.2, 353.1] [340.0, 340.2] [27.2, 27.3] [166.6, 166.8] [68.3, 68.4][8229.1, 8429.8][49, 51]
IBEA 5.1E-05 18429[509.0, 544.0] [366.9, 370.0] [326.0, 353.8] [25.3, 26.8] [161.9, 168.0] [67.9, 69.3] [8485.0, 8993.3] [50, 52]
MOEA/D 9.4E-05 18429[537.6, 538.3] [361.4, 361.5] [334.2, 334.2] [27.3, 27.3] [170.1, 170.1] [69.0, 69.0][8229.1, 8406.4][49, 51]
SPEA2+SDE 7.8E-03 18429[587.8, 590.6] [369.7, 370.3] [357.2, 357.5] [26.3, 26.3] [171.8, 172.1] [71.0, 72.2][8229.1, 8452.5][49, 50]
PAES 2.6E-01 18429[523.8, 617.1] [343.8, 379.7] [321.2, 364.7] [26.7, 28.5] [164.9, 179.5] [66.1, 74.6][8229.1, 9539.9][49, 53]
GrES 6.6E-01 18429[500.2, 628.6][345.8, 388.2][329.3, 372.8][25.8, 30.2][163.0, 181.3][67.2, 75.9][8229.1, 9441.0][49, 53]

5.3 ResearchQuestion 3: Comparison with Existing Approaches on Specific
Objectives

The two previously proposed approaches, NSGA-IIH and NSGA-IIP , used different sets of objectives
and there is the question of how GrES compares with these approaches if we restrict attention
to the corresponding sets of objectives. Thus, we performed two additional sets of experiments.
The first compared GrES with NSGA-IIH in experiments that only used the objectives originally
used in the work by Lopez-Herrejon et al. [48] (coverage and cost). The other compared GrES with
NSGA-IIP using the corresponding set of six prioritisation objectives [58].
Tables 19, 20, and 21 give the results regarding NSGA-IIH for randomly generated models and

Table 22 contains the results for the realistic models; in all cases the comparison was on only two
objectives. In the experiment, NSGA-IIH generally led to higher HV values than GrES on the models
with 30 features, but was worse on large models (e.g., with 100 features). For the rest, they had
similar HV values. There were almost no statistically significant differences. The two techniques
had identical HV values on the Drupal model (Table 23).

Tables 24 and 25 give the results regarding NSGA-IIP for randomly generated models and Table
26 contains the results for the realistic models (all compared on six objectives). We did not perform
experiments with models that had 100 features since the computation time required by NSGA-IIP
was excessive. In these experiments, NSGA-IIP led to slightly higher HV values than GrES on
the models with 30 features, but was generally worse on the other models. In contrast to the
experiments with two objectives, almost all of the results were statistically significant.
Overall, the proposed GrES technique had slightly lower HV values than the other techniques

when used with smaller models but tended to have higher HV values with larger models. Very few
of the differences were statistically significant when we considered two objectives but most were
statistically significant when we compared on six objectives.
One probable explanation is that for small models (30 features) these existing techniques are

already competent and their focus on the fewer specific objectives makes them obtain better results
than GrES which attempts to optimise over the nine objectives but is then evaluated on a subset
of these. For large models, incorporating the problem knowledge into the design of the search
algorithm can largely improve its performance (HV), particularly considering the pairwise coverage
first which can narrow down the search space significantly. Recall also that GrES was optimising
on all of the objectives but then the comparison was only on the objectives used by the other
approaches; this clearly disadvantages GrES.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

28 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

Ta
bl
e
17
.
H
V
of

th
e
si
x
al
go
ri
th
m
s
on

th
e
19

re
al
is
ti
c
m
od

el
s.

Pr
ob
le
m

N
SG

A
-II

IB
EA

M
O
EA

D
SP

EA
2+

SD
E

PA
ES

G
rE
S

A
pa
ch
e

0.
00
0E

+0
0(
0.
0E

+0
0)
†

0.
00
0E

+0
0(
0.
0E

+0
0)
†

0.
00
0E

+0
0(
0.
0E

+0
0)
†

0.
00
0E

+0
0(
0.
0E

+0
0)
†

5.
36

5E
-0
2(
8.
7E

-0
2)

3.
41
7E

-0
2(
7.
3E

-0
2)

ar
go

-u
m
l-s
pl

2.
29
4E

-0
5(
7.
7E

-0
6)

2.
29
4E

-0
5(
7.
7E

-0
6)

2.
59

4E
-0
5(
2.
1E

-0
5)

2.
29
4E

-0
5(
7.
7E

-0
6)

2.
32
2E

-0
5(
8.
5E

-0
6)

2.
32
2E

-0
5(
7.
6E

-0
6)

Be
rk
el
ey
D
B

6.
77
4E

-0
5(
6.
0E

-0
5)

5.
26
6E

-0
5(
5.
1E

-0
5)

7.
18
1E

-0
5(
6.
4E

-0
5)

5.
43
8E

-0
5(
4.
5E

-0
5)

8.
38

9E
-0
5(
7.
5E

-0
5)

7.
75
3E

-0
5(
7.
2E

-0
5)

Be
rk
el
ey
D
BF

oo
tp
rin

t
3.
99
6E

-0
3(
1.
4E

-0
3)
†

4.
60
4E

-0
3(
3.
6E

-0
3)
†

3.
63
2E

-0
3(
1.
6E

-0
4)
†

3.
63
7E

-0
3(
1.
5E

-0
4)
†

1.
62

8E
-0
2(
2.
2E

-0
2)
†

9.
71
8E

-0
3(
1.
1E

-0
2)

Be
rk
el
ey
D
BM

em
or
y

1.
97
3E

-0
3(
7.
5E

-0
3)
†

1.
29
5E

-0
3(
1.
8E

-0
3)
†

2.
75
2E

-0
4(
8.
5E

-0
4)
†

6.
45
8E

-0
4(
1.
8E

-0
3)
†

2.
31

3E
-0
1(
1.
8E

-0
1)
†

1.
23
2E

-0
1(
1.
0E

-0
1)

Be
rk
el
ey
D
BP

er
fo
rm

an
ce

4.
13
3E

-0
2(
1.
8E

-0
2)
†

4.
78
6E

-0
2(
3.
2E

-0
2)
†

2.
58
1E

-0
2(
2.
3E

-0
2)
†

4.
41
1E

-0
2(
3.
2E

-0
2)
†

1.
41
0E

-0
1(
6.
9E

-0
2)

1.
52

2E
-0
1(
5.
2E

-0
2)

Cu
rl

4.
58
7E

-0
2(
4.
6E

-0
2)
†

4.
49
5E

-0
2(
3.
5E

-0
2)
†

2.
56
8E

-0
2(
3.
0E

-0
2)
†

4.
11
5E

-0
2(
3.
4E

-0
2)
†

1.
10
6E

-0
1(
7.
2E

-0
2)

1.
26

3E
-0
1(
4.
4E

-0
2)

D
es
kt
op

Se
ar
ch
er

3.
80
9E

-0
2(
1.
8E

-0
2)
†

3.
63
1E

-0
2(
2.
0E

-0
2)
†

2.
72
9E

-0
2(
2.
0E

-0
2)
†

4.
00
5E

-0
2(
3.
3E

-0
2)
†

1.
17
8E

-0
1(
4.
7E

-0
2)

1.
19

6E
-0
1(
6.
0E

-0
2)

fa
m
e-
db
m
s-
fm

2.
65
5E

-0
1(
7.
1E

-0
2)
†

2.
62
4E

-0
1(
6.
7E

-0
2)
†

1.
47
6E

-0
1(
1.
1E

-0
1)
†

2.
69
3E

-0
1(
8.
9E

-0
2)
†

3.
48
2E

-0
1(
6.
3E

-0
2)
†

4.
04

8E
-0
1(
2.
9E

-0
2)

gp
l

1.
27
3E

-0
4(
9.
0E

-0
5)
†

1.
22
0E

-0
4(
8.
8E

-0
5)
†

6.
88
8E

-0
5(
8.
3E

-0
5)
†

1.
15
9E

-0
4(
8.
6E

-0
5)
†

4.
01
6E

-0
4(
1.
1E

-0
4)

4.
26

9E
-0
4(
1.
0E

-0
4)

Li
nk

ed
Li
st

1.
92
5E

-0
2(
8.
7E

-0
3)
†

1.
89
2E

-0
2(
8.
5E

-0
3)
†

1.
17
9E

-0
2(
1.
1E

-0
2)
†

1.
56
7E

-0
2(
6.
4E

-0
3)
†

3.
12

2E
-0
2(
2.
2E

-0
2)

2.
95
0E

-0
2(
1.
4E

-0
2)

LL
VM

4.
30
1E

-0
2(
1.
4E

-0
2)
†

4.
27
4E

-0
2(
2.
0E

-0
2)
†

2.
86
8E

-0
2(
1.
8E

-0
2)
†

4.
73
3E

-0
2(
1.
4E

-0
2)
†

1.
09
7E

-0
1(
1.
1E

-0
1)

1.
23

4E
-0
1(
1.
6E

-0
1)

PK
Ja
b

1.
35
1E

-0
3(
1.
9E

-0
3)
†

2.
81
6E

-0
3(
7.
2E

-0
3)
†

3.
72
2E

-0
3(
7.
2E

-0
3)
†

3.
92
9E

-0
3(
7.
6E

-0
3)
†

5.
91

1E
-0
2(
1.
1E

-0
1)

5.
55
0E

-0
2(
1.
1E

-0
1)

Pr
ev
ay
le
r

4.
67
1E

-0
2(
3.
4E

-0
2)

5.
14
4E

-0
2(
4.
3E

-0
2)

2.
15
0E

-0
2(
2.
6E

-0
2)
†

5.
51

5E
-0
2(
5.
0E

-0
2)

4.
92
3E

-0
2(
5.
3E

-0
2)

5.
03
9E

-0
2(
5.
9E

-0
2)

Se
ns
or
N
et
w
or
k

5.
43
4E

-0
2(
1.
9E

-0
2)
†

5.
36
5E

-0
2(
2.
0E

-0
2)
†

3.
04
5E

-0
2(
2.
6E

-0
2)
†

5.
42
7E

-0
2(
1.
7E

-0
2)
†

9.
43
8E

-0
2(
4.
0E

-0
2)

1.
00

9E
-0
1(
7.
3E

-0
2)

Ta
nk

W
ar

6.
67
3E

-0
2(
4.
3E

-0
2)
†

7.
91
7E

-0
2(
5.
5E

-0
2)
†

1.
83
8E

-0
2(
3.
3E

-0
2)
†

5.
40
7E

-0
2(
5.
0E

-0
2)
†

1.
82
2E

-0
1(
9.
0E

-0
2)
†

3.
39

5E
-0
1(
1.
6E

-0
1)

W
ge
t

5.
46
3E

-0
3(
1.
0E

-0
2)
†

2.
58
1E

-0
3(
7.
4E

-0
4)
†

5.
24
2E

-0
3(
1.
1E

-0
2)
†

5.
77
0E

-0
3(
1.
1E

-0
2)
†

4.
00

3E
-0
2(
1.
1E

-0
1)

1.
96
8E

-0
2(
2.
1E

-0
2)

x2
64

4.
08
4E

-0
2(
4.
1E

-0
3)
†

3.
99
2E

-0
2(
4.
5E

-0
3)
†

2.
54
1E

-0
2(
1.
5E

-0
2)
†

4.
18
2E

-0
2(
3.
3E

-0
3)
†

4.
55
8E

-0
2(
9.
5E

-0
3)
†

5.
05

7E
-0
2(
5.
4E

-0
3)

Zi
pM

e
1.
83
8E

-0
2(
3.
1E

-0
2)
†

1.
78
2E

-0
2(
3.
0E

-0
2)
†

1.
52
1E

-0
2(
3.
2E

-0
2)
†

2.
08
1E

-0
2(
3.
3E

-0
2)
†

3.
93
0E

-0
2(
5.
5E

-0
2)

4.
12

4E
-0
2(
5.
3E

-0
2)

Ta
bl
e
18
.
H
V
of

th
e
si
x
al
go
ri
th
m
s
on

th
e
re
al
m
od

el
D
ru
pa

lF
M
.

Pr
ob
le
m

N
SG

A
-II

IB
EA

M
O
EA

D
SP

EA
2+

SD
E

PA
ES

G
rE
S

D
ru
pa
lF
M

3.
19
5E

-0
1(
9.
6E

-0
2)
†

3.
02
0E

-0
1(
4.
7E

-0
2)
†

2.
22
0E

-0
1(
1.
3E

-0
1)
†

2.
69
5E

-0
1(
9.
8E

-0
2)
†

6.
73
1E

-0
1(
2.
2E

-0
1)

6.
78

9E
-0
1(
2.
2E

-0
1)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 29

Table 19. HV of NSGA-IIH and GrES on the two coverage and cost objectives on the 10 random models with
30 features.

Problem NSGA-IIH GrES

Model30-1 1.009E+00(6.8E-16) 1.018E+00(2.8E-02)
Model30-2 1.021E+00(8.4E-02)† 7.583E-01(8.6E-02)
Model30-3 1.073E+00(4.2E-02)† 1.027E+00(3.7E-02)
Model30-4 1.008E+00(6.5E-02) 9.958E-01(5.8E-02)
Model30-5 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model30-6 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model30-7 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model30-8 1.033E+00(4.8E-02)† 1.003E+00(1.8E-02)
Model30-9 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model30-10 1.031E+00(3.8E-02) 1.028E+00(3.6E-02)

Table 20. HV of NSGA-IIH and GrES on the two coverage and cost objectives on the 10 random models with
50 features.

Problem NSGA-IIH GrES

Model50-1 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model50-2 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model50-3 1.047E+00(4.5E-16)† 1.060E+00(2.3E-02)
Model50-4 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model50-5 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model50-6 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model50-7 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model50-8 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model50-9 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model50-10 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)

Table 21. HV of NSGA-IIH and GrES on the two coverage and cost objectives on the 10 random models with
100 features.

Problem NSGA-IIH GrES

Model100-1 1.064E+00(9.4E-03)† 1.080E+00(3.8E-03)
Model100-2 1.099E+00(4.8E-03) 1.100E+00(4.5E-16)
Model100-3 1.030E+00(2.7E-02)† 1.072E+00(5.2E-03)
Model100-4 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model100-5 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model100-6 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model100-7 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
Model100-8 1.062E+00(1.5E-02)† 1.100E+00(4.5E-16)
Model100-9 1.099E+00(5.7E-03) 1.100E+00(4.5E-16)
Model100-10 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)

5.4 ResearchQuestion 4: How large are the differences in HV values in the
experiments used for RQ1-3?

To further investigate the differences between the HV values of the populations returned by different
algorithms, the Vargha and Delaney’s Â12 statistic [70] was used to evaluate the effect size, i.e.,
determine which technique led to higher HV values and to what extent. The Â12 statistic generalises
the notion of effect size estimator to data that does not follow a normal distribution, such as those
generated by the techniques evaluated in the experiments. Specifically, the Â12 statistic shown in
each cell of Table 28 relates to how often on average GrES provides higher HV values than the
technique in the column for the model in the row. The value of the Â12 statistic ranges from 0.0 to
1.0, and when the value is exactly 0.5, it means that either the technique provided exactly the same

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

30 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

Table 22. HV of NSGA-IIH and GrES on the two coverage and cost objectives on the 19 realistic models.

Problem NSGA-IIH GrES

Apache 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
argo-uml-spl 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
BerkeleyDB 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
BerkeleyDBFootprint 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
BerkeleyDBMemory 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
BerkeleyDBPerformance 9.792E-01(2.3E-02) 9.750E-01(4.5E-16)
Curl 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
DesktopSearcher 9.667E-01(7.4E-02) 9.667E-01(6.4E-02)
fame-dbms-fm 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
gpl 1.090E+00(3.1E-02) 1.093E+00(2.5E-02)
LinkedList 1.021E+00(3.1E-02) 1.024E+00(3.4E-02)
LLVM 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
PKJab 9.667E-01(6.8E-02) 9.500E-01(5.1E-02)
Prevayler 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)
SensorNetwork 1.010E+00(4.0E-02) 1.003E+00(1.8E-02)
TankWar 1.036E+00(2.9E-02) 1.028E+00(2.0E-02)
Wget 1.033E+00(4.1E-02) 1.042E+00(4.5E-02)
x264 1.098E+00(1.1E-02) 1.100E+00(4.5E-16)
ZipMe 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)

Table 23. HV of NSGA-IIH and GrES on the two coverage and cost objectives on the real model DrupalFM.

Problem NSGA-IIH GrES

DrupalFM 1.100E+00(4.5E-16) 1.100E+00(4.5E-16)

Table 24. HV of NSGA-IIP and GrES on the six prioritisation objectives on the 10 random models with 30
features.

Problem NSGA-IIP GrES

Model30-1 3.552E-01(7.2E-01)† 0.000E+00(0.0E+00)
Model30-2 5.352E-02(2.0E-01)† 0.000E+00(0.0E+00)
Model30-3 5.905E-02(3.2E-01) 0.000E+00(0.0E+00)
Model30-4 2.293E-02(5.8E-02)† 0.000E+00(0.0E+00)
Model30-5 5.905E-02(3.2E-01) 0.000E+00(0.0E+00)
Model30-6 5.395E-03(2.9E-02)† 7.217E-05(1.2E-04)
Model30-7 0.000E+00(0.0E+00)† 3.823E-01(3.1E-01)
Model30-8 2.928E-03(1.6E-02)† 9.289E-03(2.3E-02)
Model30-9 3.723E-05(2.0E-04)† 1.916E-02(4.3E-02)
Model30-10 9.667E-07(4.3E-06)† 1.913E-01(2.7E-01)

Table 25. HV of NSGA-IIP and GrES on the six prioritisation objectives on the 10 random models with 50
features.

Problem NSGA-IIP GrES

Model50-1 5.369E-03(2.9E-02)† 4.372E-04(4.4E-04)
Model50-2 0.000E+00(0.0E+00)† 2.478E-01(2.4E-01)
Model50-3 0.000E+00(0.0E+00)† 8.311E-02(1.2E-01)
Model50-4 0.000E+00(0.0E+00)† 3.510E-01(1.2E-01)
Model50-5 0.000E+00(0.0E+00)† 1.909E-01(1.9E-01)
Model50-6 5.905E-02(3.2E-01) 0.000E+00(0.0E+00)
Model50-7 0.000E+00(0.0E+00)† 3.495E-01(1.2E-01)
Model50-8 1.319E-02(8.1E-03)† 4.235E-01(5.9E-02)
Model50-9 1.537E-05(7.7E-05)† 1.269E-01(1.2E-01)
Model50-10 6.560E-05(1.3E-04)† 2.071E-01(1.4E-01)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 31

Table 26. HV of NSGA-IIP and GrES on the six prioritisation objectives on the 19 realistic models.

Problem NSGA-IIP GrES

Apache 0.000E+00(0.0E+00)† 1.476E+00(6.7E-01)
argo-uml-spl 6.496E-01(8.7E-01)† 1.653E+00(4.5E-01)
BerkeleyDB 1.713E+00(3.2E-01)† 0.000E+00(0.0E+00)
BerkeleyDBFootprint 0.000E+00(0.0E+00)† 1.240E+00(8.3E-01)
BerkeleyDBMemory 1.817E-04(9.9E-04)† 2.303E-01(1.9E-01)
BerkeleyDBPerformance 3.062E-02(6.3E-02) 8.433E-06(8.8E-06)
Curl 1.057E-01(1.0E-01)† 6.000E-07(1.2E-06)
DesktopSearcher 8.858E-01(9.0E-01)† 0.000E+00(0.0E+00)
fame-dbms-fm 2.834E-02(1.5E-01)† 1.144E-01(1.9E-02)
gpl 1.975E-02(3.4E-02)† 0.000E+00(0.0E+00)
LinkedList 2.362E-01(6.1E-01)† 0.000E+00(0.0E+00)
LLVM 0.000E+00(0.0E+00)† 5.315E-01(8.3E-01)
PKJab 4.724E-01(8.0E-01)† 1.713E+00(3.2E-01)
Prevayler 5.315E-01(8.3E-01)† 1.772E+00(1.1E-15)
SensorNetwork 2.424E-03(2.9E-03)† 2.687E-01(4.5E-01)
TankWar 4.000E-07(1.5E-06)† 1.494E-01(2.3E-01)
Wget 2.325E-02(5.6E-02)† 2.813E-05(8.0E-05)
x264 2.806E-02(5.0E-02)† 4.233E-02(1.0E-02)
ZipMe 3.000E-07(4.7E-07)† 1.772E+00(1.1E-15)

Table 27. HV of NSGA-IIP and GrES on the six prioritisation objectives on the real model DrupalFM.

Problem NSGA-IIP GrES

DrupalFM 0.000E+00(0.0E+00)† 1.315E-01(1.1E-01)

results as GrES on all runs, or that GrES provided higher HV values for exactly 50% of the runs. If
the value of the Â12 statistic is lower than 0.5, the technique provided higher HV values than GrES
for a majority of runs. Conversely, if the value is higher than 0.5, GrES provided higher HV values
for a majority of runs. Vargha and Delaney [70] suggested the use of thresholds for interpreting the
effect size: values around 0.5 (0.43 - 0.57) means a negligible difference; values over 0.57 indicates a
small (0.57 - 0.64), medium (0.65 - 0.71), or large (0.72 - 1) difference in favour of GrES; values below
0.43 indicate a small (0.43 - 0.36), medium (0.36 - 0.29), or large (0.29 - 0.0) difference in favour of
the algorithm specified in the column of the table. Cells indicating medium, large, and very large
differences are shaded in light grey, grey, and dark grey, respectively.
The 9-objectives HV values confirm the superiority of GrES for 9 objectives, showing large

differences in its favour in 285 out of 340 pairwise comparisons. Furthermore there is not a single
cell showing large nor even medium differences against GrES for the peers except PAES. Comparing
GrES with PAES, large, medium and small differences in favour of GrES vs PAES are 13 vs 1, 5 vs 2
and 13 vs 2, respectively.

The Â12 results for the HV computed using 6 and 2 objectives are also shown in the last columns
of Table 28. Specifically, the second to last column shows the Â12 comparison with the NSGA-IIP
algorithm for the HV of the six objectives used in [58]. The results show the superiority of GrES
also in this case, with large differences in its favour for 31 out of 40 models, and with negligible
differences in 4 out of the 9 remaining comparisons. The last column shows the Â12 comparison
with the NSGA-IIH algorithm for the HV of the two objectives used in [48] (the NSGA-IIH algorithm
was re-executed using only those two objectives). The results show that the HV values are quite
similar for the 2-objectives case, showing negligible differences in 43 out of the 50 models, with

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

32 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

Table 28. Â12 values comparing the hyper-volumes of the fronts generated by GrES with those generated by
the other algorithms

Problem 9 Objectives HV 6 Obj. HV 2 Obj. HV

NSGAIIH IBEA MOEAD NSGAII PAES NSGAIIP SPEA2+SDE NSGAIIP NSGAIIH
30Feat-10CTC1 1.00 .895 .979 .872 .632 .727 .902 .300 .550
30Feat-10CTC2 .997 .776 .876 .842 .273 .936 .710 .317 .026
30Feat-10CTC3 1.00 1.00 .978 1.00 .751 .967 1.00 .483 .250
30Feat-10CTC4 1.00 .991 1.00 .998 .631 .752 .981 .350 .452
30Feat-10CTC5 1.00 .973 .986 .978 .619 .933 .991 .467 .500
30Feat-10CTC6 1.00 .997 1.00 .990 .828 .967 1.00 .933 .500
30Feat-10CTC7 1.00 .961 .977 .973 .501 1.00 .998 1.00 .500
30Feat-10CTC8 1.00 .968 .998 .943 .434 .983 .978 .967 .350
30Feat-10CTC9 1.00 .983 .979 .909 .612 1.00 .993 .948 .500
30Feat-10CTC10 1.00 .958 .984 .912 .527 1.00 .958 1.00 .484
50Feat-10CTC1 1.00 .953 .984 .993 .670 1.00 .980 .967 .500
50Feat-10CTC2 1.00 .999 1.00 .973 .647 1.00 1.00 1.00 .500
50Feat-10CTC3 1.00 .992 1.00 1.00 .607 1.00 .990 1.00 .617
50Feat-10CTC4 1.00 1.00 1.00 1.00 .693 1.00 1.00 1.00 .500
50Feat-10CTC5 1.00 .987 1.00 .989 .733 1.00 1.00 1.00 .500
50Feat-10CTC6 1.00 .999 1.00 .990 .819 .967 .998 .483 .500
50Feat-10CTC7 1.00 1.00 1.00 1.00 .637 1.00 1.00 1.00 .500
50Feat-10CTC8 1.00 1.00 1.00 .996 .543 1.00 .999 1.00 .500
50Feat-10CTC9 1.00 .989 1.00 .992 .591 1.00 1.00 1.00 .500
50Feat-10CTC10 1.00 .991 .986 .992 .499 1.00 .998 1.00 .500
100Feat-10CTC1 1.00 .999 1.00 .999 .808 - .999 - .871
100Feat-10CTC2 1.00 .972 .999 .982 .911 - .979 - .517
100Feat-10CTC3 1.00 1.00 1.00 1.00 .756 - 1.00 - .952
100Feat-10CTC4 1.00 .999 1.00 .997 .808 - 1.00 - .500
100Feat-10CTC5 1.00 .994 1.00 .993 .684 - .997 - .500
100Feat-10CTC6 1.00 1.00 1.00 1.00 .528 - 1.00 - .500
100Feat-10CTC7 1.00 1.00 1.00 1.00 .740 - 1.00 - .500
100Feat-10CTC8 1.00 1.00 1.00 1.00 .897 - 1.00 - .983
100Feat-10CTC9 1.00 1.00 1.00 1.00 .899 - 1.00 - .517
100Fea-10CTC10 1.00 .998 1.00 1.00 .597 - 1.00 - .500
Apache .733 .733 .733 .733 .446 .733 .733 1.00 .500
argo-uml-spl .000 .514 .519 .514 .513 .662 .514 .803 .500
BerkeleyDB .848 .545 .476 .525 .466 .681 .474 .000 .500
BerkeleyDBFp 1.00 .776 .832 .761 .341 .992 .821 .950 .500
BerkeleyDBMem 1.00 1.00 1.00 .996 .312 1.00 1.00 1.00 .500
BerkeleyDBPerf 1.00 .958 .990 .994 .579 .964 .972 .530 .483
Curl 1.00 .951 .970 .942 .610 .933 .943 .230 .500
DesktopSearcher 1.00 .974 .986 .979 .490 1.00 .950 .217 .499
fame_dbms_fm 1.00 1.00 1.00 1.00 .830 1.00 1.00 .967 .500
gpl 1.00 .982 .993 .978 .543 .440 .982 .183 .517
LinkedList .999 .928 .941 .871 .562 1.00 .971 .417 .517
LLVM 1.00 .966 .980 .992 .572 1.00 .990 .950 .500
PKJab .996 .887 .873 .908 .424 .951 .882 .850 .450
Prevayler .986 .453 .774 .442 .485 .972 .454 .850 .500
SensorNetwork 1.00 .946 .993 .941 .508 1.00 .953 .922 .466
TankWar 1.00 .983 1.00 1.00 .814 1.00 .993 1.00 .450
Wget 1.00 .992 .923 .946 .414 .937 .924 .644 .550
x264 1.00 1.00 1.00 .998 .674 .816 1.00 .800 .517
ZipMe 1.00 .712 .758 .696 .569 1.00 .667 1.00 .500
DrupalFM 1.00 .992 .988 .973 .510 1.00 .998 1.00 .500

large differences in favour of GrES in 3 large models (100 features), and large differences in favour
of NSGA-IIH in 2 small models (30 features).

5.5 ResearchQuestion 5: How long do the different algorithms take?
Execution time information is given in Table 29 and Figure 4. Specifically, Table 29 provides the
average execution time in seconds per model (in rows) and algorithm (in columns). Figure 4 shows
a scatterplot of the average execution time (Y axis measured in seconds) per model size (X axis

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 33

measured in features). Thus, the values in the horizontal axis of Figure 4 range from a minimum
of 6 features for Prevlayer to a maximum of 117 features for BerkeleyDatabase. Each point in the
figure represents the run of an algorithm (represented using a specific shade of grey and line dash)
for a model. Since the experiments use groups of models with similar sizes but different shapes,
number of constraints, and types of CTCs, points tend to cluster in columns. In order to aid the
visualisation of the execution time, an interpolation curve4 per algorithm has been added to Figure
4.

From this we can see that GrES is consistently a little faster than NSGA-IIH and always much
faster than NSGA-IIP . The other algorithms, that all first optimise on pairwise coverage, have
similar execution time. In particular, this execution time appears to converge as the feature model
size increases.

H

P

Fig. 4. Average execution times (in seconds) per algorithm andmodel size (logarithmic scale) using 9 objectives

Figure 4 clearly shows that NSGA-IIP is slowest for models with more than 16 features, followed
by IBEA. One of the possible causes for such relatively high execution time could be the JAVA
implementation of NSGA-IIP , while the other algorithms are implemented in C++. Moreover, IBEA
was slowest for models with fewer than 16 features. For larger models the remaining algorithms
provide similar results with GrES providing the shortest time in many cases.

In order to delve deeper on the scalability of GrES, we executed an additional experiment using
5 different features models with 500 features and a 10% of CTC. The execution times of GrES for
4The curve was computed using a generalized additive model which was estimated by a quadratically penalised likelihood
approach [75]

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

34 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

Table 29. Average execution times of the algorithms per model using 9 objectives (in seconds)

Problem Algorithms

GrES NSGA-IIH IBEA MOEAD NSGA-II PAES NSGA-IIP SPEA2+SDE

30Feat-10CTC1 7.76 10.55 24.52 8.27 8.05 9.50 124.27 11.10
30Feat-10CTC2 6.08 6.78 23.22 6.60 6.85 6.82 88.41 9.41
30Feat-10CTC3 7.54 9.26 24.23 7.49 7.58 8.92 105.90 10.77
30Feat-10CTC4 4.57 5.06 26.51 4.89 5.18 5.19 58.34 14.61
30Feat-10CTC5 8.31 10.38 23.80 7.99 8.01 9.63 206.14 14.07
30Feat-10CTC6 8.00 9.50 24.40 7.68 7.63 9.54 203.61 10.39
30Feat-10CTC7 9.89 11.95 26.64 9.81 9.69 11.54 167.77 12.10
30Feat-10CTC8 7.27 9.02 25.87 7.54 7.38 8.86 432.87 9.61
30Feat-10CTC9 8.28 10.22 25.46 8.24 8.15 9.89 161.55 11.06
30Feat-10CTC10 9.80 12.16 27.26 9.74 9.56 11.19 188.15 12.00
50Feat-10CTC1 14.83 19.83 30.08 13.38 13.50 17.87 590.89 16.39
50Feat-10CTC2 32.48 40.49 47.37 30.74 30.78 38.13 1918.98 32.84
50Feat-10CTC3 40.11 52.44 55.03 39.14 39.26 45.24 2171.35 41.43
50Feat-10CTC4 33.00 42.71 47.11 31.93 31.89 36.83 1850.81 33.91
50Feat-10CTC5 25.15 32.72 42.54 24.72 24.58 27.81 1315.45 26.40
50Feat-10CTC6 35.41 44.67 47.91 34.08 34.21 39.16 1614.20 36.66
50Feat-10CTC7 36.25 47.24 51.62 35.73 35.67 38.50 1781.94 38.15
50Feat-10CTC8 27.47 35.22 41.63 26.01 26.07 30.03 1269.60 28.12
50Feat-10CTC9 25.46 33.50 41.61 24.27 24.43 28.31 1322.43 26.65
50Feat-10CTC10 20.60 25.76 35.95 18.73 19.27 23.64 985.06 21.23
100Feat-10CTC1 382.07 474.57 399.82 387.02 399.81 420.55 - 392.96
100Feat-10CTC2 308.98 371.09 319.09 305.58 306.55 331.85 - 308.45
100Feat-10CTC3 253.20 315.33 267.57 254.31 253.82 263.03 - 254.82
100Feat-10CTC4 253.92 332.44 261.86 245.46 248.16 273.64 - 249.62
100Feat-10CTC5 208.64 278.37 213.10 199.27 202.36 220.61 - 204.19
100Feat-10CTC6 207.90 260.39 217.88 202.09 202.13 222.91 - 201.49
100Feat-10CTC7 167.58 215.10 177.24 161.59 162.89 176.21 - 164.30
100Feat-10CTC8 450.22 528.68 481.20 461.59 451.61 475.61 - 454.84
100Feat-10CTC9 258.81 333.72 269.24 250.77 250.41 279.87 - 253.23
100Fea-10CTC10 236.02 297.37 244.35 227.10 234.61 247.14 - 231.39
Apache 0.98 1.14 16.99 0.68 0.86 1.14 1.86 4.71
argo-uml-spl 1.07 1.27 17.23 0.74 0.95 1.15 3.80 4.65
BerkeleyDB 34.52 52.33 43.20 33.62 34.10 33.97 22945.38 38.97
BerkeleyDBFp 0.88 0.74 18.62 0.59 0.76 0.83 1.78 3.67
BerkeleyDBMem 10.26 11.74 23.98 9.76 10.09 10.03 62.35 13.23
BerkeleyDBPerf 4.90 5.91 22.05 4.32 4.65 5.59 70.06 6.85
Curl 1.79 1.99 18.55 1.46 1.67 2.00 9.58 4.44
DesktopSearcher 3.20 3.55 21.08 2.88 3.18 3.40 28.45 5.84
fame_dbms_fm 3.72 4.15 19.94 3.15 3.41 4.44 30.15 5.77
gpl 2.69 2.82 17.44 2.61 2.85 2.89 16.97 5.93
LinkedList 5.53 6.35 21.03 5.11 5.42 5.84 53.56 8.14
LLVM 1.34 1.18 19.22 0.90 1.14 1.36 4.22 3.60
PKJab 1.12 1.00 14.68 0.85 1.05 1.03 3.88 4.80
Prevayler 0.43 0.41 12.12 0.35 0.52 0.47 0.60 4.00
SensorNetwork 7.15 8.73 19.69 6.99 7.15 7.39 108.84 10.97
TankWar 16.41 20.51 29.99 14.64 15.26 16.76 400.78 17.88
Wget 3.43 4.37 17.15 3.16 3.44 3.92 23.37 6.31
x264 4.49 5.32 17.22 4.14 4.48 4.74 27.00 7.98
ZipMe 0.67 0.56 14.68 0.48 0.65 0.63 1.05 3.84
DrupalFM 29.84 29.34 46.81 25.85 27.47 31.10 2261.00 29.29

such big models were significantly longer, with a minimum of 6.9 and a maximum of 13.5 hours,
having an average execution time of 9 hours. The main factor for such differences in models with
the same size is the shape and structure of constraints of the specific feature models, with a small
variability of execution time for the executions on the same feature model. Figure 5 depicts the
scalability of GrES for all the models with model size (in number of features) in the horizontal
axis, and execution time (measured in seconds) in the vertical axis using a logarithmic scale. Each
point represents a run of the algorithm, and the specific shade of grey is used to represent the type

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 35

of model used (real, realistic or randomly generated). All the executions were performed without
problems for such large models obtaining results in less than 14 hours.

1

10

100

1000

10000

50000

0 100 200 300 400 500
Model size (#Features)

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Model type
random

real

realisitic

Fig. 5. Execution times (in seconds, using logarithmic scale in the vertical axis) of each GrES execution per
model size using 9 objectives

5.6 Discussion
In this section we review what the results of the experiments tell us about the research questions.
First consider Research Question 1, which concerns how the performance (i.e., FCS and HV) of
GrES compares with two related techniques (NSGA-IIH and NSGA-IIP). Encouragingly, GrES
always returned a population in which all solutions had full pairwise-coverage. Thus, the proposed
approach provided the Software Engineer with many alternative solutions representing different
trade-offs between objectives. In contrast, NSGA-IIH and NSGA-IIP always returned an FCS (the
proportion of solutions in the final population that had full pairwise coverage) of below 10%. In
addition, GrES also outperformed both of the previously reported approaches when we consider the
HV values. With the randomly generated models, this difference appears to increase as the model
size increases. Similar results were obtained with the realistic models including the feature model
(Drupal) for which we had real attribute values. Finally, PLEDGE typically did not produce test
suites with full pairwise coverage and in most cases GrES produced better values for the objective
functions.

The second research question concerned the effectiveness (i.e., higher prioritisation values and
lower costs) of the proposed evolution strategy. Again the results were promising: when we used
our approach to comparing individuals, we found that the two evolution strategies used (GrES and
PAES) produced populations with higher HV values than the four multi-objective optimisation
algorithms considered (all had 100% FCR). This confirms our decision to use an evolution strategy.
Similar to the first set of experiments, the improvement seems to be greater for larger models. In

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

36 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

addition, GrES led to higher HV values than PAES for the majority of the models, particularly on
larger models. This verifies the effectiveness of the problem-based selection operation in GrES
which can produce more promising offspring on complex problems.

We noted that previous work had used fewer objective functions and the third research ques-
tion concerned how GrES performed, in terms of HV values, when compared with the previous
algorithms using the (smaller number of) objective functions reported in the corresponding papers.
Note that the previously reported approaches optimised on these smaller sets of objective functions
but we compared them (on these objective functions) with results returned using GrES optimising
on all of the objective functions. Unsurprisingly, the results of these experiments were more mixed.
In these experiments, GrES typically led to lower HV values than NSGA-IIH and NSGA-IIP when
we used the smaller models (with 30 features). However, GrES tended to return populations with
higher HV values than NSGA-IIH and NSGA-IIP with larger models. Encouragingly, many of
the differences in favour of GrES had large effect-size. In addition, in those cases where another
technique returned higher HV values than GrES, the effect size was small.

The following are the key outcomes of the experiments.

(1) PLEDGE finds solutions with relatively high pairwise coverage but in almost all cases this
coverage was not 100%. It may thus be unsuitable in cases where full pairwise coverage is
required.

(2) The variants of NSGA-II were found to perform well, in terms of FCR and HV, for problems
with two objectives and small feature models (i.e. around 30 features).

(3) The variants of NSGA-II also performed well, in terms of FCR and HV, for problems with up
to 6 objectives and small feature models (approximately 30 features) where execution time is
not an issue.

(4) GrES was found to be the most effective, in terms of FCR and HV, for problems with more
than 2 objectives, and medium or large feature models (more than 30 features) and time
constraints. It was much more effective than the variants of NSGA-II and PLEDGE, in terms
of FCR.

(5) Both GrES and PAES were effective in finding solutions with complete pairwise coverage.
However, for larger models GrES tended to produce higher HV values (in nine out of ten
experiments, with the differences being statistically significant) and so a more diverse set of
solutions.

Overall, the results were very promising. In the experiments, GrES outperformed the previously
published techniques in terms of both FCR and HV. It also tended to lead to higher HV values than
the other multi-objective optimisation algorithms. It is worth noting that while PAES was also
highly effective when we used our novel strategy (first optimise on pairwise coverage), the original
PAES does not scale well to problems with many objectives5. In our experiments, we adapted PAES
(by using the individual-centred calculation) to make it workable in many-objective optimisation.
Even so, it was still slightly slower than GrES.
The proposed approach provides Software Engineers with a wide range of objective functions

to choose from. In addition, GrES is able to optimise these objective functions simultaneously
while prioritising pairwise coverage, returning a diverse set of solutions that represent alternative
trade-offs between the objectives. This makes the approach highly flexible and suitable for different
SPL scenarios where optimisation goals may differ, e.g. testing a cyber-physical SPL vs testing a
web SPL.

5For the considered settings, the original PAES needs to examine 108 grids during every generation.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 37

6 THREATS TO VALIDITY
This section briefly discusses threats to validity and how these were addressed. We consider three
types of threats: those to internal validity, construct validity, and external validity.

Internal validity. This concerns any factors that could lead to bias. Threats could arise from
the tools used in the experiments and so, where possible, we used tools that have been used in
previous experiments (e.g. CASA and PLEDGE). We carefully tested our implementation of GrES
and the code of the other EMO algorithms was taken from their authors except that of NSGA-IIH ,
which was written by ourselves. In addition, all experiments were run 30 times to reduce the effect
of the stochastic nature of the techniques and standard statistical tests were used. HV values were
computed using sampling with 10,000,000 values. The choice of reference point may introduce bias
and so we followed common practice of basing this on an estimate of the Pareto front.

All of the EMO algorithms have configuration parameters, such as crossover and mutation rate,
that could affect performance (i.e., higher prioritisation values and lower costs). We chose to use
recommended values found in the literature, rather than carry out parameter tuning. Naturally,
however, parameter tuning might further improve performance. The fact that GrES works well
without tuning is promising.

Finally, programs were run in two different computers, which could make execution times
incomparable. We remark, however, that all seven C++ programs were run in the same computer
and so the time comparison among them is fair. As detailed in Section 4.4, the JAVA program
(NSGA-IIP) was developed and executed by a different team in another computer. It is worth
mentioning, however, that this computer was significantly more powerful than the one used for
the C++ programs.

Construct validity. This concerns whether the measurements reflect properties that are of
interest in practice. The objectives used in the experiments are those reported in previous studies
but the Software Engineer could choose to use a subset of these. Pairwise coverage is a widely
used test objective in SPL testing and so we reported the proportion of the solutions returned that
achieved 100% coverage. In addition, we used HV since it is the most widely used measure of the
diversity and quality of the set of solutions returned; a set with high HV provides a diverse set
of good solutions. The measurements of time may well have been affected by the fact that one
algorithm was implemented in JAVA and the others in C++.

External validity. This refers to the degree to which we can generalise from the experiments.
This threat will always exist in Software Engineering research since we do not know the population
of real problems and have no way of sampling from this in a uniform manner. We reduced this
threat by using a mixture of randomly generated feature models, 19 realistic feature models with
randomly generated attribute values, and one realistic feature model with real attribute values.

7 RELATEDWORK
Recent surveys and mapping studies on SPL testing reveal an increasing interest in the topic [15,
20, 21, 49]. In this section, we briefly summarise those papers that address the problem of test case
selection and prioritisation from feature models using both multi and single-objective approaches.

Multi-objective testing for SPL. Wang et al. [74] presented an industrial case study on multi-
objective test case prioritisation for SPL. The problem was modelled using a single fitness function
with four weighted objectives: minimising execution cost, maximising number of prioritised test
cases, maximising pairwise coverage, and maximising fault detection capability. Four search-based

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

38 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

algorithms were compared, namely, alternative variable method, a custom genetic algorithm, (1+1)
evolutionary algorithm, and random search. The experiments were conducted on a real feature
model with 53 features and 500 randomly generated models with up to 500 features.
Henard et al. [31] presented an ad-hoc multi-objective genetic algorithm for test case selection

from feature models. Three objectives were combined into a single fitness function with weighting
factors: maximising pairwise coverage, minimising number of test cases, and minimising test
cost. Their approach was compared with random solutions for 8 feature models from the SPLOT
repository with up to 94 features.
Lopez-Herrejon et al. [47] proposed an approach for computing the exact Pareto front of a

feature model using SAT solvers. Two objectives were optimised: maximising pairwise coverage
and minimising test suite size. As expected, the approach suffers from scalability issues: the Pareto
front could be calculated in only 10 out of the 20 realistic feature models used in this study. In a
subsequent work [48], the authors compared four classical multi-objective algorithms (NSGA-II,
MOCell, SPEA2, and PAES) and the impact of three different seeding strategies on computing test
suites with maximum coverage and minimum size. Their approach was evaluated on 19 out of the
20 feature models presented in Table 5 (the Drupal feature model was presented later). In a later
paper [49], the authors presented an overview of the state of the art on evolutionary computation for
SPL testing. As a part of their work, they identified some open challenges including the application
of many-objectives algorithms and the use of non-functional properties for test case prioritisation.
Wang et al. [71] presented an approach to minimise SPL test suites by eliminating redundant

test cases, where test cases are inputs and expected outputs to test products (rather than products).
Given an input product and a test suite for testing it, their approach searches for a “good” subset of
the suite according to several effectiveness and cost-related objectives, i.e. a separate optimisation
problem is solved for each product. Their work compared three genetic algorithms where three
objectives were combined into a single fitness function with weighting factors: minimising the
number of test cases, maximising pairwise coverage, and maximising fault detection capability.
Their approach was evaluated using several models from the SPLOT repository plus four feature
models from an industrial project with sizes ranging from 17 to 77 features. In subsequent work [72],
the authors compared their weight-based genetic algorithms against seven multi-objective search-
based algorithms, namely NSGA-II, MOCell, SPEA2, PAES, SMPSO, CellDE and random search. Four
fitness functions related to test effectiveness (to be maximised) and one fitness function to measure
cost (to be minimised) were presented. The experiments were conducted on four feature models
from an industrial project and 500 random feature models with up to 1,000 features. Algorithms
were compared using a custom metric that combines the values of the five fitness functions for
each solution.

Lopez-Herrejon et al. [50] presented a genetic algorithm for the generation of prioritised pairwise
test suites of minimum size from a feature model. The algorithm follows a master-slave strategy to
parallelise the evaluation of products, which are prioritised based on some user-defined weights.
In a related work [24], some of the authors presented two hybrid algorithms based on integer
programming to address the same problem, outperforming the parallel genetic algorithm in both
solution quality and computation time.

Devroy et al. [19] proposed a search-based approach for test case selection in SPLs maximising
the distance between products (in terms of features) and the distance between behavioural actions,
derived from a model representing the behaviour of the SPL named Featured Transition System.
Both distances were combined into a single fitness function integrated into the (1+1) Evolutionary
Algorithm. Their approach was evaluated using four feature models with up to 44 features.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 39

Ferreira et al. [23, 66] presented a hyper-heuristic approach for dynamic selection of evolutionary
operators to be applied during the execution of a multi-objective evolutionary algorithm. The hyper-
heuristic tries to determine the best mutation and crossover operators based on their performance.
In their paper, they compared several hyper-heuristics on NSGA-II, SPEA2, IBEA, and MOEA/D-
DRA with four objective functions: minimising suite size, maximising mutation score, maximising
pairwise coverage, and maximising dissimilarity of products. The approach was evaluated using
four realistic feature models with sizes ranging from 14 to 22 features.
Parejo et al. [58] presented a case study on multi-objective test case prioritisation in highly-

configurable systems using the Drupal Web framework [60]. They proposed seven prioritisation
objective functions based on functional information extracted from the feature model, and non-
functional data extracted from code and issue repositories. The approach was evaluated by compar-
ing the effectiveness of 63 different combinations of up to three objective functions at accelerating
the detection of faults in Drupal using the NSGA-II algorithm.
Markiegi et al. [55] proposed a genetic algorithm for test selection using three objectives com-

bined into a single fitness function with weighting factors: maximising fault detection capability,
minimising test execution time, and maximising test case appearance frequency. The approach was
evaluated using a cyber-physical SPL with 46 features.
Our work is related to papers on multi-objective product selection where the goal is to select a

product that optimises two or more objectives (see, for example, [26, 27, 33, 34, 62]). Compared to
them, we address a different problem—the selection of a sequence of products (a test suite)—which
means that we could not directly apply the algorithms used for optimal product selection. This being
said, we see some potential in applying some of the ideas used in the generation of optimal products
in our future work, such as enhancing the diversity of randomly generated products [26, 33].

Single-objective testing for SPL. A vast majority of the single–objective test case selection tech-
niques for SPL are based on feature coverage using combinatorial techniques. Lopez-Herrejon et al.
conducted a systematic mapping study on combinatorial interaction testing for SPLs [53]. They
identified over forty approaches using different techniques such as genetic and greedy algorithms.
They also found that a majority of the papers focus on deriving products from variability models
(typically a feature model) using pairwise testing.

Henard et al. [32] proposed a mutation-based approach for test case selection in SPLs that works
in two steps. First, a set of faulty versions of the feature model, so-called mutants, are created, e.g.
removing an excludes constraint. Then, the (1+1) Evolutionary Algorithm is used to search for
test cases that kill as many mutants as possible, i.e., products that do not conform to the mutated
feature models.

Henard et al. [29] presented a search-based approach to generate and prioritise t-wise test suites,
with t ∈ {2, . . . , 6}, on some of the largest features model available (with up to 6.8K features). They
employ a variant of the (1+1) Evolutionary Algorithm with no crossover and a fitness function
based on the Jaccard’s dissimilarity metric. The initial population is generated randomly using a
modified SAT solver to guarantee that solutions are generated in an unpredictable way. Their work
is based on the assumption that the higher the differences between the products of the suite, the
higher the t-wise coverage. The suite is also prioritised based on the dissimilarity distances among
the products in a subsequent step. Their algorithm computes suites of fixed size within a given
time used as a stopping criterion. In related work, Al-Hajjaji et al. [3] proposed an algorithm for
SPL prioritisation using an adaptation of the Hamming distance to measure the similarity among
products.
Xu et al. [76] proposed an SPL test suite augmentation approach and related tool named CON-

TESA. Their tool incrementally generates test cases that exercise parts of the code that have not

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

40 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

yet been covered by previous test cases, e.g. code branches. A genetic algorithm was used to auto-
matically generate test cases for the products under test. Devroy et al. [18] proposed to prioritise
products according to the likelihood of their executions, derived from a usage model represented
by a Featured Transition System (a type of Markov chain).

Ensan et al. [22] proposed a genetic algorithm approach for the generation of SPL test suites with
good fault detection capability and feature coverage. The fitness of each suite was measured using
a combination of the variability coverage and cyclomatic complexity metrics for feature models [7].
Inspired by their work, those metrics were adapted and used in the VCoverage prioritisation
function used in this paper. In related work, the authors proposed eight coverage criteria based on
the transformation of feature models into formal context–free grammars [6]. The rationale behind
the proposed coverage criteria is based on the development of equivalence partitions on the SPL
under test and the use of boundary–value analysis for test case generation.

Al-Hajjaji et al. [1] proposed a cluster-based approach for similarity-based product prioritisation.
The approach was evaluated using 10 feature models with up to 6,888 features. In a related paper [2],
the authors proposed a prioritisation approach based on product similarity using delta-modeling,
that is, specific information about how each product is implemented. The approach was evaluated
by means of an SPL from the automotive domain with 27 features.

Finally, the synergies between SBSE and SPLs have been extensively explored and summarised
in several survey papers [28, 54]. This paper takes a step further in exploiting the benefits of
many–objective search–based optimisation for testing SPLs.
Compared to the extensive body of related research, this paper presents several novel contri-

butions. First, we propose the first many-objective approach for SPL testing optimising up to 9
different objectives, addressing both test selection and prioritisation simultaneously. Also, we
present a novel evolutionary algorithm (GrES) and an optimisation framework, where pairwise
coverage is given priority over the rest of the objectives. The evaluation results with both random
and realistic feature models show that this approach is able to tame the complexity of the problem
and outperform the state-of-the-art algorithms used in previous approaches.

8 CONCLUSIONS
This paper investigated the problem of producing good test suites for SPL testing: test suites that
achieve full pairwise coverage and also have a number of other desirable properties related to test
selection and test prioritisation. Test generation is thus a many-objective optimisation problem,
with different solutions (that are not related under Pareto dominance) representing alternative
trade-offs that can be provided to the Software Engineer.
We noted that one of the objectives, pairwise coverage, is more important than the others: the

Software Engineer is only interested in tests that achieve full coverage. As a result, we introduced a
novel approach, based on this piece of domain knowledge, that optimises first on pairwise coverage
and only then on the other objectives. Importantly, it is straightforward to adapt any EMO to use
this approach. We then developed a novel evolution strategy, GrES, that uses this approach. GrES
adapts a standard evolution strategy to reflect domain knowledge including the fact that the set of
objectives can be partitioned into two sets (for selection and prioritisation). We had observed that
the crossover operation could break good building blocks of chromosomes of the seed individual in
the evolutionary search, and thus GrES conducts repeated explorations around the seed individual
and its offspring.

We evaluated the proposed approach, GrES, through a range of experiments that addressed the
following research questions: whether GrES outperformed current techniques (in terms of both
FCR, the number of test suites with full pairwise coverage, and the HV values of the populations
returned); whether the novel evolution strategy used in GrES contributed to its performance; how

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

Many-Objective Test Suite Generation for Software Product Lines 41

GrES performed with the subsets of objectives used in previous studies; whether differences in
performance were substantial; and whether different techniques had different execution times.
The experiments were carried out on randomly generated feature models, allowing us to explore
how performance varies with feature model size, and also on realistic feature models. We had
20 realistic feature models and used randomly generated attribute values for 19 of these and real
attribute values for one. The results were generally very positive. In the experiments, GrES always
returned a population in which all solutions provided full pairwise coverage. In contrast, in all
cases the previously published approaches returned populations in which less than 10% of the
solutions had full pairwise coverage (averaged over 30 runs). In addition, GrES returned populations
with higher HV values. When we used the approach (optimise first on pairwise coverage) with
other EMOs we found that all approaches produced populations in which all test suites provided
full pairwise coverage but that the evolution strategies (GrES and PAES) led to higher HV values
than the other EMOs, especially with the larger models. GrES appeared to perform a little better
than PAES, in terms of HV values, but the results were mixed. However, GrES has much lower
computational requirements than PAES, requiring us to adapt PAES (otherwise it could not be used
in many-objective problems). This is not surprising since PAES examines an exponential number
of grids.
There are a number of possible lines of future work. First, we could fix the time given to the

techniques rather than the number of evaluations. Second, parameter tuning may well lead to
further improvements in performance. In addition, there is the problem of finding techniques
that scale to larger feature models and the potential to incorporate approaches for enhancing the
diversity of random products (as already done in the selection of optimal products [26, 33]). Finally,
there is value in repeating the experiments with other realistic feature models.

MATERIALS
For the sake of verifiability, our implementations of the algorithms in Java and C++, all the raw data
generated during its execution, as well as all models and artefacts of the experiments are available
at https://drive.google.com/open?id=1xumU6qxBesloq69jOPMbprOaiaOKDq82.

ACKNOWLEDGEMENT
This work has been partially supported by the European Commission (FEDER) and Spanish Govern-
ment under CICYT projects BELI (TIN2015-70560-R) and HORATIO (RTI2018-101204-B-C21), the
Science and Technology Innovation Committee Foundation of Shenzhen (ZDSYS201703031748284),
Shenzhen Peacock Plan (KQTD2016112514355531), the Program for Guangdong Introducing In-
novative and Enterpreneurial Teams (Grant No. 2017ZT07X386), and EPSRC (EP/J017515/1 and
EP/P005578/1).

REFERENCES
[1] M. Al-Hajjaji, J. Krüger, S. Schulze, T. Leich, and G. Saake. 2017. Efficient Product-Line Testing Using Cluster-Based

Product Prioritization. In 2017 IEEE/ACM 12th International Workshop on Automation of Software Testing (AST). 16–22.
https://doi.org/10.1109/AST.2017.7

[2] M. Al-Hajjaji, S. Lity, R. Lachmann, T. Thüm, I. Schaefer, and G. Saake. 2017. Delta-oriented Product Prioritization for
Similarity-based Product-line Testing. In Proceedings of the 2Nd International Workshop on Variability and Complexity
in Software Design (VACE ’17). IEEE Press, Piscataway, NJ, USA, 34–40. https://doi.org/10.1109/VACE.2017..8

[3] M. Al-Hajjaji, T. Thüm, M. Lochau, J. Meinicke, and G. Saake. 2016. Effective product-line testing using similarity-based
product prioritization. Software & Systems Modeling (2016), 1–23. https://doi.org/10.1007/s10270-016-0569-2

[4] T. Back. 1996. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic
algorithms. Oxford university press.

[5] J. Bader and E. Zitzler. 2011. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary
Computation 19, 1 (2011), 45–76.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

https://drive.google.com/open?id=1xumU6qxBesloq69jOPMbprOaiaOKDq82
https://doi.org/10.1109/AST.2017.7
https://doi.org/10.1109/VACE.2017..8
https://doi.org/10.1007/s10270-016-0569-2

42 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

[6] E. Bagheri, F. Ensan, and D. Gasevic. 2012. Grammar-based Test Generation for Software Product Line Feature Models.
In Proceedings of the 2012 Conference of the Center for Advanced Studies on Collaborative Research (CASCON ’12). IBM
Corp., Riverton, NJ, USA, 87–101. http://dl.acm.org/citation.cfm?id=2399776.2399785

[7] E. Bagheri and D. Gasevic. 2011. Assessing the maintainability of software product line feature models using structural
metrics. Software Quality Journal 19, 3 (2011), 579–612. https://doi.org/10.1007/s11219-010-9127-2

[8] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski. 2016. Clafer: unifying class and feature modeling.
Software & Systems Modeling 15, 3 (01 Jul 2016), 811–845. https://doi.org/10.1007/s10270-014-0441-1

[9] D. Benavides, S. Segura, and A. A. Ruiz-Cortés. 2010. Automated analysis of feature models 20 years later: A literature
review. Information Systems 35, 6 (2010), 615 – 636. https://doi.org/10.1016/j.is.2010.01.001

[10] K. Bringmann and T Friedrich. 2010. The maximum hypervolume set yields near-optimal approximation. In Proceedings
of Genetic and Evolutionary Computation Conference (GECCO). ACM press, 511–518.

[11] P. Clements and L. Northrop. 2001. Software Product Lines: Practices and Patterns. Addison–Wesley.
[12] C.A. Coello, D.A. Van Veldhuizen, and G.B. Lamont. 2007. Evolutionary Algorithms for Solving Multi-Objective Problems

(2 ed.). Springer, Heidelberg.
[13] D.W. Corne, N.R. Jerram, J.D. Knowles, and M.J. Oates. 2001. PESA-II: Region-based selection in evolutionary multiob-

jective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001). 283–290.
[14] D.W. Corne and J.D. Knowles. 2007. Techniques for highly multiobjective optimisation: some nondominated points are

better than others. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation Conference
(GECCO). 773–780.

[15] P.A. da Mota Silveira Neto, I. do Carmo Machado, J.D. McGregor, E. Santana de Almeida, and S. Romero de Lemos Meira.
2011. A systematic mapping study of software product lines testing. Information & Software Technology 53, 5 (2011),
407–423.

[16] K. Deb. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley, New York.
[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182–197.
[18] X. Devroey, G. Perrouin,M. Cordy, P.-Y. Schobbens, A. Legay, and P. Heymans. 2013. Towards Statistical Prioritization for

Software Product Lines Testing. In Proceedings of the Eighth International Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS ’14). ACM, New York, NY, USA, Article 10, 7 pages. https://doi.org/10.1145/2556624.2556635

[19] X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and P. Heymans. 2016. Search-based Similarity-driven Behavioural
SPL Testing. In Proceedings of the Tenth International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS ’16). ACM, New York, NY, USA, 89–96. https://doi.org/10.1145/2866614.2866627

[20] I. do Carmo Machado, J.D. McGregor, Y. Cerqueira Cavalcanti, and E. Santana de Almeida. 2014. On strategies for
testing software product lines: A systematic literature review. Information and Software Technology 56, 10 (2014), 1183
– 1199. https://doi.org/10.1016/j.infsof.2014.04.002

[21] E. Engström and P. Runeson. 2011. Software product line testing - A systematic mapping study. Information and
Software Technology 53, 1 (2011), 2–13.

[22] F. Ensan, E. Bagheri, and D. Gašević. 2012. Advanced Information Systems Engineering: 24th International Conference,
CAiSE 2012, Gdansk, Poland, June 25-29, 2012. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter
Evolutionary Search-Based Test Generation for Software Product Line Feature Models, 613–628. https://doi.org/10.
1007/978-3-642-31095-9_40

[23] T.N. Ferreira, J.A.P. Lima, A. Strickler, J.N. Kuk, S.R. Vergilio, and A. Pozo. 2017. Hyper-Heuristic Based Product
Selection for Software Product Line Testing. IEEE Computational Intelligence Magazine 12, 2 (May 2017), 34–45.
https://doi.org/10.1109/MCI.2017.2670461

[24] J. Ferrer, F. Chicano, and E. Alba. 2017. Hybrid Algorithms Based on Integer Programming for the Search of Prioritized
Test Data in Software Product Lines. In Applications of Evolutionary Computation: 20th European Conference, EvoApplic-
ations 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings, Part II, Giovanni Squillero and Kevin Sim (Eds.).
Springer International Publishing, Cham, 3–19. https://doi.org/10.1007/978-3-319-55792-2_1

[25] B.J. Garvin, M.B. Cohen, and M.B. Dwyer. 2011. Evaluating improvements to a meta-heuristic search for constrained in-
teraction testing. Empirical Software Engineering 16, 1 (01 Feb 2011), 61–102. https://doi.org/10.1007/s10664-010-9135-7

[26] J. Guo, Jia H. Liang, K. Shi, D. Yang, J. Zhang, K. Czarnecki, V. Ganesh, and H. Yu. 2019. SMTIBEA: a hybrid multi-
objective optimization algorithm for configuring large constrained software product lines. Software & Systems Modeling
18, 2 (01 Apr 2019), 1447–1466. https://doi.org/10.1007/s10270-017-0610-0

[27] J. Guo, E. Zulkoski, R. Olaechea, D. Rayside, K. Czarnecki, S. Apel, and J.M. Atlee. 2014. Scaling Exact Multi-objective
Combinatorial Optimization by Parallelization. In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering (ASE ’14). ACM, New York, NY, USA, 409–420. https://doi.org/10.1145/2642937.2642971

[28] M. Harman, Y. Jia, J. Krinke,W.B. Langdon, J. Petke, and Y. Zhang. 2014. Search Based Software Engineering for Software
Product Line Engineering: A Survey and Directions for Future Work. In Proceedings of the 18th International Software

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

http://dl.acm.org/citation.cfm?id=2399776.2399785
https://doi.org/10.1007/s11219-010-9127-2
https://doi.org/10.1007/s10270-014-0441-1
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1145/2556624.2556635
https://doi.org/10.1145/2866614.2866627
https://doi.org/10.1016/j.infsof.2014.04.002
https://doi.org/10.1007/978-3-642-31095-9_40
https://doi.org/10.1007/978-3-642-31095-9_40
https://doi.org/10.1109/MCI.2017.2670461
https://doi.org/10.1007/978-3-319-55792-2_1
https://doi.org/10.1007/s10664-010-9135-7
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1145/2642937.2642971

Many-Objective Test Suite Generation for Software Product Lines 43

Product Line Conference - Volume 1 (SPLC ’14). ACM, New York, NY, USA, 5–18. https://doi.org/10.1145/2648511.2648513
[29] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. Le Traon. 2014. Bypassing the Combinatorial

Explosion: using Similarity to Generate and Prioritize T-wise Test Configurations for Software Product Lines. IEEE
Transactions on Software Engineering 40 (2014), 1.

[30] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon. 2013. PLEDGE: A Product Line Editor and Test
Generation Tool. In Proceedings of the 17th International Software Product Line Conference Co-located Workshops (SPLC
’13 Workshops). ACM, New York, NY, USA, 126–129. https://doi.org/10.1145/2499777.2499778

[31] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon. 2013. Multi-objective Test Generation for Software
Product Lines. In International Software Product Line Conference (SPLC).

[32] C. Henard, M. Papadakis, and Y. Le Traon. 2014. Search-Based Software Engineering: 6th International Symposium, SSBSE
2014, Fortaleza, Brazil, August 26-29, 2014. Proceedings. Springer International Publishing, Cham, Chapter Mutation-
Based Generation of Software Product Line Test Configurations, 92–106. https://doi.org/10.1007/978-3-319-09940-8_7

[33] C. Henard, M. Papdakis, M. Harman, and Y. Le Traon. 2015. Combining Multi-Objective Search and Constraint
Solving for Configuring Large Software product Lines. In Proceedings of the 2015 International Conference on Software
Engineering (ICSE ’15). IEEE Press.

[34] R.M. Hierons, M. Li, X. Liu, S. Segura, and W. Zheng. 2016. SIP: optimal product selection from feature models using
many-objective evolutionary optimization. ACM Transactions on Software Engineering and Methodology 25, 2 (2016),
17.

[35] P. Hofman, T. Stenzel, T. Pohley, M. Kircher, and A. Bermann. 2012. Domain Specific Feature Modeling for Software
Product Lines. In Proceedings of the 16th International Software Product Line Conference - Volume 1 (SPLC ’12). ACM,
New York, NY, USA, 229–238. https://doi.org/10.1145/2362536.2362568

[36] M.F. Johansen, O. Haugen, and F. Fleurey. 2012. An Algorithm for Generating T-wise Covering Arrays from Large
Feature Models. In Proceedings of the 16th International Software Product Line Conference - Volume 1 (SPLC ’12). ACM,
New York, NY, USA, 46–55. https://doi.org/10.1145/2362536.2362547

[37] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. 1990. Feature–Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21. SEI.

[38] J.D. Knowles and D.W. Corne. 1999. The Pareto archived evolution strategy: a new baseline algorithm for Pareto
multiobjective optimisation. In Proc. Congress Evolutionary Computation CEC 99, Vol. 1.

[39] J.D. Knowles and D.W. Corne. 2000. Approximating the nondominated front using the Pareto archived evolution
strategy. Evolutionary Computation 8, 2 (June 2000), 149–172.

[40] B. Li, J. Li, K. Tang, and X. Yao. 2015. Many-objective evolutionary algorithms: A survey. Comput. Surveys 48, 1 (2015),
1–35.

[41] K. Li, R. Wang, T. Zhang, and H. Ishibuchi. 2018. Evolutionary many-objective optimization: a comparative study of
the state-of-the-art. IEEE Access 6 (2018), 26194–26214.

[42] M. Li, T. Chen, and X. Yao. 2018. A critical review of “A practical guide to select quality indicators for assessing
Pareto-based search algorithms in search-based software engineering”: Essay on quality indicator selection for SBSE.
In Proceedings of the 40th International Conference on Software Engineering (ICSE): New Ideas and Emerging Results
Track. 17–20.

[43] M. Li, C. Grosan, S. Yang, X. Liu, and X. Yao. 2018. Multi-line distance minimization: A visualized many-objective test
problem suite. IEEE Transactions on Evolutionary Computation 22, 1 (2018), 61–78.

[44] M. Li, S. Yang, and X. Liu. 2014. Shift-based density estimation for Pareto-based algorithms in many-objective
optimization. IEEE Transactions on Evolutionary Computation 18, 3 (2014), 348–365.

[45] M. Li and X. Yao. 2019. Quality Evaluation of Solution Sets in Multiobjective Optimisation: A Survey. ACM Computing
Surveys (CSUR) 52, 2 (2019), 26.

[46] M. Li, L. Zhen, and X. Yao. 2017. How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational
Forum]. IEEE Computational Intelligence Magazine 12, 4 (2017), 88–100.

[47] R.E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and E. Alba. 2013. Multi-Objective Optimal Test Suite Computation
for Software Product Line Pairwise Testing. In Proceedings of the 29th IEEE International Conference on Software
Maintenance.

[48] R.E. Lopez-Herrejon, J. Ferrer, F. Chicano, A. Egyed, and E. Alba. 2014. Comparative analysis of classical multi-objective
evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines. In Proceedings of the
IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, July 6-11, 2014. 387–396. https://doi.org/10.1109/
CEC.2014.6900473

[49] R.E. Lopez-Herrejon, J. Ferrer, F. Chicano, A. Egyed, and E. Alba. 2016. Computational Intelligence and Quantitative
Software Engineering. Springer International Publishing, Cham, Chapter Evolutionary Computation for Software
Product Line Testing: An Overview and Open Challenges, 59–87. https://doi.org/10.1007/978-3-319-25964-2_4

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

https://doi.org/10.1145/2648511.2648513
https://doi.org/10.1145/2499777.2499778
https://doi.org/10.1007/978-3-319-09940-8_7
https://doi.org/10.1145/2362536.2362568
https://doi.org/10.1145/2362536.2362547
https://doi.org/10.1109/CEC.2014.6900473
https://doi.org/10.1109/CEC.2014.6900473
https://doi.org/10.1007/978-3-319-25964-2_4

44 R. M. Hierons, M. Li, X. H. Liu, J. A. Parejo, S. Segura, and X. Yao

[50] R.E. Lopez-Herrejon, J. Ferrer, F. Chicano, E.N. Haslinger, A. Egyed, and E. Alba. 2014. A parallel evolutionary algorithm
for prioritized pairwise testing of software product lines. In GECCO. 1255–1262.

[51] R.E. Lopez-Herrejon, J. Ferrer, F. Chicano, E.N. Haslinger, A. Egyed, and E. Alba. 2014. A Parallel Evolutionary Algorithm
for Prioritized Pairwise Testing of Software Product Lines. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation (GECCO ’14). ACM, New York, NY, USA, 1255–1262. https://doi.org/10.1145/2576768.2598305

[52] R.E. Lopez-Herrejon, J. Ferrer, F. Chicano, E.N. Haslinger, A. Egyed, and E. Alba. 2014. Towards a Benchmark and a
Comparison Framework for Combinatorial Interaction Testing of Software Product Lines. CoRR abs/1401.5367 (2014).
http://arxiv.org/abs/1401.5367

[53] R.E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed. 2015. A first systematic mapping study on combinatorial
interaction testing for software product lines. In Eighth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015. 1–10. https://doi.org/10.1109/ICSTW.2015.7107435

[54] R.E. Lopez-Herrejon, L. Linsbauer, and A. Egyed. 2015. A systematic mapping study of search-based software
engineering for software product lines. Information and Software Technology 61 (2015), 33 – 51. https://doi.org/10.
1016/j.infsof.2015.01.008

[55] U. Markiegi, A. Arrieta, G. Sagardui, and L. Etxeberria. 2017. Search-based Product Line Fault Detection Allocating
Test Cases Iteratively. In Proceedings of the 21st International Systems and Software Product Line Conference - Volume A
(SPLC ’17). ACM, New York, NY, USA, 123–132. https://doi.org/10.1145/3106195.3106210

[56] Y. Matsumoto. 2007. A Guide for Management and Financial Controls of Product Lines. In 11th International Software
Product Line Conference. 162–170.

[57] R. Olaechea, D. Rayside, J. Guo, and K. Czarnecki. 2014. Comparison of Exact and Approximate Multi-objective
Optimization for Software Product Lines. In Proceedings of the 18th International Software Product Line Conference -
Volume 1 (SPLC ’14). ACM, New York, NY, USA, 92–101. https://doi.org/10.1145/2648511.2648521

[58] J.A. Parejo, A.B. Sánchez, S. Segura, A. Ruiz-Cortés, R.E. Lopez-Herrejon, and A. Egyed. 2016. Multi-objective test case
prioritization in highly configurable systems: A case study. Journal of Systems and Software 122 (2016), 287–310.

[59] M. Ravber, M. Mernik, and M. Črepinšek. 2017. The impact of quality indicators on the rating of multi-objective
evolutionary algorithms. Applied Soft Computing 55 (2017), 265–275.

[60] A.B. Sánchez, S. Segura, J.A. Parejo, and A. Ruiz-Cortés. 2015. Variability testing in the wild: the Drupal case study.
Software and Systems Modeling (2015), 1–22. https://doi.org/10.1007/s10270-015-0459-z

[61] A.B. Sánchez, S. Segura, and A. Ruiz-Cortés. 2014. A Comparison of Test Case Prioritization Criteria for Software
Product Lines. In Proceedings of the 2014 IEEE International Conference on Software Testing, Verification, and Validation
(ICST ’14). IEEE Computer Society, Washington, DC, USA, 41–50. https://doi.org/10.1109/ICST.2014.15

[62] A.S. Sayyad, T. Menzies, and H. Ammar. 2013. On the Value of User Preferences in Search-based Software Engineering:
A Case Study in Software Product Lines. In Proceedings of the 2013 International Conference on Software Engineering
(ICSE ’13). IEEE Press, Piscataway, NJ, USA, 492–501. http://dl.acm.org/citation.cfm?id=2486788.2486853

[63] H.-P. Schwefel. 1993. Evolution and optimum seeking: the sixth generation. John Wiley & Sons, Inc.
[64] S. Segura, J.A. Galindo, D. Benavides, J.A. Parejo, and A. Ruiz-Cortés. 2012. BeTTy: Benchmarking and Testing on the

Automated Analysis of Feature Models. In Proceedings of the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS ’12). ACM, New York, NY, USA, 63–71. https://doi.org/10.1145/2110147.2110155

[65] D.C. Sharp. 1998. Reducing avionics software cost through component based product line development. In 17th Digital
Avionics Systems Conference. IEEE.

[66] A. Strickler, J.A. Prado Lima, S.R. Vergilio, andA. Pozo. 2016. Deriving products for variability test of FeatureModels with
a hyper-heuristic approach. Applied Soft Computing 49 (2016), 1232 – 1242. https://doi.org/10.1016/j.asoc.2016.07.059

[67] T. Thüm, D. Batory, and C. Kastner. 2009. Reasoning About Edits to Feature Models. In Proceedings of the 31st
International Conference on Software Engineering (ICSE ’09). IEEE Computer Society, Washington, DC, USA, 254–264.
https://doi.org/10.1109/ICSE.2009.5070526

[68] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. 2014. FeatureIDE: An extensible framework for
feature-oriented software development. Science of Computer Programming 79, 0 (2014), 70 – 85. https://doi.org/10.
1016/j.scico.2012.06.002 Experimental Software and Toolkits (EST 4): A special issue of the Workshop on Academic
Software Development Tools and Techniques (WASDeTT-3 2010).

[69] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A. Jimenez. 2008. FAMA Framework. In 12th Software Product
Lines Conference (SPLC). 359. https://doi.org/10.1109/SPLC.2008.50

[70] A. Vargha and H.D. Delaney. 2000. A critique and improvement of the CL common language effect size statistics of
McGraw and Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[71] S. Wang, S. Ali, and A. Gotlieb. 2013. Minimizing Test Suites in Software Product Lines Using Weight-based Genetic
Algorithms. In Genetic and Evolutionary Computation Conference (GECCO).

[72] S. Wang, S. Ali, and A. Gotlieb. 2015. Cost-effective test suite minimization in product lines using search techniques.
Journal of Systems and Software 103 (2015), 370 – 391. https://doi.org/10.1016/j.jss.2014.08.024

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

https://doi.org/10.1145/2576768.2598305
http://arxiv.org/abs/1401.5367
https://doi.org/10.1109/ICSTW.2015.7107435
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1145/3106195.3106210
https://doi.org/10.1145/2648511.2648521
https://doi.org/10.1007/s10270-015-0459-z
https://doi.org/10.1109/ICST.2014.15
http://dl.acm.org/citation.cfm?id=2486788.2486853
https://doi.org/10.1145/2110147.2110155
https://doi.org/10.1016/j.asoc.2016.07.059
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1109/SPLC.2008.50
https://doi.org/10.1016/j.jss.2014.08.024

Many-Objective Test Suite Generation for Software Product Lines 45

[73] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen. 2016. A practical guide to select quality indicators for assessing Pareto-based
search algorithms in search-based software engineering. In Proceedings of the 38th International Conference on Software
Engineering (ICSE). 631–642.

[74] S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, and M. Liaaen. 2014. Multi-Objective Test Prioritization in
Software Product Line Testing: An Industrial Case Study. In Software Product Line Conference. 32–41.

[75] S.N. Wood, N. Pya, and B. Säfken. 2016. Smoothing Parameter and Model Selection for General Smooth Models. J.
Amer. Statist. Assoc. 111, 516 (2016), 1548–1563. https://doi.org/10.1080/01621459.2016.1180986

[76] Z. Xu, M.B. Cohen, W. Motycka, and G. Rothermel. 2013. Continuous Test Suite Augmentation in Software Product
Lines. In Proceedings of the 17th International Software Product Line Conference (SPLC ’13). ACM, New York, NY, USA,
52–61. https://doi.org/10.1145/2491627.2491650

[77] S. Yang, M. Li, X. Liu, and J. Zheng. 2013. A Grid-Based Evolutionary Algorithm for Many-Objective Optimization.
IEEE Transactions on Evolutionary Computation 17, 5 (2013), 721–736.

[78] S. Yoo and M. Harman. 2012. Regression testing minimization, selection and prioritization: a survey. Software Testing,
Verification and Reliability 22, 2 (2012), 67–120. https://doi.org/10.1002/stvr.430

[79] Q. Zhang and H. Li. 2007. MOEA/D: Amultiobjective evolutionary algorithm based on decomposition. IEEE Transactions
on Evolutionary Computation 11, 6 (2007), 712–731.

[80] A. Zhou, B.Y. Qu, H. Li, S.Z. Zhao, P.N. Suganthan, and Q. Zhang. 2011. Multiobjective evolutionary algorithms: A
survey of the state of the art. Swarm and Evolutionary Computation 1, 1 (2011), 32–49.

[81] E. Zitzler and S. Künzli. 2004. Indicator-Based Selection in Multiobjective Search. In Proceedings of the International
Conference on Parallel Problem Solving from Nature (PPSN). 832–842.

[82] E. Zitzler and L. Thiele. 1999. Multiobjective evolutionary algorithms: A comparative case study and the strength
Pareto approach. IEEE Transactions on Evolutionary Computation 3, 4 (1999), 257–271.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2019.

https://doi.org/10.1080/01621459.2016.1180986
https://doi.org/10.1145/2491627.2491650
https://doi.org/10.1002/stvr.430

	Abstract
	1 Introduction
	2 Background
	2.1 Feature Models
	2.2 Evolutionary Multi-Objective Optimisation

	3 The Proposed Algorithm
	3.1 Optimisation Approach
	3.2 Why use an Evolution Strategy
	3.3 Selection for Variation
	3.4 Encoding and Variation Operators
	3.5 Procedure of the Proposed Algorithm GrES
	3.6 The Optimisation Problem

	4 Experimental Design
	4.1 Performance Metrics
	4.2 Overview
	4.3 Experimental Subjects
	4.4 Implementation Details

	5 Results
	5.1 Research Question 1: Comparison with Existing Approaches
	5.2 Research Question 2: Comparison with Representative Multi-objective Evolutionary Approaches
	5.3 Research Question 3: Comparison with Existing Approaches on Specific Objectives
	5.4 Research Question 4: How large are the differences in HV values in the experiments used for RQ1-3?
	5.5 Research Question 5: How long do the different algorithms take?
	5.6 Discussion

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

