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Abstract 22 

Immediately after birth, newborn babies experience rapid colonisation by microorganisms from their 23 

mothers and the surrounding environment1. Diseases in childhood and later in life are potentially mediated 24 

through perturbation of the infant gut microbiota colonisations2. However, the impact of modern clinical 25 

practices, such as caesarean section delivery and antibiotic usage, on the earliest stages of gut microbiota 26 

acquisition and development during the neonatal period (≤1 month) remains controversial3,4. Here we report 27 

disrupted maternal transmission of Bacteroides strains and high-level colonisation by healthcare-associated 28 

opportunistic pathogens, including Enterococcus, Enterobacter and Klebsiella species, in babies delivered 29 

by caesarean section (C-section), and to a lesser extent, in those delivered vaginally with maternal antibiotic 30 

prophylaxis or not breastfed during the neonatal period. Applying longitudinal sampling and whole-genome 31 

shotgun metagenomic analysis on 1,679 gut microbiotas of 772 full term, UK-hospital born babies and 32 

mothers, we demonstrate that the mode of delivery is a significant factor impacting gut microbiota 33 

composition during the neonatal period that persists into infancy (1 month - 1 year). Matched large-scale 34 

culturing and whole-genome sequencing (WGS) of over 800 bacterial strains cultured from these babies 35 

identified virulence factors and clinically relevant antimicrobial resistance (AMR) in opportunistic 36 

pathogens that may predispose to opportunistic infections. Our findings highlight the critical early roles of 37 

the local environment (i.e. mother and hospital) in establishing the gut microbiota in very early life, and 38 

identifies colonisation with AMR carrying, healthcare-associated opportunistic pathogens as a previously 39 

unappreciated risk factor.   40 
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Main 41 

The acquisition and development of the early-life gut microbiota follow successive waves of 42 

microbial exposures and colonisation that shapes the longer-term microbiota composition and function5. 43 

Early life events, including Caesarean section delivery1,6, formula feeding7,8 and antibiotic exposure8,9 that 44 

could perturb the gut microbiota composition are associated with the development of childhood asthma and 45 

atopy10-12. While recent studies8,9,13-15 have provided substantial insights into the gut microbiota 46 

development during the first 3 years of life, many were limited by the taxonomic resolution provided by 47 

16S rRNA gene profiling, small sample size or limited sampling during the first month of life (neonatal 48 

period). High-resolution metagenomic studies of large, longitudinal cohorts are required to establish the 49 

impact and risks of early life events on the gut microbiota assembly, particularly during the neonatal period 50 

where pioneering microbes could influence subsequent microbiota and immune system development16,17. 51 

To characterise the trajectory of gut microbiota acquisition and development during the neonatal 52 

period, we enrolled 596 healthy, term babies (39.5 ± 1.37 gestation weeks, 314 vaginal and 282 C-section 53 

births, Fig. 1a, Extended Data Table 1) through the Baby Biome Study (BBS). Faecal samples were 54 

collected from all babies at least once during their neonatal period (<1 month) with 302 babies re-sampled 55 

later in infancy (8.75 ± 1.98 months). Maternal faecal samples were also obtained from 175 mothers paired 56 

with 178 babies. Metagenomic analysis of 1,679 faecal samples from 772 babies and mothers revealed 57 

temporal dynamics of the gut microbiota development (Fig. 1b) and increased diversity with age (Extended 58 

Data Fig. 1a). Strikingly, the gut microbiotas exhibited substantial heterogeneity (inter-individual) and 59 

instability (intra-individual) during the first weeks of life (Extended Data Fig. 1b). Inter-individual 60 

differences explained 57% of the microbial taxonomic variation (Permutational multivariate analysis of 61 

variance (PERMANOVA), P < 0.001, 1,000 permutations), followed by sampling age at 5.7% of the 62 

variance (P < 0.001). These results indicate that the gut microbiotas were highly dynamic and 63 

individualised during the neonatal period, even more than observed in infancy (Extended Data Fig. 1c).  64 

To determine the impact of clinical covariates on the composition of the gut microbial community, 65 

we performed cross-sectional PERMANOVA, stratified by age. Mode of delivery was the most significant 66 

factor driving gut microbiota variation during the neonatal period (Fig. 2a, Supplementary Table 2), while 67 

other clinical covariates associated with hospital birth (e.g. perinatal antibiotics, duration of hospital stay) 68 
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and breastfeeding exhibited smaller effects (Supplementary Note 1). The largest effect of delivery mode 69 

was observed on day 4 (Fig. 2b, R2=7.64%, P<0.001), which dissipated with age but remained significant 70 

at the point of infancy sampling (R2=1.00%, P<0.01). No difference was observed in maternal gut 71 

microbiotas by delivery modes or neonatal gut microbiotas between elective and emergency C-section 72 

births (Supplementary Table 3).  73 

Given the significant effect of the mode of delivery during the neonatal period, we next sought to 74 

understand how the microbiota composition and developmental trajectory were altered. Samples from 75 

babies delivered vaginally were enriched with Bifidobacterium (e.g. B. longum, B. breve), Escherichia (E. 76 

coli) and Bacteroides/Parabacteroides species (e.g. B. vulgatus, P. distasonis) with these commensal 77 

genera comprising 68.3% (95% CI 65.7-71.0%) of the neonatal gut microbial communities (Fig. 2c, 78 

Supplementary Table 5), which validated the recent observations in other cohorts4,13. In contrast, the gut 79 

microbiota of C-section delivered babies were depleted of these commensal genera and instead were 80 

dominated by Enterococcus (E. faecalis, E. faecium), Staphylococcus epidermis, Streptococcus 81 

parasanguinis, Klebsiella (K. oxytoca, K. pneumoniae), Enterobacter cloacae and Clostridium perfringens, 82 

which are commonly associated with hospital environments18 and hospitalised preterm babies19-21. On day 83 

4, species belonging to these genera accounted for 68.25% (95% CI 62.74-73.75%) of the total microbiota 84 

composition in C-section delivered babies (Fig. 2c).  85 

Previous studies reported that, compared to C-section delivered babies, the gut microbiotas of 86 

vaginally delivered babies were enriched in lactobacilli associated with the mother’s vaginal microbiota1,22. 87 

However, here we observed no statistical difference in the prevalence (vaginal 11.9% vs C-section 15.7% 88 

present at over 1% abundance) or abundance of Lactobacillus between vaginally (1.217%, 95% CI 0.81-89 

1.621%) or C-section (2.21%, 95% CI 1.54-2.88%) delivered babies. Rather, commensal species from the 90 

Bacteroides genus were detected at high abundance in the gut microbiota of 49.0% (154/314) of vaginally 91 

delivered babies (mean relative abundance 8.13%, 95% CI 6.88-9.39%, Extended Data Fig. 3). In contrast, 92 

Bacteroides species were low or absent in 99.6% (281/282) C-section delivered babies (mean relative 93 

abundance 0.43%, 95% CI 0.11-0.74). In 60.6% (86/142) of the C-section babies, this low-Bacteroides 94 

profile (defined in Methods) persisted into infancy, when Bacteroides became the only differentially 95 

abundant species between vaginally and C-section delivered babies (Supplementary Table 5). Although we 96 
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could not assess the independent effect of maternal antibiotic exposure during C-section delivery as 97 

antibiotics were administered in all C-section deliveries, among vaginally delivered babies we observed a 98 

statistically significant association between the low-Bacteroides profile with maternal intrapartum 99 

antibiotic prophylaxis (IAP, OR=1.77, 95% CI: 1.17-2.71, P=0.0074), which also accounted for the greatest 100 

amount of gut microbiota variation in vaginally delivered babies (R2=5.88-13.6%, Supplementary Table 4). 101 

These results expand on previous findings9,23 and further highlight a low-Bacteroides profile as the 102 

perturbation signature associated with C-section and maternal IAP in vaginal delivery. 103 

Maternal transmission of gastrointestinal bacteria to their babies is an underappreciated form of 104 

kinship24. To assess if the neonatal microbiota variation could be attributed to differential transmission of 105 

maternal microbiota, we profiled the bacterial strain transmission across 178 mother-baby dyads. We show 106 

that the majority of maternal strain transmissions during the neonatal period occurred in vaginally delivered 107 

babies (74.39%), at much higher frequency in comparison with those delivered by C-section (12.56%, 108 

Fisher’s exact test, P<0.0001, Fig 3a, Extended Data Fig. 4, Supplementary Tables 6-7). Bacteroides spp., 109 

Parabacteroides spp., E. coli and Bifidobacterium spp. were most frequently transmitted from mothers to 110 

babies through vaginal birth, in agreement with previous observation in smaller cohorts4,25-27. For 111 

Bacteroides species such as B. vulgatus (Fig. 3b), the lack of transmission continued far beyond the neonatal 112 

period in C-section born babies25 with the late transmission of B. vulgatus rarely detected later in infancy. 113 

This is in contrast to the transmission pattern of other common early colonisers such as B. longum (Fig. 3c) 114 

and E. coli, for which colonisations of maternal strains occurred more frequently later in infancy (Fisher’s 115 

exact tests, P=0.0479 and P=0.0226, respectively). This result highlights the neonatal period as a critical 116 

early window of maternal transmission with the disrupted transmission of pioneering Bacteroides species 117 

evident in C-section babies with long-term Bacteroides absence.  118 

While C-section babies were deprived of maternally transmitted commensal bacteria, they had a 119 

substantially higher relative abundance of opportunistic pathogens commonly associated with the 120 

healthcare environment. These enriched species included E. faecalis, E. faecium, E. cloacae, K. 121 

pneumoniae, K. oxytoca and C. perfringens (Fig. 4a, Supplementary Table 5), some of which are members 122 

of the ESKAPE pathogens responsible for the majority of nosocomial infections28. Indeed, their frequent 123 

gut microbiota colonisation in C-section newborns was under-reported in previous smaller cohorts3,13 with 124 
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insufficient statistical power (Supplementary Note 2). Among C-section born babies, 83.7% carried 125 

opportunistic pathogen species during the neonatal period (as defined in Methods), in comparison to 49.4% 126 

of the vaginally born babies (Fig. 4a). During the first 21 days of life, these healthcare-associated 127 

opportunistic pathogens accounted for 30.4% (95% CI 27.86-32.96%) of the species level abundance in the 128 

gut microbiota of C-section babies, compared to 9.8% (95% CI 8.19-11.4%) in the vaginal babies, with the 129 

greatest difference observed on day 4 (Extended Data Fig. 5a). Longitudinally, the difference in combined 130 

opportunistic pathogen abundance persisted in the C-section babies re-sampled later in infancy (C-section 131 

2.8% versus vaginal 1.6%, P=0.0375, Welch’s t-test). Interestingly, frequent and abundant carriage of 132 

opportunistic pathogens were also observed in low-Bacteroides vaginally delivered babies (Extended Data 133 

Fig. 5b), while the absence of breastfeeding during the neonatal period was associated with a higher carriage 134 

of C. perfringens, K. oxytoca and E. faecalis (Supplementary Table 5).  135 

Given the prevalent carriage of opportunistic pathogens in the neonatal gut metagenomes, we sought 136 

to validate their presence and viability with culturing. We undertook targeted large-scale culturing of 836 137 

opportunistic pathogen strains in the faecal samples of 177 babies (70 vaginal and 107 C-section babies, 138 

total 741 isolates) and 38 mothers (95 isolates) using selective media (Fig. 4b, Supplementary Table 8). 139 

Subsequent WGS and genomic characterisation of E. faecalis (n=356), E. cloacae (n=52), K. oxytoca 140 

(n=150) and K. pneumoniae (n=78) allowed us to perform high-resolution phylogenetic analysis and to 141 

delineate strain-specific carriage of AMR genes and virulence factors. 142 

Focusing on the most prevalent opportunistic pathogen in C-section born babies, we analysed the 143 

genomes of a diverse population of BBS E. faecalis strains in the context of publicly available genomes of 144 

human and environmental strains (Fig. 4c). We found that 53.9% of the BBS strains were represented by 145 

five major lineages, each of which was distributed across vaginal and C-section babies and mothers in the 146 

three BBS hospitals (Extended Data Fig. 6a) and UK hospital patients, but did not include high-risk UK 147 

epidemic lineages enriched in multi-drug resistance (MDR) and virulence29. In congruence with the 148 

phylogenetic placement of the BBS strains with the human gastrointestinal and environmental strains, these 149 

non-epidemic E. faecalis exhibited comparable levels of carriage of AMR genes (Extended Data Fig. 6b, 150 

Supplementary Note 3). Similar to E. faecalis, the BBS Enterobacter and Klebsiella strains also exhibited 151 

high-level population diversities with the phylogenetic under-representation of epidemic lineages (Fig. 4d, 152 
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Extended Data Fig. 7), and levels of AMR and virulence gene carriage indicative of non-epidemic lineages 153 

circulating in hospital environments and healthy populations, rather than hypervirulent and ESBL-enriched 154 

epidemic lineages30-32 (Extended Data Fig. 8, Supplementary Note 3). Given the prior isolation of the major 155 

BBS lineages in hospitalised patients and their AMR and virulence capabilities, any level of opportunistic 156 

pathogen carriage represents a significant risk of future infections, especially for the C-section born babies 157 

with high prevalence (83.7%) of carriage.  158 

Whilst there is insufficient evidence from metagenomics and cultured isolate WGS that indicates 159 

an apparent maternal origin of the opportunistic pathogens (Supplementary Note 4), the absence of lineage-160 

specific colonisation suggests hospital environmental exposure as the primary factor driving opportunistic 161 

pathogen colonisation of the BBS babies. Although our study was not designed for retrospective sampling 162 

of the hospital environmental sources, opportunistic pathogens are frequently found in hospital 163 

environments, where hospital-born babies have been shown to carry the same bacteria present in operating 164 

rooms33 and neonatal intensive care units34. 165 

Undertaking the largest, longitudinal WGS characterisation of the human gut microbiota in the 166 

previously under-sampled neonatal period (≤1 month), we consolidate the recent findings that mode of 167 

delivery is a major factor shaping the gut microbiota in the first few weeks of life4, with the diminished 168 

effect persisting into infancy14,15. The disrupted transmission of the maternal gastrointestinal bacteria, 169 

particularly the pioneering Bacteroides species in birth via C-section and maternal IAP, predisposed 170 

newborn babies to colonisation by clinically important opportunistic pathogens circulating in healthcare 171 

and hospital environments. However, the clinical consequences of the early life microbiota perturbations 172 

and carriage of immunogenic pathogens during this critical window of immune development remain to be 173 

determined. This highlights the need for large-scale, long-term cohort studies that also sample home births35 174 

to better understand the consequence of hospital birth and establish if neonatal microbiota perturbation 175 

negatively impacts health outcomes in childhood and later life.   176 
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Figure legends 177 

Fig. 1: Developmental dynamics of the neonatal gut microbiota.  178 

a, Longitudinal metagenomic sampling of 1,679 early-life gut microbiotas of 772 individuals from 179 

three participating hospitals (A, B, C) of the Baby Biome Study. Each row corresponds to the time 180 

course of a subject, comprising 596 babies sampled during the neonatal period primarily on day 4 181 

(n=310), 7 (n=532) and 21 (n=325), in infancy (8.75 ± 1.98 months of age, n = 302), and from matched 182 

mothers (n = 175). b, Non-metric multidimensional scaling (NMDS) ordination of Bray–Curtis 183 

dissimilarity n = 917) between the species relative abundance profiles of the gut microbiota sampled 184 

from babies sampled on day 4, day 7, day 21, in infancy and from mothers (n = 175).  185 

Fig. 2: Perturbed neonatal gut microbiota composition and development associated with the 186 

mode of delivery  187 

a, Bar plot illustrating the clinical covariates associated with the neonatal gut microbiota variations on 188 

day 4 (n=310), day 7 (n=532), day 21 (n=325) and in infancy (n=302). Only the statistically 189 

significant associations in cross-sectional tests are shown. Covariates are ranked by the number 190 

statistically significant effect observed across sampling age groups. The proportion of explained 191 

variance (R2) and statistical significance were calculated using PERMANOVA on between-sample 192 

Bray-Curtis distances. b, Non-metric multidimensional scaling (NMDS) ordination of Bray–Curtis 193 

dissimilarity between the species relative abundance profiles of the gut microbiota sampled from 194 

babies on day 4 (vaginal delivery, n=157; C-section delivery, n=153), day 7 (vaginal delivery, n=280; 195 

C-section delivery, n=252), day 21 (vaginal delivery, n=147; C-section delivery, n=178), during 196 

infancy (vaginal delivery, n=160; C-section delivery, n = 142) and from mothers (vaginal delivery, 197 

n=110; C-section delivery, n=65). Microbial variation explained by the mode of delivery in each 198 

cross-section test is shown in the bottom left. All statistical tests were significant with PERMANOVA 199 

R2 and q-values reported in Supplementary Table 2. c, Longitudinal changes in the mean relative 200 

abundance (RA) of faecal bacteria at the genus level sampled on day 4, 7, 21 days of life and in 201 

infancy, for genera with > 1% RA across all neonatal period samples. Vaginal delivery, n=744 from 202 

310 babies; C-section delivery, n=725 from 281 babies.  203 
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Fig. 3: Disrupted maternal strain transmission in C-section-delivered babies. 204 

a, Early and late transmission of the maternal strains in mother-baby pairs (vaginal: 35, C-section: 24) 205 

longitudinally sampled during the neonatal (early) and infancy (late) period. Only the frequently 206 

shared species detected with sufficient coverage for strain analysis in more than 10 pairs are shown. 207 

Phylogenetically related species shared transmission pattern. b, c Transmission events of maternal B. 208 

vulgatus (b) and B. longum (c) strains in vaginally delivered, and C-section delivered babies over 209 

time. In each row of mother-baby paired samples, each circle represents a detectable strain either 210 

identical (filled) to or distinct from (hollow) the maternal strain. Across the rows, identical strains are 211 

linked by a solid line representing early transmission and persistence to infancy, while the dashed line 212 

indicates late transmission. 213 

Fig. 4: Extensive and frequent colonisation of C-section delivered babies with diverse 214 

opportunistic pathogen species previously associated with healthcare infection.  215 

a, The mean relative abundance (RA) and frequency (>1% RA) of six opportunistic pathogen species 216 

enriched C-section born babies (n=596), compared to vaginal-born babies (n=606) during the first 21 217 

days of life, in the context of the maternal level carriage (n=175). Error bars indicate the 95% CI of the 218 

mean relative abundance. Statistical significance of the differences in RA and frequency was determined 219 

by Holm’s-adjusted Wilcoxon and Fisher’s exact tests, respectively. ***P < 0.001, **P < 0.01, *P < 0.05 220 

b, Phylogenetic representation of 836 bacterial strains cultured from raw faecal samples, including six 221 

opportunistic pathogens isolated five major genera: Enterococcus spp. (red, n=451); Clostridium spp. 222 

(yellow, n=24); Klebsiella spp. (blue, n=235), Enterobacter spp. (green, n=52) and Escherichia spp. 223 

(purple, n=41). c, Phylogeny of the BBS E. faecalis isolates (n=282) in the context of public isolates 224 

from UK hospitals (n=168), the healthy human gut microbiotas (n=28) and environmental sources 225 

(n=27) with the high-risk UK epidemic lineage (CC2/CC28/CC388) branches coloured in blue. 226 

Midpoint-rooted maximum likelihood tree is based on SNPs in 1,656 core genes. d, Diverse 227 

Enterobacter-Klebsiella complex populations among the BBS collection (n=202), in the context of UK 228 

hospital (n=604), the healthy human gut microbiotas (n=37) and environmental sources (n=120).  229 
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Methods 230 

Study population  231 

The study was approved by the NHS London - City and East Research Ethics Committee (REC reference 232 

12/LO/1492). Participants were recruited at the Barking, Havering and Redbridge University Hospitals 233 

NHS Trust (BHR), the University Hospitals Leicester NHS Trust (LEI), and the University College London 234 

Hospitals NHS Foundation Trust (UCLH), through the Baby Biome Study (previously Life Study 235 

enhancement pilot study) from May 2014 to December 2017. Mothers provided written, informed consent 236 

to participate and for their children to participate in the study. 237 

Sample collection 238 

Faecal samples were collected from babies with at least one sample in the first 21 days of life, primarily on 239 

day 4, 7 or 21. For a subset of babies who provided neonatal samples, a follow-up faecal sample collection 240 

was performed between 4 to 12 months of their lives. Maternal faecal samples were collected in the 241 

maternity unit before or after delivery, or stool was collected during delivery by midwives. Baby samples 242 

were collected at home by mothers and returned to the processing laboratory by post at ambient temperature 243 

within 24 hours. On arrival at the lab, all faecal samples were immediately stored at 4°C for an average of 244 

2.41 days (95% CI 2.06-2.76 days) before further processing. Samples were aliquoted into six vials, four 245 

of which were stored at -80°C for raw faeces biobanking while the other two vials were processed 246 

immediately for DNA extraction. Although this sample storage protocol (no preservation buffer for room 247 

temperature and 4°C storage) was shown to be robust to technical variation in microbiome profiles at the 248 

time of study design (Supplementary Note 5), state-of-the-art sampling methods should be utilised in future 249 

large-scale microbiome to minimise the potential effect of sample storage on the microbiota composition36. 250 

DNA was extracted from 30 mg of faecal samples as described in the BBS collection and processing 251 

protocol37. Negative controls using ultrapure water was included in parallel for each kit as well as each 252 

extraction batch, and DNA concentration quantified to confirm contamination free. Total DNA was eluted 253 

in 60μl DNase/Pyrogen-free water, and stored at -80°C until shipment to the Wellcome Sanger Institute for 254 

metagenomic sequencing.  255 
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Shotgun metagenomic sequencing and analysis   256 

DNA samples, including negative controls, were quantified by PicoGreen dsDNA assay (Thermo Fisher), 257 

and samples with >100 ng DNA material proceeded to paired-end (2 x 125bp) metagenomics sequencing 258 

on the HiSeq 2500 v4 platform. Low-quality bases were trimmed (SLIDINGWINDOW:4:20), and reads 259 

below 87 nucleotides (70% of original read length) were removed (MINLEN:87) using Trimmomatic38. To 260 

remove potential human contaminants, quality trimmed reads were screened against the human genome 261 

(GRCh38) with Bowtie2 v2.3.039. On average, 22.4 (95% CI 22.1-22.6) million raw reads were generated 262 

per sample. 19.3 (95% CI 19.1-19.6) million reads (87.3% of the raw reads) per sample passed 263 

decontamination and quality trimming steps for downstream analysis. Sequencing depth was accounted for 264 

as a potential technical confounding factor in analyses of microbiota species and strain measurements, and 265 

significant species association with clinical covariates (Supplementary Note 6). Taxonomic classification 266 

from metagenomics reads was performed using Kraken v1.040, a k-mer based sequence classification 267 

approach against the Human Gastrointestinal Bacteria Genome Collection (HGG) genomes41. Bracken 268 

v1.042 was run on the Kraken classification output to estimate taxonomic abundance down to the species 269 

level. Metagenomic samples were compared at the genus and species levels by relative abundance. A cut-270 

off of 100 Kraken-assigned paired-end reads (corresponds to 0.001% relative abundance given the sampling 271 

depth of ~10 million paired-end reads) was applied to determine metagenomic species detection. To assess 272 

whether the trade-off between the observed level of Bacteroides and opportunistic pathogens was an 273 

artefact of compositional effects, the proportion of abundances and reads corresponding to Bacteroides 274 

were removed separately, prior to relative abundance normalisation. In the normalised datasets, the 275 

statistical enrichment of opportunistic pathogen species in C-section babies was consistent with the 276 

observation with the original data. The R packages phyloseq43  and microbiome44 was used for metagenomic 277 

data analysis and results visualised using ggplot245 in RStudio.   278 

Classification of the low-Bacteroides babies 279 

For each baby, the median relative abundance of the Bacteroides genus was calculated across the neonatal 280 

period samples. Based on the threshold described previously9, babies with a median abundance of less than 281 

0.1% were assigned low-Bacteroides status. 282 

  283 
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Classification of the opportunistic pathogen carriage 284 

Total opportunistic pathogen load is estimated by calculating the median relative abundance of combined 285 

opportunistic pathogen species (C. perfringens, E. cloacae, E. faecalis, E. faecium, K. oxytoca, K. 286 

pneumoniae) per individual across their neonatal period samples, and independently for the infancy period 287 

and maternal samples. To prioritise on relatively high-level opportunistic pathogen carriage feasible for 288 

downstream strain cultivation experiments, individuals with a median abundance of over 1% total 289 

opportunistic pathogen load were defined as a positive carriage.  290 

Maternal strain transmission analysis  291 

Strain transmissions in mother-baby paired samples were determined using a single-nucleotide variant 292 

calling method46. StrainPhlAn was run on pre-processed metagenomes to generate consensus species-293 

specific marker genes for phylogenetic reconstruction of all detectable strains (one dominant strain per 294 

sample), using default parameters and with the options "--alignment_program mafft" and "--295 

relaxed_parameters3" as previously described26. No statistically significant variation in sequencing depth 296 

was observed between vaginal and C-section born subjects across age groups that had any impact on 297 

coverage-dependent microbiota species and strains detection (Supplementary Note 6). For each species and 298 

strains with sufficient coverage for strain profiling, we generated a species-specific phylogenetic tree using 299 

RAxML47. As previously described26, the strain distance for each pair of mother-baby sample strains was 300 

computed by calculating the pairwise normalised phylogenetic distance on the corresponding species tree.  301 

To define strain transmission events,  a previously described26, conservative threshold of 0.1 on the strain 302 

distance value was used. The detectable strains in a given pair of mother-baby samples were considered 303 

identical (strain distance less than 0.1, transmission) or distinct (strain distance greater than 0.1, no 304 

transmission). For all mother-baby pairs shown in Extended Data Fig. 4, early transmission event was 305 

counted once per species per mother-baby pair, considering the detected transmission (or evidence for no 306 

transmission) at the earliest time point (primary transmission), irrespective of the subsequent transmission 307 

events in any later neonatal period samples. For a subset of mother-baby pairs with both neonatal and 308 

infancy period sampled (shown in Fig. 3a), late transmission events were counted separately, including 309 

cases of no early transmission due to insufficient coverage (no detectable strains). To highlight the 310 

transmission pattern shared by phylogenetically related species, a neighbour-joining tree of the eligible 311 
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species was constructed based on the mash distance matrix49 of the respective reference genomes 312 

included in the StrainPhlAn database (Supplementary Table 9). The same approach and strain distance 313 

threshold (core-genome SNPs) were applied to the cultured strains to count the number of identical and 314 

distinct strains within mother-baby and longitudinal paired samples.   315 

Statistical analysis 316 

To calculate the effect of clinical covariates on the gut microbiota composition, we stratified by age groups 317 

and then assessed the proportion of explained variance (R2 from PERMANOVA) in Bray-Curtis distance 318 

for each clinical covariate, using the adonis from the R package vegan50. While PERMANOVA is mostly 319 

unaffected by group dispersion effects in balanced designs51 (e.g. mode of delivery comparisons), for 320 

unbalanced designs (e.g. breastfeeding comparisons) more sensitive to group dispersion effects, the group 321 

variance homogeneity condition was validated using the betadisper function. Group dispersions were not 322 

significantly different (betadisper P<0.05) in all comparisons, which lent support to the statistically 323 

significant, albeit visibly weak effects of breastfeeding as reported by PERMANOVA. Samples with 324 

missing metadata (NA) for the given clinical covariate were excluded prior to running each cross-sectional 325 

analysis. Effect sizes and statistical significance were determined by 1,000 permutations, and P-values 326 

corrected for multiple testing using the Benjamini-Hochberg false discovery rate (FDR = 5%). Statistical 327 

tests of between-group taxonomic abundance comparisons (Welch’s t-test with p-values FDR-corrected) 328 

were performed in the Statistical Analysis of Metagenomics Profiles program v2.052. MaAsLin53 was used 329 

for adjustment of covariates when determining the significance of species associated with a specific 330 

variable while accounting for potentially confounding covariates, as previously described14,15. All the 331 

covariates tested in the PERMANOVA were included in the adjustment along with the sequencing depth 332 

used as fixed effects. The default MaAsLin parameters were applied (maximum percentage of samples NA 333 

in metadata 10%, minimum percentage relative abundance 0.01%, P < 0.05, q < 0.25).  334 

Bacterial isolation and whole-genome sequencing  335 

Raw faecal samples from neonates stored in the biobank lab at -80°C were requested based on faecal 336 

carriage of targeted species over 1% relative abundance in metagenomes. Selected frozen faecal aliquots, 337 

where available (> 100 ng) were couriered on dry ice to the Wellcome Sanger Institute within 6 hours of 338 

shipment from the biobank lab. Bacterial isolates were cultured using the following culture media: 339 
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Enterococcus faecium ChromoSelect Agar Base (Sigma-Aldrich) for Enterococcus spp., CP ChromoSelect 340 

Agar (Sigma-Aldrich) for Closteridium spp., Coliform ChromoSelect Agar (Sigma-Aldrich) and Klebsiella 341 

ChromoSelect Selective Agar (Sigma-Aldrich) for species of Enterobacteriaceae. Between 2-5 colonies 342 

per sample were picked for full-length 16S rRNA gene sequencing to confirm species identification, as 343 

described previously54. Bacterial isolates with species identification congruent with metagenomic 344 

identification were re-streaked and purified for genomic DNA extraction using DNeasy 96 kit. DNA 345 

sequencing was performed on the Illumina HiSeq X, generating paired-end reads (2 x 151bp). Multiple 346 

strains per species per faecal sample were also sequenced based on variation across the full-length 16S 347 

rRNA sequences. Bacterial genomes were assembled and annotated using the pipeline described 348 

previously55. Genome assemblies were subjected to quality check and contaminant screening with 349 

CheckM56 and Mash57, respectively. Where applicable, the suspected contaminant (non-target organism) 350 

sequences were confirmed and filtered out via raw read mapping using Bowtie2 v2.3.0, prior to re-351 

assembly.  352 

Bacterial phylogenetic analysis  353 

The phylogenetic analysis of the complete diverse species collection was conducted by extracting the amino 354 

acid sequence of 40 universal core marker genes58,59 from the BBS bacterial culture collection using 355 

SpecI60. The protein sequences were concatenated and aligned with MAFFT v.7.2040, and maximum-356 

likelihood trees were constructed using RAxML47 with default settings. Four most prevalent BBS collection 357 

opportunistic pathogen species E. faecalis, E. cloacae, K. oxytoca and K. pneumoniae were further analysed 358 

in context of the public genomes (Supplementary Table 10), including the UK hospital strain collections29-359 

32, the gut microbiota-cultured strains from the HGG and the Culturable Genome Reference (CGR)61 360 

collections, and the environmental strains on the Genome Taxonomy Database (GTDB, v86) 62. To generate 361 

phylogenetic trees of individual species, the public genome assemblies were combined with the assemblies 362 

of the study isolates, annotated with Prokka63, and a pangenome estimated using Roary64. Where multiple 363 

identical strains (no SNP difference in species core-genome) were cultured from the same faecal sample, 364 

only one representative strain was included in the species phylogenetic trees. A 95% identity cut-off was 365 

used, and core genes were defined as those in 99% of isolates unless otherwise stated. A maximum 366 

likelihood tree of the SNPs in the core genes was created using RAxML47 and 100 bootstraps. To illustrate 367 
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the population structure of the closely related Enterobacter and Klebsiella strain isolates, FastANI65 was 368 

used to estimate the pairwise average nucleotide identity distance between all public and BBS genome 369 

assemblies, which was then used as an input to generate a neighbour-joining with BIONJ66. All 370 

phylogenetic trees were visualised in iTOL67. Sequence types were determined using MLSTcheck68, which 371 

was used to compare the assembled genomes against the MLST database for the corresponding species.  372 

Detecting virulence and resistance genes  373 

ABRicate (v0.8.13, https://github.com/tseemann/abricate) was used to screen for known, acquired 374 

resistance genes and virulence factors against bacterial genome assemblies. For AMR genes, a 375 

comprehensive BLAST database integrating 5,556 non-redundant sequences in the NCBI Bacterial 376 

Antimicrobial Resistance Reference Gene Database (PRJNA313047), CARD v2.0.3, ARG-ANNOT and 377 

ResFinder was queried against. 3,202 non-redundant experimentally validated core virulence genes in 378 

VFDB (version 5 Oct 2018) were included to build a BLAST database for virulence factor screening.  379 

https://github.com/tseemann/abricate
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