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ABSTRACT Railway stations are essential aspects of railway systems, and they play a vital role in public
daily life. Various types of AI technology have been utilised in many fields to ensure the safety of people and
their assets. In this paper, we propose a novel framework that uses computer vision and pattern recognition
to perform risk management in railway systems in which a convolutional neural network (CNN) is applied
as a supervised machine learning model to identify risks. However, risk management in railway stations is
challenging because stations feature dynamic and complex conditions. Despite extensive efforts by industry
associations and researchers to reduce the number of accidents and injuries in this field, such incidents
still occur. The proposed model offers a beneficial method for obtaining more accurate motion data, and it
detects adverse conditions as soon as possible by capturing fall, slip and trip (FST) events in the stations that
represent high-risk outcomes. The framework of the presented method is generalisable to a wide range of
locations and to additional types of risks.

INDEX TERMS Artificial intelligence, convolutional neural network, deep learning, railway station, risk
management.

I. INTRODUCTION
Railway station environments are dynamic, and this dynamic-
ity varies according to size and location. A variety of passen-
gers transit the station, including families, old and disabled
individuals and groups. Some stations are crowded at peak
times because of the limited space, and increases in demand
due to operational delays, design or layout deficiencies or
management shortages can increase the risk of fall, slip and
trip (FST) events.

FSTs are a leading cause of injury. In particular, falls due
to slipping are statistically the main cause of accidents on
crossways in built environments and railway stations [1]. The
consequences of FSTs are not limited to the individual who
suffered the accident, whomay be seriously injured; FSTs can
also affect railway operations, causing delay and disturbing
the flow of people. Platforms which offer access to trains and
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escalators are hazards that form hot spots for FSTs. Accord-
ing to the RSSBAnnual Report on Public Safety (2015/2016),
over the last five years, the highest percentage of injuries
from slips, trips and falls in stations occurred on stairs (38%),
with platforms holding the second most likely spot (27%) [2].
Generally, the magnitude of falls worldwide rises with age:
it has been reported that the proportion of 32–42% elderly
adults (aged 70 years or older) fall each year from 5 to
7 times [3]. Some factors previously presented as the most
crucial in FST events in the station include intoxication,
security, hurrying, station design, staff skills and training [4].
Other challenges, such as weather conditions, congestion,
cultural differences, insufficient maintenance and unwanted
events, may cause panic and FSTs [5], [6]. Much of the
unsafe behaviour exhibited by passengers, employees and the
public can be described via the theory of behaviour-based
safety (BBS), which has been demonstrated to be an effective
tool for promoting safety [7]. The BBS includes three steps:
observation, feedback and training. However, in railway
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FIGURE 1. The overlap between FSTs and system aspects.

stations, these observations are based on humans; thus, they
also involve human error. Moreover, covering all points in the
organisation is costly, time-consuming, or impossible [8], [9].

Worldwide, FSTs are a severe problem that lead to substan-
tial numbers of injuries and have endemic societal economic
consequences that affect people of all ages. That is, despite
logical, well-conceived attempts to diminish the number of
casualties, these approaches have had mixed success [10].
FSTs are classified as causes of unintentional injury in many
activities, both occupational and leisure-related, and their
causes include loss of balance, which may result in falls to the
ground or to lower levels. The factors to be considered include
footwear, flooring conditions and visibility level as well as
other external factors, such as crowding [11], [12]. Moreover,
station design and layout factors, including corridors and
entrances, egress routes and escalators, play an important
role in safety and security and in preventing FSTs; however,
the designs of some older stations include narrow areas [13].
Large numbers of people in these limited areas may lead to
crowding over a wide-range of areas, such as in railway sta-
tions or entertainment venues (e.g., sports matches or music
festivals), which raises the risk level of FSTs. The flow of
people may also be affected by obstructions, which can result
in pushing, falling or, in the worst case, trampling, which
may increase the number of incidents. The FSTs in crowded
situations can have serious consequences; historically, many
people have died or suffered serious injury during events such
as religious pilgrimages. Such risks increasewhen the railway

industry’s growth level is inadequate to serve the market
demand for train travel. In addition, such risks also increase
for older passengers, for travellers carrying large luggage
items and when intoxication is considered [14]. FSTs are
associated with many aspects of accidents, such as human-
to-station environment interactions, including infrastructure
and trains. Many causes are attributable to such risks and they
lead to many different consequences (see Fig. 1). Moreover,
the nature and patterns of FSTs and their active control mea-
sures require more research [12].

Currently in railway stations, detecting such risks relies
on CCTV or staff observations; however, this approach
has the potential for human error and may not result in a
timely response, which can exacerbate the consequences.
Furthermore, accurate station area detection includes plat-
forms, escalators and tunnels; the images can include the
full range of the station and thus provide the potential for
timely responses. Technological growth has helped to extend
and improve protection, especially CCTV systems. In recent
years, automated video surveillance has enhanced public
safety awareness and led to innovative research in a wide
range of fields, including disaster management, crime pre-
vention and security, assistance for people with disabilities,
productivity enhancements andmonitoring critical infrastruc-
ture [15].

In railway stations, CCTV and analogue cameras aid in
accurately detecting station areas, including platforms, esca-
lators and tunnels. However, the human behind the screens
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is the core of the system, which leads to possible human
errors. In practice, however, a greater number of cameras in
such areas leads to a loss of the monitors’ ability to gain
an overview of events in real-time. In fact, in accidents,
the CCTV function primarily as evidence; thus, the pro-
cess involves working with historical records of events more
than with real-time event detection. Artificial intelligence
(computer vision-based) techniques have been suggested as
a possible solution to these issues; at minimum, they could
function as an important assisting element to overcome some
of the limitations of the conventional methods of riskmanage-
ment at stations and improve the safety system. This paper
proposes a monitoring method that uses computer vision to
automatically and rapidly identify risks in stations by recog-
nising unsafe actions, providing support for decision-makers
in real-time and reducing the potential consequences of
unwanted events.

A vision-based approach can be considered the most suit-
able for crowded critical locations such as railway stations.
Computer vision technology has demonstrated its poten-
tial for practical, cost-effective, rapid visual data collec-
tion, and vision-based approaches have been adopted in
many fields, such as construction, safety and quality man-
agement [16]–[18] and productivity management [19]–[21].
The railway industry has already seen benefits from such
methods, including railway track-gauge irregularities [22],
railway maintenance [23] and trespassing detection [24].
Similarly, computer-based image recognition has been
applied to detect and recognise railway infrastructure and
changes in the surrounding environment [25]. Deep learning
techniques have also been proposed to evaluate rail quality
using track geometry [26]. Such research focuses on how
to utilise technology such as the convolutional neural net-
work (CNN) to analyse big data collected by railway systems
to build risk-recognition frameworks—in the case of FSTs—
risk in the railway stations, Fig. 2. The railway industry
creates big data that have potential value for improving the
system. This massive data can be utilised to provide suitable
solutions for safety and security risks. The goal is to tackle
the changing risks that face a sector via image data. The
data can cover a wide variety of aspects and take many
forms, such as spatial-temporal data, videos or images and
data fusion. The data used for monitoring can be collected
at fixed points or be installed on moving trains or other
vehicles, such as drones [27], [28]. Moreover, these data-
gathering systems and their configuration can integrate with
the Internet of Things (IoT), which is a framework suitable
for big data technology, smart stations, smart cities and smart
maintenance [29]–[33].

This remainder of this paper is organised as follows:
Section II reviews the related works. Section III provides
background information about deep learning and risk man-
agement in the railway industry. Section IV presents the
concepts of using deep learning for riskmanagement decision
making in railway stations. Section V presents the framework
of the case study model. Section VI discusses the application

of the CNN case study model in railway stations, Section VII
provides a data analysis, and finally, a discussion and conclu-
sions are given in Section VIII.

II. RELATED WORKS
In this section, we attempt to assign the previous works to
various subsections; however, their topics are scattered across
many fields and include a variety of perspectives. CNNs
have been widely applied in a wide range of visual com-
puting applications, including signal processing [34], [35],
speech recognition [36], medical imaging [37]–[42], object
detection [43]–[47], face recognition [48]–[51], robot con-
trol [52], [53], autonomous driving (AD) and control
[53]–[55] crash detection, risk estimation and traffic moni-
toring [56], [57]. Some models have even been implemented
on mobile devices, such as Google’s FaceNet [58] and Face-
book’s DeepFace [59], which are used for face recogni-
tion [60], [61]. Other studies have different perspectives,
such as energy efficiency and data availability [62]–[64]
and deep learning technologies for civil engineering appli-
cations, infrastructure monitoring and pedestrian detection
and tracking [52], [65]–[68]. From an occupational safety
perspective at a steel plant, images and deep learning have
been utilised to detect oil spills [69] and to augment safety in
the construction industry [70]. Furthermore, the method used
to detect and track humans underwater [71] has also been
applied to the automatic detection of unsafe actions in on-
site videos [8] and for transport security using X-ray security
images [72].

While the main areas initially involved computer science
and related technologies, researchers have been applying
deep learning techniques in their own fields. In the railway
industry, the main concerns of this research are railway
operations and safety (risk management). Features gener-
ated from CCTV images or other cameras in stations are
fed into deep learning models so that they can learn from
passengers’ actions over a period of time. The goal is to
train the CNN to automatically extract feature sequences
that represent unsafe acts from videos, detect the presence
of such sequences, and then initiate actions to mitigate the
possible risks. Depth sensors such as KinectTMor multi-
ple cameras have been used to detect and record unsafe
actions by extracting 3D skeletal models of humans [73].
Additionally, machine learning techniques combined with
various processing methods have been applied [74]–[77].
The studied technologies include multisensor fusion-based
approaches [78], accelerometer-based approaches [79], [80],
smartphone-based approaches [81], [82], vision-based
approaches [83], [84] and systems based on video data.
Such systems can assist in detecting falls by monitored
individuals at their homes [85]. Moreover, a previous study
aimed at protecting and detecting falls showed that several
major categories of sensing equipment have been used (see
Fig. 3) [76], [84], [86]–[94].

The next subsection presents a review of the previous
works in some fields related to this study, which involves
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FIGURE 2. The framework for applying a CNN to big data in the railway system to maintain risks.

detecting proposed risks in the study framework in a railway
station by applying a CNN.

A. RELATED WORKS IN THE CONSTRUCTION FIELD
In construction and other fields, unsafe human behaviour
is an important root cause of accidents [95], [96]. To iden-
tify common unsafe actions, stereo cameras were used to
collect motion data and construct a 3D skeleton model;
then, pattern recognition was applied to manage worker
safety in the construction field [8] and to detect problems
occurring on the site. Several defect management systems
based on image matching have been suggested [97]. For
less operational constraints, two smartphones have been used
as stereo cameras to acquire motion data and extract 3D
human skeletons to track people working in construction
fields [98]. Real-time machine learning models with CNN
frameworks have been proposed to detect whether work-
ers are wearing safety equipment, such as hats and vests,
from images/videos [99] and to detect ground objects [100].
CNNs have also been used to detect safety guardrails [101],
objects on roof construction sites [102], workers who fail to
wear hard hats [103], [104], falls from heights [105], [106],
to maintain safe distances among objects for safety to prevent
accidents [107] and unsafe behaviours [73]. Additionally,
to estimate risk and reduce accidents, deep learning has
been recommended in the shipbuilding Industry [108] and

for ship bridge-collision assessment [109]. CNNs have been
utilised for automated detection of employees near heavy
equipment at construction locations [110], detection of con-
struction vehicles [111], [112] and recognition of structural
damage [65]. In fact, for advanced safety performance, com-
puter vision combined with deep learning has been recom-
mended because such approaches can automatically classify
unsafe behaviour and conditions on construction sites [70].

B. RELATED WORKS IN CRACK DETECTION
Crack detection has been classified in previous studies into
two general method types: image-based crack detection
and crack detection based on machine learning. An image-
based crack detection method was suggested to automate
crack detection for safety and cost-effective bridge main-
tenance [113]. Additionally, the authors proposed automat-
ing the processes of bridge monitoring and maintenance for
safe transportation infrastructure and compared the effec-
tiveness of four crack-detection algorithms (wavelet, Fourier
transforms, Sobel, and Canny [114]) for detecting healthy
concrete surfaces [115], bridge damage [116] and corro-
sion detection [117]. Moreover, with the goal of automating
concrete bridge decks inspections, a principal component
analysis (PCA) algorithm was applied to mitigate the dimen-
sionality problem of feature vectors to extract significant
crack features from a database of bridge images [118].
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In addition, automatic concrete crack detection in tun-
nels using deep fully convolutional networks was proposed
in [66]. To achieve automated detection and reduce the com-
putational cost of detecting large concrete surface cracks,
a method by percolation-based image processing was pro-
posed in [119]. Tunnel crack features extracted based on
detecting pixel intensity were classified by a support vector
machine SVM algorithm to determine whether cracks were
present in pre-processed images [120]. For safety inspection
and structure health and reliability, an automated method
based on a backpropagation neural network (BNN) was
developed for crack detection [121]. For road crack detection,
to deal with crack intensity inhomogeneity by capturing and
utilising some unique crack characteristics, an automated
method was suggested that extracts crack features based
on a discriminative integral channel and then classifies the
features.

C. RELATED WORKS IN RAILWAY SYSTEMS
Technology such as computer vision will play an essential
role in railway system networks and provide effective meth-
ods to solve various problems. The vast distances and long
tracks in many areas of the world and the growth of complex-
ity pose challenges to maintenance and in fulfilling safety,
security and quality; in addition, there are cost restrictions,
time-consumption and reliability issues.

Using a random forest algorithm [122] to perform crack
detection on 3D asphalt surfaces [123]. Due to their high
performance and promising results, convolutional neural net-
works (CNNs) have been utilised in visual computing in
many studies in the field [124]–[126] and for floor area
detection [127].

Due to their high performance and promising results, con-
volutional neural has led to extreme weather, while demand
causes the industry to raise capacity and increase the num-
ber of trains in the system. Nevertheless, learning machine
algorithms can estimate the exact abnormalities by moni-
toring rail tracks [27] to perform risk assessment of rail
failure [128], diagnose track circuit faults [129] provide early
and precise detection methods that are essential for avoid-
ing risks [130] and provide information for decision sup-
port [131]. It has been shown that video camera inspection
is a flexible, effective and automatic method for monitoring
rail tracks. Running rolling stock can provide high-resolution
images from different angles regarding their surroundings,
including tracks and other assets. This data enhances the
machine learning and enables high-performance predictions
of abnormal changes or unwanted events [132], [133]. More-
over, the use of vision allows for more frequent infrastruc-
ture inspections and reduces human errors [134], helping to
avoid maintenance train collisions [135] and monitoring to
ensure passenger safety at stations [136]. Using a robot for
railway tunnel detection reduces worker risk and improves
the detection efficiency [137], [138]. Additionally, computer
vision has been analysed for use in autonomous emergency
train stops [139].

Deep learningmethods have been suggested for addressing
many obstacles in the railway industry, such as poor or miss-
ing data; such methods are expected to improve prediction
accuracy, optimise timing, reveal the types of maintenance
that should be performed to rail infrastructure [33] and to
perform object detection for railway traffic [140].

Of the many applications that have been applied to
CNN, in this subsection, we present those that are specif-
ically related to railways. Such studies have been widely
reported in the recent literature and use many data sources;
they cover management, maintenance, safety and opera-
tions [141]. Image-processing approaches for implement-
ing automatic detection have been suggested for monitoring
railway infrastructure [128], rail track maintenance [133],
railway track inspections and train component inspections
[142]–[152] such as the rolling bearings of trains [153].

CNNs have also been utilised to perform railcar safety
inspection [154], determine the area of the rails ahead [155]
detecting objects ahead [156], detect multiple catenary
systems and support components [157]–[159], tracking
joints [160] and detecting track defects [161], [162].

Sydney trains conducted condition monitoring for inspec-
tions and prevention of overhead wiring teardowns using
laser and computer vision technologies [163]. Similarly, deep
learning has been implemented to conduct traffic signal
detection [164], [165], predict train delays [166], detect rail
fastener defects and ballast history [167]–[169], detect cracks
in and the shape and location of bolts [170], inspect railway
ties [134], predict safety risks in communication-based train
control systems (CBTCs) [171] and to perform subgrade
status inspections [172].

A CNN can be used to estimate crowd density at railway
stations [173],to detect intrusions in track areas, such as
pedestrians or large livestock via images captured in rail-
way areas [174], to monitor railway construction [152] and
for intrusion detection at railway crossings [175]. From the
security side, the method been used for detecting violent
crowd flows [176], protect the critical infrastructure [177],
and identifying tools wielding by attackers such as knives,
guns and Explosives [72].

A railway system contains a wealth of data, and visual
processing technology can play an essential role in the indus-
try’s future. The most up-to-date applications were reviewed
in [178].

III. DEEP LEARNING AND RISK MANAGEMENT
As one type of machine learning in AI, deep learning (DL)
has been suggested as a method for risk management in
railway stations. Accordingly, in this paper, we address some
risks by utilising vision data from many points in the sys-
tem, including both still frames and motion video. Cur-
rently, face recognition plays an important role in computer
vision and has many applications, such as in autonomous
vehicles, human-computer interactions, video surveillance,
robotics, health care, medical imaging and homecare tech-
nology. Improvements in IT have enabled vision sensors to
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FIGURE 3. Fall detection and prevention based on sensor class
perspectives.

be installed in railway environments. For example, CCTV
cameras widely used and rely on numerous cameras sensors;
these cameras are intended to avoid and manage safety and
accidents in railway environments.

In this study, we explore DL by utilising a convolutional
neural network (CNN) to detect passenger falls. FTSs are
common accidents in stations; their causes are sometimes
related to human factors such as people running or to factors
such as damage to floors (wet or muddy conditions) or a lack
of lighting or poor steps design. FTS risks are correlated with
other risks, such as overcrowding or emergency evacuation.
In some cases, passenger falls can lead to overcrowding and
panic; passengers can fall into the gap between the train and
the platform, onto the track, or even under trains, and such
incidents may escape notice by the train driver or station
workers. A team in the platform may not notice a passenger
trapped in the doors or people who are very close to the
train or children—who might be at increased risk. CCTV
cameras in stations can capture a vast amount of data, and
such data is typically archived for some period before being
deleted. The recorded data can be utilised by the police as
evidence in criminal cases, and the system data can be utilised
for monitoring all station operations; however, the outcomes
currently depends on employees whose job is to watch video
screens all the time. However, CCTV management systems
(in control rooms) are passive: they provide only a limited
ability to maintain safety in stations. When an emergency
situation occurs, it is very challenging to identify and manage
the emergency immediately.

Human error in such cases can be high, and the locations
of monitored cameras may not fully cover all station areas.

Accordingly, it is necessary to systematically observe the
risks and any related factors relating to passengers in the
station and raise a notification concerning any potential emer-
gency condition in a timely manner.

Multiple cameras can cover all station areas, such as plat-
forms, tunnels and tracks, while image-processing technol-
ogy can detect real-time risks and then take actions such as
notifying the train driver, the central control room (CCR) and
station staff with the information, including the location, time
and any alarm message. The captured images can be input
to a smart system, which can be trained to recognize any
pattern differences and can learn over time. This approach
reduces the risk of human error and increases the reliability
of real-time predictions. It is expected that utilising a smart
method such as a CNN would be able to identify passenger
falls, running, overcrowding, or any behaviour or conditions
that look suspicious. Some current techniques are effective in
detecting suspicious behaviour is in real life, such as Hitachi
video analysis [179]. Moreover, a thermal camera has been
used to detect human body temperature and used to detect
changes in emotion [180].

Video surveillance can play many roles in industry security
and safety by utilising advanced detection algorithms and
identifying risks in early stages, such as suicide, traffic flow,
criminal activity, trespassers, smoke and fires. Advanced
methods can detect objects and conduct video analytics to
assist emergency responses and support decision-makers.
It is expected that these detection techniques would aid in
developing emergency response plans and communications
schemes, which are critical in reducing risks from emergency
events in railway stations. Additionally, the new technologies
can contribute to measures for ensuring passenger egress and
transit at critical station locations, such as tunnels and access
points, for emergency responders. Moreover, advanced ana-
lytical video surveillance can cover a range of risks, such
as collisions, derailments and intrusions from adjacent areas
into unauthorised station locations such as a track [181]
while managing other subsystems in real-time with minimum
manpower and high efficiency (see Fig. 4). In the literature,
it has been noted that achievements in deep learning can
enable vision and video processing, classification, image cap-
tioning, segmentation, object detection, recognition of human
actions from the video, picture recovery, security, observation
and so on [136], [182]–[184]. Applying new technology,
including image processing, computer vision and machine
learning, will provide both direct and indirect benefits, such
as improvements in safety and security, such as detecting
problems at early stages, resulting in time and cost savings
for the long term and lead to automatic many processes in the
railway system.

IV. DEEP LEARNING FOR DECISION MAKING IN RISK
MANAGEMENT AT RAILWAY STATIONS
DL is a subset of machine learning, which depends on
employing nonlinear algorithms to match data. There are
many methods that employ this technique, but they generally
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FIGURE 4. Map of utilising CNN in railway stations shows examples of risk sources to be managed.

share some commonalities, such as the way each layer
receives the output from the former layer as inputs, as shown
in Fig. 5. Advancements in hardware and increased data
availability have contributed to the ability to effectively train
deep CNN networks to identify features not only from static
images but also from videos [185], [186]. In addition, includ-
ing a set of convolution layers in an NN framework has
revolutionized image processing. The convolution operation
can be defined as follows:

s (t) =
∫
x (a)w (t-a) da,

where x and w is the kernel, which is an adaptive filter that
the network learns [188].

Video identification is challenging role compared to static
images due to the complexities involved in capturing con-
tinuous spatial and temporal data [189]. In the past few
years, DL has gained enormous power for object detection
and tracking. Some object detection algorithms include the
region-based convolutional neural networks (RCNN), Faster-
RCNN, the single shot detector (SSD) and you only look
once (YOLO). Among these, Faster-RCNN and SSD achieve
higher accuracy, while YOLO offers is more advantageous
speed is given preference over accuracy [190].

Many CNNs are configured to use a graphics processing
unit (GPU) as a specialised type of electronic circuit, that
can swiftly manipulate and convert memory to accelerate the
creation of images in a frame buffer [191].

Currently, most machine learning efforts rely on DL tech-
niques, which connects the layers of an artificial neural
network (ANN) to systematically identify patterns in the
data that affect decision making. DL is a powerful method
of machine learning; however, it requires large amounts of
training data to be efficient. Such systems make it possi-
ble to make decisions without human input; moreover, the
system can learn continuously. For instance, self-driving
cars are able to make timely decisions about speed and
direction from information captured in real-time from their
surroundings.

Offering a decision making algorithm to enhance railway
station safety and risk management would be a significant
improvement in the use of CCTV data, passenger smart-
phones, ticketing systems, or other related subsystems in sta-
tions. In the initial phase of such applications, we can use DL
to support the decision makers; later, in the more advanced
phases, we can rely onAI as a highly accurate decisionmaker.
In other words, individuals andAI technologies can cooperate
to manage various decision-making challenges (uncertainty,
complexity and equivocality) [192], [193]. Based on CCTV
systems in stations, which can be updated and utilised to cap-
ture video frames and collect data reflecting human actions
and motion, the resulting data contain spatial and tempo-
ral information from many locations in the station, such as
platforms. Then, unsafe acts can be detected using a deep
learningmethod, which is mainly based on a set of algorithms
that attempt to model high-level abstractions in the data.
The model is trained from multiple frames and the spatial
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FIGURE 5. Deep learning structure [187].

FIGURE 6. Diagram of the risk management steps process compared to the proposed CNN method.

features they contain. For a more comprehensive application,
we compare the traditional risk management process to a
CNN model process to present the steps of the two systems
in parallel (see Fig. 6).

Both outcomes will support the decision-maker and reduce
uncertainties to a low level in complex systems. The process

improvement will support many field activities such as main-
tenance, passenger crowding. System reviews will enhance
actions, add alternatives and redesign the processes regarding
predictions and advanced analytics and—importantly, train-
ing the model. The cycle of control, continuous improvement
and incorporating lessons learned is an essential part of a
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FIGURE 7. The safety cycle transferred to the approach with new techniques.

safety system; thus, this innovative approach fits well into that
process, as shown in see Fig. 7.

V. MODEL FRAMEWORK
Railway station monitoring is vital to guarantee that people
and the rail system are safe and secure. A monitoring failure
can result not only in significant impacts to train delays and
maintenance costs but also to passenger safety at the station
and to society and the economy.

In the case model adopted in this paper, the goal is to
manage the risk of falls by detecting and analysing pas-
sengers automatically among the enormous amount of data
from CCTV cameras. The outcomes illustrate the practi-
cality and efficiency of the proposed approach. This model
relies on image-detection methods and introduces a risk
management framework that uses a CNN to analyse the
images or videos to detect risks. The proposed framework
is depicted in Fig. 8. Video images can be used to identify
deficiencies, such as interruptions to passenger flow that
cause falls, which leads to overcrowding. In addition, they
can be utilised to discover unwanted events that occur in the
station.

VI. THE CNN CASE MODEL
The goal of the proposed model is to detect falls based on a
CNN. To implement such a method, the system needs to be
able to characterise the complex motions of passengers and

address more than one passenger fall at the same time. When
a fall is detected, the system should present the significant
information to railway station control, such as the time and
location. The difference between a CNN and ordinary neural
networks is that each neuron in a CNN is locally connected to
only a few neurons in the previous layer; not to all neurons,
as is the case in ordinary neural networks. This enables CNNs
to be used to construct deeper networks and, consequently,
learn more complex features [194]. Furthermore, CNNs have
demonstrated high performance and are relatively easy to
train. A basic CNN can be characterised as having two layers:
a convolutional base layer that extracts features from an
image and a classifier (a fully connected layer) to classify
the image based on the detected features. Each frame under-
goes a the data acquisition phase that supplies the system
with the digitized data from such images. These data may
include many events or statuses and can be acquired from
both internal and external networks, such as traffic and/or
track conditions and weather. Then, manipulation or data
mining processes such as feature selection, extraction and
standardisation can be applied to process the raw data for
analysis. The data can contain many layers, including the
acquisition time and location. Next, an appropriate model and
deep learning technique are used to perform feature detection
andmake predictions along with the actions and triggers to be
activated when a threshold is breached. The goal is to create a
proactive system that can avoid or mitigate unwanted events.
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FIGURE 8. Flowchart of the offered approach (Framework).

FIGURE 9. Architecture of a CNN-based model.

The history of events and scenarios from many points in the
system will improve the prediction accuracy, and the model
is trained from past activities, as shown in Fig. 9.

CNNs have become the main tool used for recent
innovations in the comprehension of images [195],
videos [136], [196] and audio signals [182], [183].

102820 VOLUME 8, 2020



H. Alawad et al.: DL Approach Towards Railway Safety Risk Assessment

FIGURE 10. An example of a convolutional layer operation.

FIGURE 11. (a) Sample falling passenger images. (b) Sample passenger does not fall images.
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FIGURE 12. Examples of clusters of passengers’ behaviours.

In this study, we used the Keras library, which is an open
source neural network library written in Python that sup-
ports easy and fast prototyping. Furthermore, it maintains
the CNN and runs seamlessly on both CPUs and GPUs.
Keras is compatible with other Python code and can use
raw images as inputs to the CNN model, which extracts fea-
tures. A summary of the experimental configuration is shown
in Table 1.

In this part of the study, we employed available processors
to execute the framework; however, for large data, employing
more powerful CPUs and GPUs is recommended.

We build a model layer by layer using the sequential model
type was selected, which is the simplest way to build a model
in Keras. Next, to deal with input images as 2D matrices,
we selected Conv2D layers with 64 nodes in each layer. A 3
× 3 filter matrix was used for the convolution kernel (see
Fig. 10). A CNN structure includes convolutional layers that
are the major building blocks; these layers learn the features
that are suitable for differentiating between a ‘falling’ image
and a ‘not falling’ image. Each convolutional layer employs
a set of kernels that apply a convolution operation based on
the outputs of the preceding layers.

We adopted the rectified linear unit (ReLU) as an activation
function because ReLU has previously been shown to work
well in neural networks.

For the output layer, we selected a dense layer, which
is a standard type of layer used in various neural network

TABLE 1. Keras library packages example installed details results after
running the model.

architectures. To connect the convolution and dense layers,
a flattening layer is preferable. In addition, we used dropout
layers between the, various layers to avoid data overfit-
ting [196]–[198].
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FIGURE 13. Examples of clusters of passengers’ behaviours predictions.

VII. DATA AND ANALYSIS
A. EXPERIMENTS
1) DATASETS
The objective of the CNN in this study is to take input image
data of passengers in a station and classify each image into
one of two classes: either ‘falling’ or ‘not falling’. The dataset
was divided into separate frames with known labels (falling
or not falling), which were then used as training data for
the classifier. To construct the dataset, different activities and
complex falling events from different locations were selected
from many open source sequences, such as falls on stairs
or in the gap between the train and platform, as shown in
Fig. 11.

We implemented the proposed method after training to
predict risk states in a railway system (at the station) and
evaluated the performance of the model. For all the experi-
ments, we used one computer equipped with an Intel Core
i7 CPU, 64 GB of memory and an NVIDIA GeForce MX
150 GPU.

We gathered data consisting of both still frames and videos
from open sources. Finding such data is challenging both
because of privacy concerns and lack of availability for many
reasons, such as that data is deleted from data centres peri-
odically and the difficulty of finding and collecting such
data.

The data must clustered, classified and labelled; the images
show some risky passenger behaviours (see Fig. 12) and
the collected videos and images cover many countries. The
data raise significant concerns that should be considered
in the future station design and in daily operations, for
example:
• People standing in risky positions near the gap between
the train and the platform and close to moving trains.

• Some people trespass into the track areas and can be
found in restricted areas.

• Some passengers cross the tracks to take shortcuts
between locations.

• Some passengers are pressed against the train and their
clothes become trapped in train doors.

• Elderly people fall on escalators and other passengers
misuse the escalators.

• Children and those susceptible to fainting falling into the
gap between the train and the platform.

• Impacts from technology and lifestyles, such as taking
selfies behind the trains

• Wheelchairs falling down stairs and escalators.
• Passengers standing in restricted areas.
However, the limited data available for each dataset are not

sufficient for training deep learning models. Thus, we aug-
mented the collected data with the Le2i dataset built by
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FIGURE 14. The trained model’s accuracy and the model loss.

FIGURE 15. The classification performance evaluation results shown as a
confusion matrix.

Charfi et al. [199], which covers many falling positions, and
our model performs only binary classification: falling or not
falling. We split the dataset into training and test datasets.

2) PRE-PROCESSING AND PREDICTIONS
Despite the data limitations, the data (both images and videos)
collected from the web require intensive cleaning. The variety
of sources imposes many constraints, images with poor qual-
ity and obstructed vision (to the point that the targets cannot
be seen) must be removed. After being trained, the model is
applied to a test dataset, in which the images have not been
seen before, to classify the risk of falling.

Using randomly selected open source images, we divided
the data into three sets (training, testing and prediction).The
CNN training outcome of results in an accuracy increase with
each model training iteration; thus, the model performance

TABLE 2. Details results of the experiments models.

validation data eventually reach an acceptable level as the
error decreases, as shown in. After training rule, the predic-
tion ability of the model was evaluated on the test sample (see
Fig. 14).

3) THE EVALUATION
During the testing process, performance indicators can be
calculated from the trained model output. We selected indica-
tors such as accuracy, precision, recall and F1-score and the
receiver operating characteristic curve (ROC) for this study.
For Predictions, we are focused on identifying the fall risk.
Hence, we sample data present the fall and the behaviour of
falling occurrence which cover unsafe people positions. For
an estimate the risk and to identify the best classes, different
datasets cases are studied. Falling and not (case1), and three
categories, fall, not falling (normal or safe station) and unsafe
behaviour (case 2) see Table 2 and Fig. 13.
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FIGURE 16. ROC curve of the model.

The prediction model classifies instances of passenger
behaviour using a two-class prediction (case1) show the high
results. When the prediction is positive and the ground-truth
value is also positive, the prediction is called a true posi-
tive (TP). Similarly, false positive (FP), true negative (TN)
and false negative (FN) values can be calculated [141]. These
four values can be presented as a 2 × 2 contingency table,
called confusion matrix, as depicted in Fig. 15.

The ROC is a metric that reflects both the sensitivity and
specificity of continuous variables and reveals the relation-
ship between them. The ROC curve of the case study results
is shown in Fig. 16.

From the perspective of the ROC curve, the model per-
forms effectively in making falling predictions.

The lack of risk-class images in accident cases at stations
means that an uneven number of pictures exists between the
risk and non-risk groups. Thus, the data make it challenging
to model safety vs. risk when training a deep learning model
utilising the available images. In this study, we used 80% of
the dataset for training, 10% for validation and the remaining
10% for model testing.

VIII. DISCUSSION AND CONCLUSIONS
In this study, we proposed a process for moving from con-
ventional riskmanagement to applying innovative technology
to risk management; such an approach can improve safety
and security throughout the entire railway industry paradigm.
Many benefits can be gained from deep learning in risk
management, such as the following.

• A real-time ability can be gained to help avoid risks
• Many subsystems in the field can be integrated, includ-
ing maintenance, security, traffic and passenger models,
to form actions that consider multiple aspects.

• Lessons and experience can be integrated into the learn-
ing process and automated effectively viamachine learn-
ing, which is critical for safety systems.

• The effectiveness of operations in stations and other
areas linked to railway activities can be improved.

• Time and costs can be saved while improving accuracy
to enable long-term quality improvements

• Both passenger and workforce experiences can be
improved, which reflect on the overall market image.

• Data gathering can be enhanced to more fully utilise
effective connections between assets and people.

We propose an efficient railway system technique frame-
work based on a CNN and applied DL algorithms to foster
detection of unwanted events in railway stations. We adopted
a CNN to extract events such as passenger falls, which may
occur on stairs, escalators, or platforms. Different scenar-
ios were anticipated, such as suicide or falling under mov-
ing or stopped trains. The fall event detection process can
alert the station control centre and then action can be taken
to better clarify the situation, which might be an attack,
crime, or intoxicated passenger incident. Timely detection
will mitigate the risks to other passengers, lead to more rapid
responses in emergency or evacuation situations and decrease
the potential hospitalisation time.We presented datasets from
open sources; however, compiling additional datasets con-
taining training examples would improve the accuracy and
cover a wider range of station risks. CNN-based methods
require a large pool of labelled training data, and collect-
ing and labelling such data is a complex task. Nevertheless,
automatic detection can help with timely maintenance and
risk control, and the results can be used as feedback to train
the model to obtain improved accuracy. The results with
the proposed model confirm that increasing the depth of a
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deep network can lead to better performances in terms of
accuracy. Finding accident data (such as falls in stations)
is challenging for many reasons, such as the lack of avail-
able data and passenger privacy concerns. Using methods
such as computer vision techniques will improve timely risk
management, detection and safety and ultimately affect risk
management in railway systems. The proposed method could
be generalised to detect other risks, such as people running,
overcrowding, suspicious item detection or other complex
activities in addition to fall patterns in stations. The CNN
approach provides real-time, accurate visual monitoring of
the risks in railway stations to assist safety or risk manage-
ment operations, which are reflected in passenger services.
The method is more suitable for real world conditions and
is cost-effective (enabling, for example, 24-hour monitoring
of CCTV cameras with the intention of identifying potential
acts of vandalism). Image processing has been shown to
be a promising technology that has the ability to improve
station safety, manage risks, reduce dwell times and reduce
the number of operators at stations.Moreover, image process-
ing techniques are useful for detecting congestion, assessing
flow, accessing dangerous zones, identifying people moving
in forbidden areas and notifying train drivers about foreign
objects ahead [19], [20].

Our results demonstrate that the proposed CNN model
can automatically extract and classify risky behaviours (i.e.,
falling on the platform) with a high level of accuracy. The
method carries high confidence that all the objects in a
data sequence are detected and recognized. Nevertheless,
this CNN model should be improved and implemented to
automatically detect risk actions related to human behaviour
or asset conditions both during normal operations and in
any unanticipated conditions. Such models can lead to inter-
vention by management or execute high-level automated
actions; these can directly modify behaviours and mitigate
risks or reduce the consequences of accidents. Moreover,
the results can be used to provide designers, operators and
decision-makers with direct visual outcomes and to allow
them to learn how to deliver operations more safely. Addi-
tionally, the results indicate that the process can achieve effi-
cient railway system detection under numerous conditions,
including aspects such as:
• Safety and security
• Infrastructure and assets
• Maintenance and traffic management operations
• Quality and reliability
• Operations, passengers, train drivers, workforce man-
agement and so on,

The development of specialized algorithms for the model
can overcome errors and improve response time. By capital-
izing of existing CCTV systems, the costs are expected to be
reduced over the long term and improve system efficiency by
considering the locations and coverage of the cameras. The
model offers other benefits to stations that are worth further
research, such as predictive maintenance, emergency plans,
people counting, train positioning and security. However,

the data availability and quality remain a challenge because
this technology depend heavily on large amounts of high-
quality data. Finally, it is time to invest in AI to benefit
railway systems, making them safer for staff, customers and
the public.
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