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Abstract  

Cerebral amyloid angiopathy (CAA) and β-amyloid (Aβ) deposition in the brain parenchyma 

are hallmarks of Alzheimer’s disease (AD). We previously reported that platelets contribute to 

Aβ aggregation in cerebral vessels by secreting clusterin in response to the binding of Aβ40 to 

the fibrinogen receptor integrin αIIbβ3 [also known as glycoprotein IIb/IIIa (GPIIb/IIIa)]. Here, 

we investigated the contribution of glycoprotein VI (GPVI), a cardiovascular disease-associated 

collagen receptor, in platelet-induced amyloid aggregation. Using platelets isolated from GPVI-

wildtype and GPVI-deficient human donors and mice, we found that Aβ40 bound to GPVI and 

induced tyrosine phosphorylation on target proteins that mediated the release of ATP and 

fibrinogen, resulting in platelet aggregation. Binding of Aβ40 to integrin αIIbβ3 (as previously 

reported), fibrinogen and GPVI led to the formation of amyloid clusters at the platelet surface. 

Consequently, pharmacological blockade of integrin αIIbβ3 or genetic loss of GPVI reduced the 

phosphorylation of LAT and amyloid fibril formation in cultured platelets and decreased the 

mailto:margitta.elvers@med.uni-duesseldorf.de


adhesion of Aβ-activated platelets to the injured carotid artery in mice. Blocking GPVI-

mediated signaling non-selectively with losartan decreased platelet activation, ATP and 

fibrinogen release, and Aβ40-stimulated platelet aggregation, although it did not reduce the 

formation of amyloid aggregates. Our findings indicate that Aβ40 binds to GPVI as well as 

integrin αIIbβ3 to promote platelet-mediated amyloid aggregation and, hence, blocking these 

pathways may therapeutically reduce amyloid plaque formation in cerebral vessels and the brain 

parenchyma of patients. 

 

 

 

 

 

 

 

 

 

 

 

 

  



INTRODUCTION 

In 2015, there were more than 47 million people living with dementia worldwide. With 

increasing age and the lack of effective therapeutic strategies, this number is projected to rapidly 

increase, reaching 135 million people by 2050 (1, 2). Alzheimer's disease (AD) is the most 

frequent cause of dementia, accounting for 60 % of dementia cases (3). The pathological 

hallmarks of AD are elevated misfolding, oligomerization and aggregation of β-amyloid (Aβ) 

peptides in brain parenchyma and in the cerebral vessels, known as cerebral amyloid angiopathy 

(CAA), and accumulation of intracellular neurofibrillary tangles (NFTs) in neurons (4, 5). The 

consequences are neurodegeneration with synaptic and neuronal loss leading to brain atrophy 

(6, 7). 

Several studies indicate that vascular damage and dysfunction, including reduction of cerebral 

blood flow (CBF), cerebral amyloid angiopathy and blood-brain barrier (BBB) disturbances, 

contribute to the onset and progression of AD (8). Vascular risk factors such as atherosclerosis, 

stroke, hypertension and diabetes lead to vascular damage and are associated with AD. 

However, whether the processes in the vasculature initiate the pathologic process of Aβ 

aggregation is still uncertain. Identifying the mechanisms underlying vascular pathophysiology 

that contribute to neurodegeneration in AD will help identify novel therapeutic targets. 

Besides the role of platelets in thrombus formation during hemostasis, it is becoming clear that 

platelets play a crucial role in a number of other processes within the vasculature such as 

angiogenesis, inflammation and cancer (9-11). Moreover, alterations in platelet function are 

also observed in diverse neurological diseases such as Parkinson disease, schizophrenia, autism 

and AD (12-15). A higher baseline expression of platelet activation biomarkers was measured 

in AD patients (16) and the analysis of the Alzheimer mouse model APP23 showed these mice 

have a pro-thrombotic phenotype (17, 18). Moreover, APP23 mice develop CAA and exhibit 

platelet accumulation at vascular plaques leading to the reduction of cerebral blood flow and 

probably to occlusion of cerebral vessels (18). The ability of platelets to modulate soluble, 

synthetic Aβ40 into fibrillar Aβ in vitro indicates a direct impact of platelets in the aggregation 

property of Aβ40 peptides (18-20). Previously we have demonstrated platelets contribute to 

amyloid-β aggregation through binding of Aβ40 to the fibrinogen receptor integrin αIIbβ3 

leading to outside-in signaling in platelets (19, 20) and inhibition of integrin αIIbβ3 on the surface 

of platelets prevents the aggregation of Aβ40 in cultured cells (19). An important indication of 

the involvement of platelets in Aβ aggregation in vivo was shown by the treatment of APP23 

mice with the antiplatelet agent clopidogrel, a P2Y12 antagonist. Clopidogrel reduced the 

incidence of CAA with less adherent platelets at vascular Aβ deposits in transgenic AD mice 



(19). Here, we investigated the involvement of other receptors on the surface of platelets and 

uncovered a critical role for the collagen receptor glycoprotein VI (GPVI) in platelet-mediated 

aggregation of Aβ.  

 

 

 

RESULTS 

Phosphorylation of tyrosine residues in LAT and other proteins by GPVI and integrin 

αIIbβ3 in response to Aβ40 stimulation 

Binding of collagen to GPVI leads to a series of downstream signals in platelets, resulting in 

phosphorylation and activation of various signaling proteins, including the adaptor protein LAT 

(linker of activated T cells) (21). The stimulation of human platelets with soluble Aβ40 induced 

a similar pattern of tyrosine phosphorylation compared to the stimulation of platelets with CRP 

as shown by Western blot analysis (Fig. 1A).  Aβ40 also induced the phosphorylation of LAT 

(Fig. 1B) and in a time-dependent manner, with a maximum abundance detected at 90 s of 

incubation (fig. S1). Previously, we demonstrated that binding of Aβ40 to integrin αIIbβ3 induces 

integrin outside-in signaling. To exclude this effect, we performed studies in the presence of 

human blocking integrin αIIbβ3 antibody Abciximab. Blocking of integrin αIIbβ3 decreased the 

phosphorylation of tyrosine (Fig. 1A) and LAT (Fig. 1B) induced by Aβ40. In addition, we 

used platelets from patients who lack the GPVI receptor. Human GPVI-deficient platelets did 

not show phosphorylation of LAT neither after stimulation with collagen nor by Aβ40 

stimulation (Fig. 1C). However, Aβ40 induced phosphorylation of LAT was higher than upon 

activation with low concentration of collagen. Moreover, we studied the effect of Aβ40 in 

mouse platelets deficient in GPVI. Compared to wild type platelets, GPVI-deficient platelets 

failed to induce phosphorylation of LAT both upon CRP and Aβ40 activation (Fig. 1D). These 

results indicate the ability of Aβ40 to activate GPVI in human and mouse platelets. 

 

 

 

Reduced ATP release of GPVI-deficient platelets in response to Aβ40 

Activation of GPVI through collagen induces platelet activation leading to secretion of 

granules, inside-out signaling of integrin αIIbβ3 and platelet aggregation (22). To study the 

consequence of GPVI activation through Aβ40, we measured the release of ATP upon 

Aβ40 stimulation in human platelets. Previous studies showed that losartan inhibits collagen 



induced platelet aggregation through GPVI (23, 24). Therefore, we analyzed the effects of 

losartan treatment on Aβ40 induced platelet stimulation. Aβ40 induced the release of ATP, 

however the amount of ATP was lower compared to CRP stimulation of platelets (Fig. 2A and 

B). To test whether Aβ40 induced ATP release is altered by losartan, platelets were pre-

incubated with losartan. The release of ATP was reduced by losartan following stimulation of 

platelets with either CRP or Aβ40 (Fig. 2, A and B). WT and GPVI-knockout mice were 

analyzed to confirm that Aβ40 induces a release of ATP release via GPVI. The release of ATP 

in response to CRP or Aβ40 was significantly reduced using GPVI deficient platelets compared 

to wild type controls. Blocking of integrin αIIbβ3 using Leo.H4 antibody in WT platelets resulted 

in significantly reduced ATP release as well (Fig. 2C). Thus, Aβ40 induced release of ATP is 

mediated by GPVI and integrin αIIbβ3. Therefore, blocking of integrin αIIbβ3 in WT platelets 

reduced ATP release to resting levels (Fig. 2C). 

 

Strongly reduced aggregation of GPVI deficient platelets in response to Aβ40 

Next we analyzed platelet aggregation after Aβ40 stimulation.  Aβ40 induced platelet 

aggregation that was comparable to that induced by CRP (Fig. 3A). Additionally, we analyzed 

the effect of losartan on Aβ40-induced platelet aggregation (Fig. 3A and B). In agreement with 

reported data, losartan significantly inhibited CRP- and Aβ40-induced platelet aggregation 

(Fig. 3A and B). To confirm the role of GPVI in Aβ40induced platelet aggregation, we used 

platelets from patients with GPVI deficiency. As expected, these platelets showed no platelet 

aggregation in response to Aβ40 compared to platelets from healthy controls (Fig. 3C and D). 

Moreover, we analyzed platelets from WT and GPVI-deficient mice. The aggregation response 

of WT mouse platelets with Aβ40 was comparable to CRP-induced platelet aggregation (Fig. 

3E and F). As expected, GPVI-deficient mouse platelets showed no aggregation upon CRP 

stimulation. Platelet aggregation upon Aβ40 stimulation was reduced in GPVI-deficient 

platelets compared to WT platelets (Fig. 3F). In contrast to CRP stimulation, we still measured 

a slight platelet aggregation of GPVI-deficient platelets in response to Aβ40, suggesting that 

Aβ40 can induce platelet aggregation without GPVI. These results demonstrated that activation 

of GPVI by Aβ40 binding induced platelet aggregation.  

 
Decreased amyloid aggregate formation by GPVI inhibition or genetic deletion in vitro 

In our previous study, we showed that platelets are able to modulate soluble Aβ40 to fibrillar 

Aβ aggregates while blocking of integrin αIIbβ3 on the surface of platelets prevents Aβ aggregate 

formation (19). To investigate a role of GPVI in platelet mediated Aβ aggregate formation, 

human platelets were pretreated with losartan and incubated with soluble, synthetic Aβ40 for 3 



days. The formation of fibrillar Aβ aggregates were analyzed by congo red staining. Although 

Aβ40 induced platelet aggregation and ATP release were reduced in the presence of losartan, 

we did not observe alterations in Aβ aggregation in platelet cell culture (Fig. 4A).  Neither daily 

addition nor different concentrations of losartan were able to reduce fibrillar Aβ aggregate 

formation (fig. S2A to C). 

Because losartan is not a specific GPVI inhibitor, mouse platelet experiments were performed 

where GPVI was blocked by antibody treatment with JAQ1. In addition, the antibody Leo.H4 

was used to block integrin αIIbβ3 to confirm the essential role of integrin αIIbβ3 in Aβ aggregate 

formation. The formation of Aβ aggregates was completely inhibited by blocking of integrin 

αIIbβ3 and strongly reduced by blocking of GPVI (Fig. 4B). The inhibitory effect of GPVI 

blockage in platelet cell culture was dose-dependent (fig. S3A). The quantification of remaining 

soluble Aβ40 in the supernatants of platelet cell culture by Western blot analysis showed 

significantly increased amounts of Aβ40 when GPVI was blocked compared to untreated 

platelets consistent with reduced Aβ aggregate formation (Fig. 4C and D). To confirm these 

results, we used platelets from GPVI-deficient mice for cell culture experiments. Cultures of 

platelets from GPVI knockout mice displayed markedly reduced Aβ aggregate formation (Fig. 

4E). In the supernatants of GPVI-deficient platelets we measured significantly increased 

amounts of soluble Aβ40 compared to WT platelets (Fig. 4F and G). The additional blocking 

of integrin αIIbβ3 by antibody Leo.H4 led to increasing amounts of soluble Aβ40 in the 

supernatant compared to GPVI deficiency alone and to complete inhibition of Aβ aggregates in 

cell culture (Fig. 4E to G). 

 

Direct binding of Aβ40 to GPVI  

To elucidate the mechanisms by which Aβ40 peptides induce GPVI activation, we investigated 

the interaction between GPVI and Aβ40. First, we used the microarray AVEXIS screening 

assay (25). No binding with a control protein (CD200R-BLH) but direct binding of pentameric 

GPVI to Aβ40 peptides was observed (Fig. 5A and B). In a second approach, we confirmed the 

interaction of both proteins by the use of immobilized magnetic beads coated with recombinant 

GPVI and incubated with soluble Aβ40. After pulldown, the association was visualized by 

Western blotting using antibodies to GPVI and Aβ (Fig. 4C). When Aβ40 was passed through 

GPVI-bound beads, a large amount of Aβ was detected along with GPVI. To verify the 

interaction between GPVI on platelets and Aβ40 in vitro, we incubated murine platelets with 

Aβ40 peptides and immunoprecipitated GPVI with the antibody JAQ1. Western blot analysis 

demonstrated that Aβ peptides were co-immunoprecipitated with GPVI (Fig. 4D). To show the 



relevance of GPVI for Aβ binding to platelets, platelets from GPVI-deficient and WT mice 

were incubated with Aβ40 peptides. Using flow cytometry, binding of Aβ40 to platelets was 

detected by FITC labeled Aβ antibody (Fig. 4E). Binding of Aβ to GPVI deficient platelets was 

significantly reduced compared to WT platelets. Additionally, binding of Aβ to platelets was 

increased upon stimulation with both CRP and soluble Aβ40 and significantly reduced by 

integrin αIIbβ3 blocking in WT platelets. This might be due to an increased number of integrins 

at the platelet surface after CRP stimulation that allows augmented Aβ40 binding to integrin 

αIIbβ3.  

 

Release of fibrinogen through Aβ-induced GPVI activation and colocalization of 

fibrinogen with Aβ aggregates 

The most abundant of platelet secretory granules are α-granules, which contain about 300 

proteins, including von Willebrand factor (vWF), integrin αIIbβ3 and fibrinogen (26). The 

release of the α-granule content is important for all platelet functions, including hemostasis, 

inflammation and angiogenesis (27). In a previously reported study, we showed that monomeric 

and oligomeric Aβ40 bound to fibrinogen and concluded that fibrinogen bridges Aβ/integrin 

αIIbβ3 complexes of platelets and contributes to the occlusion of cerebral vessels in APP23 mice, 

an Alzheimer’s disease model (19). Thus, we analyzed the release of fibrinogen from platelet 

α-granules upon Aβ40 stimulation. The release of fibrinogen from platelets in response to Aβ40 

was increased and inhibited by losartan comparable to blocking of integrin αIIbβ3 (Fig. 6A). In 

the presence of GPVI-blocking (JAQ1) or αIIbβ3 integrin-blocking (Leo.H4) antibodies, the 

release of fibrinogen was strongly reduced in response to Aβ40 (Fig. 6B). To characterize the 

impact of released fibrinogen on the formation of Aβ aggregates, we incubated murine platelets 

with Aβ40 for 3 days and analyzed fibrinogen and Aβ localization by immunofluorescence 

staining, which revealed that fibrinogen and Aβ aggregates colocalized (Fig. 6C). We also 

observed colocalization of Aβ aggregates and fibrinogen in cultures of human platelets (fig. 

S4A). Blocking of active factor X with the selective inhibitor Arixtra did not alter binding of 

fibrinogen or amyloid fibril aggregate formation suggesting that the conversion of fibrinogen 

to fibrin did not play a role in platelet mediated amyloid fibril aggregate formation (fig. S5).  

The inhibition of GPVI on platelets not only led to reduced aggregation of Aβ but also to less 

accumulation of fibrinogen in cell culture (Fig. 6C, middle panel). Additionally, the inhibition 

of integrin αIIbβ3 by blocking antibodies prevented the formation of Aβ aggregates as well as 

the accumulation of fibrinogen in cell culture (Fig. 6C, lower panel). To confirm the impact of 

GPVI on the release of fibrinogen upon Aβ40 stimulation of platelets, we used platelets from 



WT and GPVI-deficient mice. Western blot analysis revealed that GPVI deficient platelets did 

not release fibrinogen neither upon stimulation with Aβ40 nor in response to the GPVI agonist 

CRP (Fig. 6D).  Reduced formation of Aβ aggregates was accompanied by reduced fibrinogen 

in cell culture using GPVI deficient platelets compared to WT controls (Fig. 6E). Together, 

these results suggested that Aβ40 induced the release of fibrinogen from platelets via GPVI and 

the released fibrinogen co-localized with Aβ aggregates in cell culture.  

 

Reduced Aβ-induced platelet adhesion in vivo by blocking or genetically deleting GPVI  

Platelet adhesion to vascular Aβ plaques in cerebral vessels of transgenic Alzheimer’s disease-

model mice and enhanced Aβ40 triggered platelet adhesion at the injured vessels of wild-type 

mice in vivo were shown in a previous study (18). To explore the inhibitory effects of losartan 

on Aβ40 enhanced platelet adhesion at the vessel in vivo, we analyzed platelet adhesion at the 

injured carotid artery by in vivo fluorescence microscopy. Platelets from donor mice were 

stained with CellTracker™ Red and activated with Aβ40 in the absence or presence of losartan 

(Fig. 7A and Movies S1 and S2). As expected, stimulation of donor platelets with Aβ40-induced 

tethering and stable adhesion of platelets at sites of injury in recipient mice (Fig. 7, A to C). In 

contrast, treatment of donor platelets with Aβ and losartan led to a statistically significant 

reduction of tethered (Fig. 7B) and stable adherent (Fig. 7C) platelets at the injured vessel in 

recipient mice.  

To confirm an important role of GPVI on Aβ40 triggered platelet adhesion at the injured vessel 

in vivo, we used platelets from donor mice lacking GPVI. In vivo fluorescence imaging of 

platelet adhesion at sites of injury in WT recipient mice showed reduced adhesion of Aβ40-

stimulated GPVI-deficient platelets compared to WT controls (Fig. 7, A to C, and Movie S3). 

 

 

DISCUSSION 

GPVI is one of the key receptors involved in hemostasis and the prothrombotic state of acute 

coronary syndrome, thus targeting GPVI may be therapeutic for thrombosis. Recombinant 

GPVI-Fc improves left ventricular function after experimental myocardial infarction in mice 

(28). Injection of GPVI specific antibodies into mice leads to the depletion of the receptor and 

provides strong protection against arterial thrombosis (29, 30). GPVI is also implicated in 

vascular integrity during development and inflammation (31). Here, our study using platelets 

from patients and mice, revealed that GPVI may also contribute to AD through direct 

interaction with Aβ40 and the consequent release of fibrinogen that amplifies platelet-mediated 



formation of amyloid fibrils. GPVI-blocking antibodies reduced platelet-associated amyloid 

aggregate formation. Aβ40 induced tyrosine phosphorylation in a GPVI-dependent, manner 

including the phosphorylation of LAT. Platelet aggregation, ATP release induced by Aβ40 and 

LAT phosphorylation were reduced in GPVI-deficient murine and human platelets. GPVI 

induced release of fibrinogen accounted for amyloid aggregate formation in vitro. In vivo, 

enhanced platelet accumulation at injured vessels after stimulation of platelets with Aβ40 was 

markedly reduced when we injected GPVI deficient platelets or treated platelets with losartan, 

a small molecule which has been described to inhibit collagen-induced platelet aggregation in 

mice (23, 24), inhibited Aβ40-induced platelet aggregation and ATP and fibrinogen release but 

had no effect on platelet-mediated amyloid aggregate formation. These results are in line with 

studies showing that the use of angiotensin receptor blockers, such as losartan, restore 

cerebrovascular dysfunction but have no effects on memory decline or AD pathology (as in, 

specifically, amyloidosis) (32, 33).  The selective blocking of the angiotensin IV and its 

receptor (AngIV/AT4R)-mediated cascade is suggested to represent the underlying mechanism 

in losartan's benefits. However, our data suggest that the beneficial effect on cerebrovascular 

function is not restricted to the AngIV/AT4R cascade but rather also includes reduction of 

GPVI-induced platelet activation and aggregation, demonstrating broader implications of 

losartan. These results are in line with a study by Elaskalani and colleagues who showed 

reduced platelet aggregation and PLCγ2 phosphorylation in response to Aβ42 when they block 

GPVI by losartan (34).  

Besides collagen, several GPVI ligands have been identified; these include diesel exhaust 

particles (DEP) and large polysaccharides, such as fucoidan and dextran sulfate (35), as well as 

fibrin (36). Here we provide evidence for Aβ40 binding to GPVI and acting as a regulator of 

GPVI signaling including tyrosine phosphorylation, ATP and fibrinogen release and platelet 

aggregation. Activation of GPVI was induced by direct binding of Aβ40 to the receptor and 

most likely not as secondary effect of, say, fibrinogen release, conversion of fibrinogen to fibrin, 

and fibrin-mediated GPVI activation. 

To date, there is only one study that has investigated GPVI in AD. Those authors showed that, 

compared to healthy controls, AD patients have decreased plasma levels of soluble GPVI 

(sGPVI) (37). This finding is of notable interest in terms of an antithrombotic strategy, given 

that sGPVI could bind collagen exposed upon vessel injury and thus reduces its binding to 

platelet GPVI. Reduced sGPVI plasma levels imply increased GPVI exposure at the surface of 

AD platelets, suggesting an increased number of Aβ40-sensitive receptors at the platelet surface 

and thus potentially enhanced Aβ40 binding to platelets in AD patients.  



Our data suggest that the binding of Aβ40 to GPVI induces the release of fibrinogen that is then 

incorporated into amyloid aggregates (Fig. 6). The formation of fibrin might not play a role 

since treatment of platelets with factor X inhibitor Arixtra did not alter platelet induced amyloid 

aggregate formation in culture. Studies have shown that fibrinogen only binds to human but not 

mouse GPVI (38, 39). Because we did not observe differences in the integration of fibrinogen 

into Aβ fibrils using either human or mouse platelets we do not believe that fibrinogen binding 

to GPVI plays a role in platelet induced amyloid aggregate formation. Fibrinogen has been 

identified as possible contributor to the pathology of AD, and reducing fibrinogen decreases 

neurovascular damage, blood-brain barrier permeability and neuroinflammation in AD (40). 

Fibrinogen is a cerebrovascular risk factor that is able to bind to Aβ thereby altering fibrin clot 

structure and degradation (41, 42). The interaction of Aβ and fibrinogen induces fibrinogen 

oligomerization (42). Targeting the interaction of Aβ and fibrinogen is a promising new 

therapeutic approach in AD (43). However, the authors had not taken into consideration that 

platelets might play a role by binding to fibrinogen and / or Aβ. Here, we provide evidence for 

platelets playing an important role in Aβ40-induced release of fibrinogen via GPVI and integrin 

αIIbβ3 and for fibrinogen being involved in platelet induced amyloid aggregate formation.  

We propose that engagement of GPVI and integrin αIIbβ3 by Aβ40 at the platelet surface induces 

the formation of an Aβ fibril network that included binding of Aβ40 to GPVI and integrin αIIbβ3 

as well as fibrinogen binding to Aβ40 and integrin αIIbβ3 (Fig. 7D). These different binding 

possibilities might induce the formation of a specific type of “clustering” of GPVI and integrin 

αIIbβ3. Therefore, it is feasible that the failure of losartan to prevent platelet-mediated Aβ 

aggregate formation is due to its inability to block GPVI clustering as already shown in the 

presence of collagen (24). However, because we previously did not observe integrin activation 

in the presence of Aβ40 alone (19), binding of Aβ40 to GPVI and integrin αIIbβ3 probably did 

not induce integrin inside-out signaling. According to our data, both previously published (19) 

and extended here, Aβ40 binds to non-activated integrin αIIbβ3 on the surface of platelets, and 

this binding is enhanced in the presence of ADP and CRP, probably because of activation-

induced up-regulation of αIIbβ3 at the platelet surface.   

Together, our findings reveal that GPVI mediates platelet-induced amyloid aggregate formation 

through the release of ATP and fibrinogen in response to direct binding of Aβ40 at the platelet 

surface. Further analysis is needed to validate whether blocking GPVI is beneficial to reduce 

amyloid plaque formation in cerebral vessels (as in CAA) and in brain parenchyma.  

 

 



MATERIALS AND METHODS 

Chemicals and antibodies  

Platelets were activated with CRP (Richard Farndale, University of Cambridge, United 

Kingdom) or soluble Aβ40 (1-40; Bachem Peptide, cat no 4014442.1000) sequence single-letter 

code (DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV). Aβ1-40 stock 

solutions with a concentration of 1 mg/ml, were solved in sterile H2O and stored at -20 ◦C. 

Apyrase (grade II, from potato) and prostacyclin from Calbiochem were used for isolation. 

Antibodies against phosphotyrosine (Millipore clone 4G10; cat no 05-321), phospho-LAT 

(Tyr200; Abcam cat no ab68139); Aβ1-16 (Biolegend, 6E10, cat no SIG-39320) and fibrinogen 

(Dako cat no A0080) were used for immunoblotting. The antibodies to LAT (cat no 9166), β-

actin (cat no 4967), α-tubulin (cat no 2144), and horseradish peroxidase (HRP)-linked 

secondary antibodies (cat no 7074 and cat no 7076) were from Cell Signaling Technology. 

Animals 
Mice with targeted deletion of GPVI were provided by Jerry Ware and backcrossed to C57BL/6 

mice. For the generation of homozygous WT and Gp6−/−mice, heterozygous breeding partners 

were mated. The animals were maintained in an environmentally controlled room at 22 ± 1 °C 

with a 12 h day-night cycle. Two to five mice were housed in Macrolon cages type III with ad 

libitum access to food (standard chow diet) and water. All animal experiments were conducted 

according the Declaration of Helsinki and approved by the Ethics Committee of the State 

Ministry of Agriculture, Nutrition and Forestry State of North Rhine-Westphalia, Germany 

(reference number: AZ 84-02.05.40.16.073; AZ 81-02.4.2019.A232).  

Human platelet preparation  

Platelets were prepared as previously described (19). Fresh ACD-anticoagulated blood was 

obtained from healthy volunteers (age of 18-50 years, from the blood bank, not AD or GPVI-

deficient) and GPVI-deficient patients as indicated. Participants provided their written informed 

consent to participate in this study according to the Ethics Committee and the Declaration of 

Helsinki (study number 2018-140-KFogU). Collected blood was centrifuged at 200 x g for 

10 min at room temperature. The supernatant (platelet-rich plasma; PRP) was added to 

phosphate buffered saline (PBS; pH 6.5, apyrase: 2.5 U/ml and 1 μM PGI2 in 1:1 volumetric 

ratio and centrifuged at 1000 x g for 6 min. Platelets were resuspended in Tyrode´s-buffer 

solution (140 mM NaCl; 2.8 mM KCl; 12 mM NaHCO3; 0.5 mM Na2HPO4; 5.5 mM glucose 

pH 7.4).  

 

Murine platelet preparation 



Murine blood was acquired by retro bulbar puncture and centrifuged  at 250 x g for 5 min. The 

samples were centrifuged at 50 x g for 6 min to obtain PRP. PRP was washed two times (650 x g 

for 5 min at room temperutre), before the pellet was resuspended in Tyrode’s buffer 

[136 mM NaCl, 0.4 mM Na2HPO4, 2.7 mM KCl, 12 mM NaHCO3, 0.1% glucose, 0.35% 

bovine serum albumin (pH 7.4)] supplemented with prostacyclin (0.5 μM) and apyrase 

(0.02 U/ml). Before use, platelets were resuspended in the same Tyrode´s buffer supplemented 

with 1 mM CaCl2. 

Human and murine cell culture 

Isolated human or murine platelets were preincubated for 15 min with 6 μg per 2*106 platelets 

anti-mouse integrin αIIbβ3 antibody (Leo.H4/Rat IgG2b, emfret ANALYTICS, cat no M021-0] 

or 6 μg per 2*106 platelets anti-mouse GPVI antibody (JAQ1 Rat IgG2a, emfret ANALYTICS, 

cat no M011-0) or 100 µM losartan (Tocris, cat no 3798). The final concentration of 2 × 106 

platelets/well were added to 150 μl of DMEM medium (Dulbecco’s modified Eagle’s medium). 

Platelets were stimulated with 5 μM Aβ40 or 5 µg/ml CRP for 3 days at 37 °C and 5% CO2. 

After three days of incubation unbound platelets were removed by rinsing with PBS. Adherent 

platelets were fixed with 2 % paraformaldehyde and stained against fibrillary Aβ aggregates 

with Congo red according to the manufacturer’s protocol (Millipore cat no 101641). For 

Immunofluorescence staining, slides were washed with 100 μl PBS before fixed with 

2% paraformaldehyde and blocked for 1 h with 5 % goat-serum in PBS. Afterwards slides were 

incubated overnight at 4°C with the primary antibodies against Aβ (mouse-anti-human; 6E10), 

fibrin-[ogen] (rabbit-anti-mouse; DAKO) and the IgG controls in a 1:100 dilution containing 

1% BSA and 5% goat serum in PBS. The next day the chamber slide was washed three times 

with PBS and afterward incubated for 1 h at room temperature with the secondary antibodies 

Alexa Fluor 488- and 555-labelled (Lifetechnologies cat no A32727 and cat no A 32790) in a 

1:250 dilution containing 1% BSA and 5% goat serum in PBS.  

For immunoblotting analysis, the cell culture supernatants were removed and centrifuged at 

10.000 x g for 10 min at 4°C. The supernatant was collected, prepared with reducing sample 

buffer (Laemmli buffer) and denatured at 95 °C for 5 min. 

Cell lysis and immunoblotting     

Platelets (60 × 106) were stimulated with 20 μM soluble Aβ40, or 5 µg/ml CRP in Tyrode’s 

buffer (pH 7.4) at 37 °C for the indicated time. Pretreatment, when indicated, with anti-mouse 

integrin αIIbβ3 antibody (Leo.H4; emfret ANALYTICS), anti-mouse GPVI antibody (JAQ1; 

emfret ANALYTICS), Abciximab (Janssen-Cilag GmbH) or losartan (Cayman chemical 



company) occurred at 37 °C for 15-30 min. For separation into supernatant and pellet, platelets 

were centrifuged at 650 x g. For platelets lysis human platelets were incubated for 15 min on 

ice with lysis buffer containing: 145 mM NaCl, 20 mM tris-HCl, 5 mM EDTA, 0.5 % sodium 

deoxycholat, 1% Triton X-100, and complete protease inhibitor (PI) cocktail (Roche cat no 

5892970001). Murine platelets were incubated for 15 min on ice with lysis buffer containing 

15 mM tris-HCl, 155 mM NaCl, 1 mM EDTA (pH 8.05), 0.005% NaN3, 1% IGPAL and PI. 

Platelet lysates (30 µl) and supernatants (30 µl) were subjected to SDS–polyacrylamide gel 

under reducing conditions and transferred onto nitrocellulose blotting membrane 

(GE Healthcare Life Sciences). Membrane was blocked using 5 % BSA or 5 % non-fat dry milk 

in TBST (Tris-buffered saline with 0.1 % Tween 20) and probed with the appropriate primary 

antibody (dilution 1:1000 in 5% BSA in TBST) and secondary (dilution 1:2500 in 5% non-fat 

dry milk in TBST) HRP-conjugated antibody. Band intensities were quantified in relation to 

untreated platelets using the FUSION-FX7 software (Vilber). 

p-LAT: Under non-aggregating conditions (Apyrase 0.5U/ml, Lotrafiban 10µM and 

indomethacin 10µM), human and mouse platelets (1.5 × 106) were stimulated with 30 μM 

soluble Aβ40, 5 µg/ml CRP or 1 µg/ml Collagen in Tyrode’s buffer (pH 7.4) for the indicated 

time at 37 °C. Cells were immediately lysed on ice with NP-40 lysis buffer (300 mM NaCl, 

20mM Tris, 2mM EGTA, 2mM EDTA and 2% NP-40 detergent) in addition to the protease 

and phosphatase inhibitors (5mM Sodium Orthovanadate, 1mM AEBSF, 10µg/ml leupeptin, 

10µg/ml aprotinin and 1µg/ml pepstatin). Platelet lysates were loaded in a gradient gel 

(NuPAGE 4-12%, Invitrogen) under reducing conditions and transferred onto PVDF blotting 

membrane (TransBlot Turbo, Bio-Rad). Membrane was blocked using 5 % BSA in TBST (TBS 

with 0.1 % Tween 20) and probed with the appropriate primary antibody pLAT (abcam, dilution 

1:500) or α-tubulin (SIGMA, dilution 1:1000), and secondary HRP-conjugated antibody anti-

mouse IgG (GE Healthcare, dilution 1:5000) or anti-rabbit IgG (GE Healthcare, dilution 

1:5000). Band signals were detected using Odyssey Fc imaging system (LI-COR). 

Immunoprecipitation  

1x109 platelets were stimulated with 20 μM Aβ40 for 30 min at 37°C while shaken. Platelets 

without stimulation with Aβ40 were used as a control (resting). Murine resting and 20 µM 

Aβ40-stimulated platelets were lysed with 5 x lysis buffer (as described in Cell lysis and 

immunoblotting) for 10 min on ice. Afterward, the lysate was centrifuged at 10.000 x g for 

10 min at 4°C to clear the lysate from remaining cell fragments. The cleared lysate was 

transferred to a new reaction tube and incubated with GPVI antibody or corresponding IgG 

control (JAQ1; emfret ANALYTICS; Mouse IgG2b Cell Signaling) for 1 h at 4°C. Samples 



were transferred to a new reaction tube and  incubated with washed G-Sepharose protein 

overnight at 4 °C. Samples were washed three times: first time with immunoprecipitation buffer 

(15 mM Tris-HCl; 155 mM NaCl, 1 mM EDTA and 0,005 % NaN3) containing additionally 

1% IGPAL, second and third time only with immunoprecipitation buffer before adding 

2x Laemmli, containing 5% mercaptoethanol and incubated at 95°C for 5 min. After 

centrifugation at 10.000 x g for 2 min supernatants were removed and analyzed via 

immunoblotting against Aβ (Biolegend, 6E10) and GPVI (R&D Systems cat no AF6758).   

Pull-down  

Recombinant GPVI (R&D Systems cat no 6758-GP-050) was covalently immobilized to Pierce 

NHS-Activated Magnetic Beads according to the manufacturer’s information (Thermo 

Scientific cat no 88802). Protein solution with and without 20 µM Aβ40 was added to the GPVI 

coupled beads and incubated at room temperature on a rotator for 1-2 hours. Beads were 

collected with the magnetic stand and washed for three times with wash buffer (TBS with 0.05% 

Tween 20 Detergent) and afterward washed with ultrapure water. For protein elution beads 

were washed with 100 µl elution buffer (0.1M glycine, pH 2.0) and pH was neutralized by 

adding 10 µl neutralization buffer (1M Tris; pH 9).  Laemmli buffer was added and samples 

were analyzed via immunoblotting under reducing conditions against Aβ (Biolegend, 6E10) 

and GPVI (R&D Systems cat no AF6758).   

AVEXIS screening  

Aβ40 peptides or CD200R bait proteins were incubated in MaxiSorp 96-well microtiter plates 

(Nunc) for 1 h, then blocked with 1% BSA for 30 min. The peptide-coated plate was incubated 

with full length recombinant soluble pentameric (s5) GPVI and s5CD200 for 1 h. Three wash 

steps were performed between each incubation using PBS with 0.1% Tween 20. After addition 

of 125 µg/ml nitrocefin (#N005, Toku-e) was added and incubated for 1 h, absorbance was 

measured at 485 nm on VERSA max microplate reader (Molecular Devices). 

Platelet aggregation and ATP release 

Aggregation was measured as percentage light transmission compared to Tyrode’s buffer 

(as=100%) using Chrono-Log dual channel lumi-aggregometer (model 700) at 37 °C stirring at 

1000 rpm. Human ATP-release was assessed applying a luciferin/luciferase bioluminescent 

assay and calculated using a provided ATP standard protocol (all Chrono-Log). Murine ATP-

release was measured using ATP Bioluminescence Assay Kit HS II (Roche; cat no 

11699709001) according to the manufacturer’s information and normalized to resting. 

Flow Cytometry  



Flow Cytometry was performed as described (18, 44). Analysis of Aβ40 binding to platelets 

surface was carried out using fluorophore labeled antibodies for Aβ (anti- Aβ-FITC; Santa Cruz 

cat no sc-28365). 25 µl of washed blood samples were diluted in Tyrode´s buffer with 1 mM 

CaCl2 and stimulated with indicated agonist (5 µM Aβ40; 5 µg/ml CRP) and antibody at room 

temperature for 15 min. Reaction was stopped using 300 µl PBS. Samples were analyzed on a 

FACSCalibur flow cytometer (BD Biosciences).  

Ligation of the carotid artery model 

Carotid ligation in mice were performed as described elsewhere (18). Platelets from WT and 

Gp6−/− donor mice were stained with CellTracker™ Red CMTPX (Invitrogen) according to the 

manufacturer’s guidelines and incubated with losartan (100µM) or vehicle and Aβ (50µg/ml) 

for 30 min. WT littermates mice were anaesthetized using Ketamine (Zoetis) and Xylacine 

(WDT) and put on a heating pad. The right common carotid artery was prepared and after 

intravenous injection of fluorescently labelled and treated platelets a film of 30 s was taken 

using a DM6FS microscope (Leica Microsystems, Wetzlar, Germany). Afterward the carotid 

artery was ligated vigorously for 5 min, thus inducing vascular injury. The interaction of the 

fluorescent platelets with the injured vessel wall was visualized 20 min after ligation by in vivo 

video microscopy. Tethering and adherent cells were counted as means from 10 different 

pictures throughout the film with the same time span between these pictures, but always in the 

same phase of vessel pulsation.  

Statistical analysis  

Data are provided as arithmetic means ± SEM. Significant differences were calculated using 

the two-way ANOVA with Bonferroni’s multiple comparison post hoc test; one-way ANOVA 

with Dunnett’s post hoc test or students t-test as indicated in the figure legends. Outliers were 

excluded using Grubb´s test.  

 

 

SUPPLEMENTARY MATERIALS 

Fig. S1. Time-dependent LAT phosphorylation of human platelets stimulated with Aβ40.  

Fig. S2.  Different concentrations of losartan on platelet cell cultures. 

Fig. S3. Reduced amyloid aggregate formation through GPVI inhibition in a concentration-

dependent manner.  

Fig. S4. Immunofluorescence staining of fibrinogen and Aβ in human and murine platelet cell 

cultures.  



Fig. S5. No alteration of amyloid formation upon inhibition of active factor Xa. 

Movie S1. Video of in vivo WT platelet adhesion at the injured carotid artery. 

Movie S2. Video of in vivo WT platelet adhesion at the injured carotid artery after losartan 

treatment. 

Movie S3. Video of in vivo Gp6-/- platelet adhesion at the injured carotid artery. 
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Figure legends 

Fig. 1.  Aβ40 stimulates tyrosine and LAT phosphorylation in a GPVI- and integrin αIIbβ3 

-dependent manner. (A) Western blotting for tyrosine phosphorylation (antibody 4G10) in 

isolated human platelets at rest or upon stimulation with collagen related peptide (CRP, 5 µg/ml) 

or Aβ40 (20 µM) for 120 sec. In lane 4, as indicated, cultures were pretreated with the integrin 

αIIbβ3 antibody abciximab (0.5 µg per 1 Mio cells) for 15 min at room temperature. β-Actin 

served as loading control; n=5 donors. (B) Western blotting for LAT phosphorylation in human 

platelets treated as described in (A) for 30 or 120 sec. Total LAT served as loading control; n=5 

donors. (C) Western blotting for LAT phosphorylation in platelets isolated from a control donor 

and a GPVI-deficient patient; cells were unperturbed (resting) or stimulated with collagen (1 

µg/ml) or Aβ40 (30 µM). α-Tubulin served as loading control; n=2 GPVI-deficient patients and 

n=2 healthy controls. (D) Western blotting for LAT phosphorylation in isolated Gp6−/− and WT 

platelets stimulated with CRP (5 µg/ml) or Aβ40 (20 µM) for 30 or 120 sec. αTubulin served 

as loading control; n=6-7 mice per group. 

 

Fig. 2. Reduced ATP release of GPVI-deficient platelets in response to Aβ40. (A and B) 

Representative ATP release curves (A) and analysis (B) in human platelets pretreated (gray 

traces) with losartan (100 µM) for 20 min then stimulated with CRP (5 µg/ml) or Aβ40 (20 

µM). Data are mean ± SEM from n=5 donors; two-way ANOVA with Bonferroni’s multiple 

comparison post hoc test: **p ≤0.01; ***p ≤0.001. (C) ATP release in WT and Gp6−/−platelets 



at rest, treated with CRP (5 µg/ml), Aβ40 (10 µM), or Aβ40 pretreated with integrin αIIbβ3-

blocking antibody Leo.H4 for 20 min. Data are mean ± SEM from 6 to 7 mice per group; CRP 

stimulated platelets served as controls; two-way ANOVA with Bonferroni´s multiple 

comparison post hoc test: *p< 0.05; **p<0.01.  

 

Fig. 3. Reduced aggregation of GPVI-deficient platelets in response to Aβ40. (A and B) 

Representative aggregation curves (A) and the quantified maximum aggregation of platelets 

treated with CRP (5µg/ml) or Aβ40 (20 µM) in the presence or absence of losartan (100 µM 

pretreatment for 20 min). Data are mean ± SEM from n=3-4 donors; two-way ANOVA with 

Bonferroni’s multiple comparison post hoc test, ***p<0.001. (C and D) As described in (A and 

B) in control-donor and GPVI-deficient patient platelets stimulated with Aβ40 (30 µM). Data 

are mean and range from 2 GPVI deficient patients and 2 healthy controls. (E) As described in 

(A and B) in platelets isolated from WT and Gp6−/−mice and treated with CRP (5 µg/ml) or 

Aβ40 (10 µM). Data are mean ± SEM from n=5 mice per group; two-way ANOVA with 

Bonferroni’s multiple comparison post hoc test: ***p<0.001.  

 

Fig. 4. Inhibition or genetic deletion of GPVI decreases amyloid aggregate formation.  (A) 

Isolated human platelets were incubated with Aβ40 (5 µM) at 37°C for 3 days. Afterward 

amyloid aggregates were stained by congo red. Representative pictures of congo red stained 

amyloid aggregates platelet culture in the presence or absence of losartan (100 µM). Scale bar, 

50 µm, n=5experiments. (B) Samples of murine platelets treated as in (A) were stained with 

congo red to visualize amyloid aggregates in the presence of either GPVI-blocking antibody 

JAQ1 or integrin αIIbβ3-blocking antibody Leo.H4 (each at 6 µg per 2 per 2*106 cells). Scale 

bar, 50 µm, n=5 experiments. (C and D) Corresponding Western blotting and quantification of 

soluble Aβ in supernatants from murine platelets cultured as in (B). Leo.H4-treated platelets 

served as control. Data are mean ± SEM from n=5 experiments; Students t-test, *p ≤ 0.05. (E) 

Congo red staining of amyloid aggregates in cultures of platelets from WT and Gp6−/−mice 

without Aβ40 and with Aβ40 (5 µM) in the presence or absence of Leo.H4 (6 µg per per 2 per 

2*106cells). Scale bar, 50 µm, n=5 miceper group. (F and G) Representative Western blots (F) 

and quantification (G) of soluble Aβ in supernatants from WT and GPVI- /- murine platelet 

cultures of remaining soluble Aβ. Controls lacking Aβ40 (lane 1 in the blot) were not regarded 

in the analysis. Data are mean ± SEM from n=5 mice per group two-way ANOVA with 

Bonferroni’s post hoc test, *p< 0.05.   

 



Fig. 5.  Aβ40 binds to GPVI. (A) Interaction screening using AVEXIS (Avidity-based 

Extracellular Interaction Screen). Biotinylated bait peptides Aβ40 (CD200R-BLH is used as 

control) are arrayed on the surface of a streptavidin coated plate and incubated with pentameric 

prey protein s5-GPVI (s5-CD200 is used as control). Interaction produces a color change to 

red. (B) Corresponding quantification of  the colorimetric change after prey-binding at 485 nm 

as represented in (A). n=5experiments , two-way ANOVA with Bonferroni’s post hoc test, 

***p< 0.001 (C) Pulldown was accomplished using immobilized GPVI magnetic beads and 

incubated without and withAβ40 (20 µM). Uncoated beads served as control. 

Immunoprecipitates were blotted against Aβ (6E10) and GPVI. Input = cell lysate. n=3 

experiments. (D) Isolated platelets were stimulated with Aβ40 (20 µM) and immunoprecipitated 

with GPVI antibody. Immunoprecipitates were analyzed via Western blotting against Aβ and 

GPVI. N = 3. (E) WT and Gp6−/− platelets were preincubated with Aβ40 (5 µM), followed by 

an incubation with anti-Aβ-FITC antibody. When indicated platelets were pretreated with 

integrin αIIbβ3-blocking antibody Leo.H4. Binding of Aβ to platelet surface was measured by 

flow cytometry (n = 9-13 mice per group; mean ± SEM; one-way ANOVA with Dunnett’s post 

hoc test within every group, *p< 0.05, **p< 0.01).  

 

Fig. 6. Fibrinogen release in response to Aβ and colocalization with amyloid aggregates in 

cell culture. (A) Western blotting of fibrinogen release in murine platelets upon stimulation 

with CRP (5 µg/ml) or Aβ40 (20 µM) (pretreated as indicated with integrin αIIbβ3 blocking 

antibody Leo.H4 (0.5 µg per 1 Mio cells) or with losartan (100 µM)). β-Actin served as loading 

control; representative images of n=3 experiments. (B) Western blotting of fibrinogen release 

in murine platelets as described in (A) pretreated with GPVI-blocking antibody JAQ1 and with 

integrin αIIbβ3-blocking antibody Leo.H4 (each 0.5 µg per 1 Mio cells). Representative Western 

blot of n=3 experiments. (C) Murine platelets were incubated with Aβ40 (5 µM) at 37°C for 3 

days. When indicated, platelets were pretreated with GPVI-blocking antibody JAQ1 or integrin 

αIIbβ3 antibody Leo.H4. Immunostaining against amyloid β aggregates (green) and fibrinogen 

(red) visualizes colocalization. Scale bar, 20 μm. Representative images of n=3 experiments. 

(D) Western blot analysis of fibrinogen release in platelets from WT and Gp6−/− mice upon 

stimulation with CRP (5 µg/ml) or Aβ40 (20 µM). When indicated, platelets were pretreated 

with integrin αIIbβ3 antibody Leo.H4. Representative images of n=3 mice per group. (E) 

Platelets from WT and Gp6−/−mice were incubated with Aβ40 (5 µM) at 37°C for 3 days in the 

presence and absence of integrin αIIbβ3 blocking antibody Leo.H4. Immunofluorescence 



staining of fibrinogen (red) and Aβ (green). Scale bar, 20 µm. Representative images of n=3 

mice per group.      

 

Fig. 7. Blocking or deletion of GPVI reduces Aβ-induced platelet adhesion in vivo. (A) 

Images of stable adherent and tethering Aβ40-activated platelets 20 min after carotid artery 

ligation in vivo. WT platelets were either incubated only with Aβ40 (top row) or were pretreated 

with losartan then incubated with Aβ40 (middle row), and Gp6−/− platelets were incubated with 

only Aβ40. Carotid artery vessel wall is outlined using dotted lines. Arrows indicate adherent 

platelets. N=4-5 mice per group. Scale bar, 100 µm. (B and C) Quantification of tethering (B) 

and stable adherent (C) Aβ40-activated platelets. Data are mean± SEM; n = 4-5 mice per group. 

One-way ANOVA with Dunnett’s post hoc test; *p≤0.05, **p≤0.01. (D) Tentative schematic 

illustration. Direct binding of Aβ40 to the collagen receptor GPVI (“1”) initiates 

phosphorylation of LAT (“2”) leading to secretion of granules and thus to the release of ATP, 

ADP, and fibrinogen (“3”). Activation of GPVI and binding of ADP to the P2Y12 receptor 

induces a shifting of integrin αIIbβ3 from a closed (inactive) to open (active) form leading to 

enhanced binding of Aβ to integrin αIIbβ3. Released fibrinogen bridges binding of soluble Aβ to 

GPVI and integrin αIIbβ3 to induce the formation of amyloid aggregates at the platelet surface 

(“4”).  


