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Disease-Related Protein Variants of
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Show Marginal Stability and
Aggregation in Cells
Oliver Brylski 1,2†, Puja Shrestha1†, Philip J. House3, Patricia Gnutt 2, JonathanWolfMueller 3,4*
and Simon Ebbinghaus1,2*

1Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany, 2Institute of Physical Chemistry II,
Ruhr University, Bochum, Germany, 3Institute of Metabolism and Systems Research (IMSR), University of Birmingham,
Birmingham, United Kingdom, 4Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners,
Birmingham, United Kingdom

Cellular sulfation pathways rely on the activated sulfate 3′-phosphoadenosine-5′-
phosphosulfate (PAPS). In humans, PAPS is exclusively provided by the two PAPS
synthases PAPSS1 and PAPSS2. Mutations found in the PAPSS2 gene result in
severe disease states such as bone dysplasia, androgen excess and polycystic ovary
syndrome. The APS kinase domain of PAPSS2 catalyzes the rate-limiting step in PAPS
biosynthesis. In this study, we show that clinically described disease mutations located in
the naturally fragile APS kinase domain are associated either with its destabilization and
aggregation or its deactivation. Our findings provide novel insights into possible molecular
mechanisms that could give rise to disease phenotypes associated with sulfation
pathway genes.
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INTRODUCTION

Sulfation is a highly important biological process where a sulfate moiety from the activated sulfate
donor 3′-phosphoadenosine-5′-phosphosulfate (PAPS) is transferred onto acceptor molecules.
Adding the negatively charged sulfate group to a hydroxyl-group induces significant changes in
the chemical properties of the acceptor molecule with a major impact on their function. It is the sheer
variety of sulfated metabolites that makes sulfation impactful on numerous biological systems.
Sulfotransferases use activated sulfate to modify proteins, glycans and other biomolecules like steroid
hormones (Klassen and Boles, 1997; Strott, 2002; Mueller et al., 2015).

Active PAPS synthase enzymes generate active sulfate in the form of PAPS. In humans, there are
two isoforms PAPSS1 and PAPSS2 (van den Boom et al., 2012). Nevertheless, disease-related protein
variants have been exclusively reported for PAPSS2.

In a variety of human genetics studies, a total of 65 individuals with various inactivating
alleles of the human PAPSS2 gene have been described (Ahmad et al., 1998; Haque et al., 1998;
Noordam et al., 2009; Miyake et al., 2012; Iida et al., 2013; Tüysüz et al., 2013; Oostdijk et al.,
2015; Handa et al., 2016; Bownass et al., 2019; Eltan et al., 2019; Perez-Garcia et al., 2021). These
have been analyzed and summarized recently (Baranowski et al., 2018; Brylski et al., 2019;
Paganini et al., 2020). An additional PAPSS2 variant is known for brachymorphic mice (Kurima
et al., 1998).

Edited by:
Giuseppe Calamita,

University of Bari Aldo Moro, Italy

Reviewed by:
Annarita Di Mise,

University of Bari Aldo Moro, Italy
Antonio Rossi,

University of Pavia, Italy

*Correspondence:
Jonathan Wolf Mueller

j.w.mueller@bham.ac.uk
Simon Ebbinghaus

s.ebbinghaus@tu-braunschweig.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cellular Biochemistry,
a section of the journal

Frontiers in Molecular Biosciences

Received: 22 January 2022
Accepted: 28 February 2022

Published: 08 April 2022

Citation:
Brylski O, Shrestha P, House PJ,

Gnutt P, Mueller JW and Ebbinghaus S
(2022) Disease-Related Protein

Variants of the Highly Conserved
Enzyme PAPSS2 Show Marginal
Stability and Aggregation in Cells.

Front. Mol. Biosci. 9:860387.
doi: 10.3389/fmolb.2022.860387

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8603871

ORIGINAL RESEARCH
published: 08 April 2022

doi: 10.3389/fmolb.2022.860387

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.860387&domain=pdf&date_stamp=2022-04-08
https://www.frontiersin.org/articles/10.3389/fmolb.2022.860387/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.860387/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.860387/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.860387/full
http://creativecommons.org/licenses/by/4.0/
mailto:j.w.mueller@bham.ac.uk
mailto:s.ebbinghaus@tu-braunschweig.de
https://doi.org/10.3389/fmolb.2022.860387
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.860387


Recently, several studies investigated the essential steps in
sulfation pathways, whose malfunction is correlated with disease
symptoms (Mueller et al., 2015; Foster and Mueller, 2018).
Among these symptoms are bone and cartilage dysplasia
(Oostdijk et al., 2015), as well as androgen excess and
polycystic ovary syndrome (PCOS) (Noordam et al., 2009;
Oostdijk et al., 2015), all caused by point-mutations in the
PAPSS2 gene encoding for the PAPS synthase 2 enzyme.
These point mutations diminish the enzyme activity and they
are mainly located within the kinase domain of PAPSS2 (Kurima
et al., 1998; Noordam et al., 2009; Iida et al., 2013).

It is evident that PAPSS2 plays a vital role in skeletal
development as well as steroid hormones regulation (Kurima
et al., 1998; Noordam et al., 2009; Iida et al., 2013). Kurima and
coworkers linked the mutation G78R within the nucleotide kinase
domain of the PAPSS2 isoform, with the bone phenotype seen in
the brachymorphic mouse (bm) (Kurima et al., 1998). G78R is
located in the adenosine-5′-phosphosulfate (APS) kinase domain,
close to the ligand-binding site. The mutation causes catalytic
inactivation and hence lowered intracellular PAPS availability. As
a consequence, bmmice show reduced postnatal growth that was
ascribed to under-sulfation of the extracellular matrix; they also
show abnormal hepatic detoxification and prolonged bleeding
times (Kurima et al., 1998). One of the most prominent roles of
sulfation is the modification of glycosaminoglycans (GAGs) by
Golgi-residing carbohydrate sulfotransferases (Gesteira et al.,
2021). Sulfated GAGs play a vital role in cell signaling to
regulate many biochemical processes like cell growth and
proliferation, promotion of cell adhesion, anticoagulation and
wound repair (Raman et al., 2005; Prydz, 2015). In
brachymorphic cartilage, GAGs are found at normal level but
significantly under-sulfated, affecting the formation of connective
tissue, such as, cartilage (Kurima et al., 1998; Cho et al., 2004).

More recently, Noordam and coworkers reported a case study
of a girl with premature pubarche, hyperandrogenic anovulation,
very low level of dehydro-epiandrosterone sulfate (DHEAS) and
high level of androgen. The steroid sulfation defect of this patient
was associated with a T48R mutation found in the APS kinase
domain. Due to this mutation, PAPS synthesis is affected, leading
to incompetent DHEA inactivation, with the latter resulting in
increased levels of androgens causing PCOS-like phenotypes
(Noordam et al., 2009). In 2013, Iida and coworkers reported
more PAPSS2 mutations (C43Y, L76Q, E183K, V540D) out of
which three, C43Y, L76Q and E183K, were found in the APS
kinase domain. C43Y and L76Q cause loss of function leading to
brachyolmia and abnormal androgen metabolism (Iida et al.,
2013).

Eukaryotic cells express another PAPS synthase gene, PAPSS1,
that shares 78% identity at the level of amino acid sequence (van
den Boom et al., 2012). However, this protein isoform cannot
compensate for the loss of the other (Mueller et al., 2018). This
lack of compensation raises the question of whether the two
isoforms impact differently on subsets of sulfation pathways.
Subcellular localization sequences (Schröder et al., 2012) were
identified in both PAPS synthases and dimer formation (Sekulic
et al., 2007; Grum et al., 2010; Brylski et al., 2019) was observed,
both features proposed to be crucial for proper localization and

activity of the enzyme. In addition to these physiological aspects,
in vitro biophysical studies focused on the stability of PAPS
synthases revealed that isoforms of this enzyme are only
marginally stable as recombinant proteins (van den Boom
et al., 2012). However, PAPS synthase proteins can be
stabilized by preferential binding of their substrates to the APS
kinase domain, namely PAPS, adenosine diphosphate (ADP) and
APS (van den Boom et al., 2012; Mueller and Shafqat, 2013).

Using a recently developed folding sensor of the APS kinase
domain of the human PAPS synthase PAPSS2 (Brylski et al.,
2021), we investigate how clinically reported single-point-
mutations change the in-cell stability of the APS kinase
domain and if destabilization could lead to aggregation and
thus loss of metabolic activity.

MATERIALS AND METHODS

Construction of PAPSS2 and APSK37
Variants
The pEGFP-C1-PAPSS2 plasmid encoding human full-length
PAPSS2b C-terminally fused to an EGFP fluorescent protein
(Schröder et al., 2012), was used for DpnI-based site-directed
mutagenesis and subsequently for cell counting experiments.
To generate the APSK37 sensor, the APS kinase domain of
PAPSS2 was PCR-subcloned into a modified pDream2.1 vector
with an N-terminal AcGFP1 and a C-terminal mCherry
(Ebbinghaus et al., 2010). The APSK enzyme was truncated
between the two isoleucine residues I220 and I221, within the
flexible linker that connects the kinase and the sulfurylase
domains (Harjes et al., 2005). Furthermore, the flexible and
disordered N-terminal region, which is known to assist in the
dimerization of the protein (Sekulic et al., 2007; Grum et al.,
2010), was truncated by 37 amino acids (Δ37). Further, DpnI-
based site-directed mutagenesis was used to introduce
different disease related point mutations (G78R, L76Q,
C43Y and T48R). All constructs were verified by Sanger
DNA sequencing.

Cell Culture and Plasmid Transfection
HeLa cells were grown at 5% CO2 at 37°C in DMEM
supplemented with 10% FBS, 100 U/ml penicillin and 0.1 mg/
ml streptomycin. Cells were passaged at a 1:4 or 1:6 ratios at
80–90% confluence, using trypsin digestion. For transfection,
cells were seeded in six-well plates (Sarstedt). Using
Lipofectamine 3000 (Thermo Fisher), cells were transfected
according to the manufacturers protocol. Concisely, a mixture
of 125 µl Opti-MEM (Thermo Fisher) with 2 µg of the respective
plasmid DNA and 4 µl P3000 reagents was prepared. After 5 min
of incubation, the mixture was transferred to another solution
containing 125 µl Opti-MEM supplemented with 4 µl
Lipofectamine3000 reagent. Cells were incubated for 6 h after
the addition of transfection mixture to the cellular growth
medium at 5% CO2, 37°C. The cells were passaged using
trypsin digestion and seeded in 35 mm glass bottom dishes
(Fluorodish, World Precision Instruments). Cells were grown
for 2 days at standard cell culture conditions before imaging.
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Sample Preparation
Fast Relaxation Imaging (FReI) was performed with transfected
cells grown on 35 mm glass bottom dishes (Fluorodish, World
Precision Instruments). Cells were washed with Dulbecco’s
Phosphate Buffered Saline (DPBS) (Sigma-Aldrich) after
removing the growth medium. 30 µL Leibovitz’s L15 medium
supplemented with 30% FBS were sealed between a glass cover
slip (Menzel #1.0) with a 120 µm thick imaging spacer (Sigma-
Aldrich) and a glass bottom dish with cells.

Fast Relaxation Imaging Measurements
FReI is a combination of wide field fluorescence microscopy with
millisecond temperature jumps induced by an IR diode laser (m2k-
Laser, 2200 nm). The techniquewas previously described (Ebbinghaus
et al., 2010; Gnutt et al., 2019a). Shortly, fluorescent light was split by a
dichroic beam splitter into donor and acceptor signal that was
recorded using CCD cameras while the sample is rapidly heated
by an IR laser. The temperature sensitive dye Rhodamine B (Sigma
Aldrich) was used for the calibration of temperature jumps (Vöpel
et al., 2015; Gao et al., 2016; Büning et al., 2017). The heat profile used
in this study showed an average temperature increase of 2.2°C per
jump at intervals of 50 s, covering a range from 23.0 to 58.2°C in 16
steps. Image acquisition was performed at one frame per second (fps)
with LED exposure times typically between 50 and 200 ns. Data was
recorded using AxioVision software and the images were processed
and analyzed using ImageJ (National Institute of Health,
United States) and further evaluated using self-written MatLab
(Mathworks) codes and GraphPad Prism 6 (GraphPad).

For data analysis, fluorescence intensities were averaged
throughout the cytoplasmic region for each channel
individually (Dhar et al., 2011). Further, background
subtraction was performed for the individual channels and the
ratio of the donor and acceptor channel (D/A) calculated. The
changes of D/A ratio upon temperature jump yield information
about the associated conformational change. An increase in D/A
refers a decrease in FRET that may be attributed to protein
unfolding. To analyze the kinetics of protein unfolding, the
individual channel intensities were used as D-αA according to
(Dhar et al., 2011). To determine the melting point (TM) of the
protein, the thermodynamic model introduced as Better
thermodynamics from kinetics (Girdhar et al., 2011) was used:

D − αA(T) � −δg1ΔT · Tm

R(T − ΔT/2)2 · (A0 +mA(T − Tm))

· exp( − δg1(T − (ΔT/2) − Tm) · (R(T − ΔT/2))−1)
(1 + exp( − δg1(T − (ΔT/2) − Tm) · (R(T − ΔT/2))−1))2

Where, zg1 is pre-factor of the linear Taylor approximation of the
two-state populations. ΔT is the amplitude of the temperature
jump (set to 2.2°C) and A0 and mA are fitting parameters of the
underlying baseline (with mA set to 0).

HEK293 Cell Culture and Wide Field
Microscopy
HEK293 cells were cultured in DMEM with high glucose (Gibco,
United Kingdom), supplemented with 10% fetal FBS and penicillin/

streptomycin at 1%. Cells were passaged at 80–90% confluence, using
trypsin digestion. Regular checks ensured that all cells were
mycoplasma-free. Cells were seeded 1:8 or 1:10 in culture flasks
or maintaining stocks or at 200,000 cells per well into six-well plates
with microscopic slides in them. Transfection of these HEK293 cells
24 h after seeding on cover slips was performed using the
XtremeGENE HP DNA transfection reagent (Roche,
United Kingdom), according to manufacturer’s instructions. Cells
were left growing for 24 or 48 h, then washed with ice-cold PBS and
incubated with ice-cold methanol, followed by three further washing
steps using PBS. Finally, cover slips with cells were mounted on
microscopic slides, using fluorescence mounting media, and fixed
with nail varnish. The slides were anonymized to enable blind, non-
biased analysis. The slides were then viewed under a wide-field
fluorescent microscope and scored at least three different sections
using a ×20 objective. Cells were imaged with a ×20 objective. The
number of speckles per cell was scored in large numbers of cells, in a
blinded fashion. As a control, fluorescence intensity was ranked as
well (low/medium/high). No correlation was found between
fluorescence intensity and number of speckles, suggesting that
protein over-expression levels were not linked to the observed
patterns of speckles. Significant changes of population of non-
speckled cells have been determined using two-way ANOVA with
a post-hoc Holm-Sidak’s test correcting for multiple comparisons.

RESULTS

Mutations in APSK37 Reveal Distinct
Folding Stabilities
We analyzed the effect of disease-related mutations on the folding
stability and aggregation of the APS kinase domain of the
bifunctional PAPSS2 protein, using our recently established
APSK folding sensor (APSK37) (Brylski et al., 2021). The
sensor reports intramolecular FRET between the N-terminal
AcGFP1 and the C-terminal mCherry fusion proteins (see
Materials and Methods for details).

We analyzed PAPS synthase disease point mutations located
in the APS kinase domain to understand whether the phenotypes
seen clinically correlate with misfolded, destabilized or inactive
protein. Therefore, we created the variants G78R, L76Q, T48R
and C43Y within APSK37 (Oostdijk et al., 2015), expressed them
in HeLa cells and studied their in-cell protein stability in
comparison to the wt protein using Fast Relaxation Imaging
(FReI). In FReI, a rapid perturbation of temperature is applied by
absorption of infrared light (IR) by the sample (Ebbinghaus et al.,
2010; Vöpel et al., 2017; Gnutt et al., 2019b) (Figures 1A,B).
Dual-color imaging allows to measure changes in donor-to-
acceptor intensity ratio (D/A) (Figure 1C) that display
unfolding kinetics and thermodynamics of the protein in the
cell (see Materials and Methods for details) (Figure 1D).

A structural analysis of the surface exposure of the disease-
related mutants revealed that C43Y, T48R and L76Q are deeply
buried in the protein core (solvent accessible surface area (SASA)
≤ 1 Å2) compared to G78R (Kabsch and Sander, 1983; Brylski
et al., 2019); all of them located in close proximity in the central
beta-sheet of the APSK (Figure 1E).
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For APSK37 wt, we observed an increase of the normalized D/A
ratio upon IR-laser heating and decrease after returning to the
starting temperature (Figure 2A). This behavior is also evident for
G78R mutant (Figure 2B), which exhibits an apparent two-state
folding behavior as the respective unfolding kinetics can be fitted
by a single exponential function. Plotting and fitting the respective
amplitudes against temperature (Figures 2C,D) allowed the
determination of a TM = 46.1 ± 2.1°C which is similar to wt
(48.0 ± 1.7°C) (Figure 2E). Additionally, no significant differences
were foundwith respect to themodified standard state free energies
of folding ΔGf

0’, suggesting that this mutation does not affect the
stability of the protein (Figure 2F).

For the mutations C43Y, T48R and L76Q, we did not detect
any unfolding transitions, impeding the determination of TM.We
rather observed a strong decrease in the D/A ratio (Figures
3A–C) that can be attributed to an increase in FRET by
intermolecular energy transfer due to self-association
(Ebbinghaus et al., 2010; Büning et al., 2017).

Self-Association and Aggregation of C43Y,
T48R and L76Q
We then investigated if the self-association events observed in
FReI result in the formation of microscopically visible aggregates.

We monitored their formation by wide-field fluorescence
microscopy of EGFP-labeled full-length human PAPS synthase
2 carrying the disease mutants, expressed in HEK293 cells along
with PAPSS 2 wt proteins. The cellular distribution pattern of the
protein and degree of aggregate formation was scored by
classifying individual cells according to the number of speckles
that were visible inside each cell (Figure 4A). Figure 4B
illustrates the cellular distribution pattern of the protein and
the degree of aggregate formation for different mutants compared
to PAPSS2 wt. The mutants C43Y, T48R and L76Q caused a
higher number of aggregates compared to PAPSS2 wt. The level
of aggregate formation of the G78R mutation is not significantly
different from wt. Thus, the results show that the self-association
of the C43Y, T48R and L76Q APSK37 proteins measured by FReI
is in accordance with protein aggregation of the respective
mutants in the full-length PAPSS2 protein. On the other hand,
the G78R mutant is stable and does not lead to aggregation both
in APSK37 and PAPSS2 proteins.

DISCUSSION

Generally, proteins with disease-related mutations either show a
loss of catalytic function, a gain of toxic function (Winklhofer

FIGURE 1 | In-cell thermal unfolding of APSK37 wt using Fast Relaxation Imaging. (A) Schematic representation of the Fast Relaxation Imaging setup. (B) Induced
temperature profile calculated by the calibration procedure published in Büning et al., 2017. (C) Change in fluorescence according to the temperature profile in B of the
APSK37 AcGFP1 FRET donor (D) and the mCherry FRET acceptor (A). (D) D/A ratio calculated from the intensity data in (C). The thermal unfolding region is shaded in
blue and the calculated TM is displayed by a dash blue line. (E) Crystal structure of the APSK domain of PAPSS2 (PDB:2AX4). Studied mutations are shown as red
spheres. ADP/ATP (green) and APS/PAPS (yellow) binding sites are indicated by the substrates surface representation.
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FIGURE 2 | Thermal unfolding curve APSK37wt andmutants (G78R). (A) Exemplary temperature induced thermal unfolding curves of wt (data shown from (Brylski
et al., 2021)). (B) Exemplary temperature induced thermal unfolding curves of G78R. (C) Exponential unfolding curves of single temperature jumps from panel (B)
showing the relaxations kinetics at the respective temperatures. (D) Kinetic amplitudes as a function of temperature to determine the Tm (dashed line). (E) Thermal
stability comparison of the mutant G78R with APSK37 wt: Melting points of APSK37 (green) and melting point of G78R (blue) derived from FReI measurrement
showing average ± s.d. (F) Folding free energy ΔGf

0’ for both APSK37 wt and G78Rmutant with mean ± s.d. There are no statistically significant differences between wt
and G78R. Significance were tested via one-way ANOVA with a post-hoc Holm-Sidak test correcting for multiple comparisons (no significant changes observed).

FIGURE 3 | Exemplary temperature-induced thermal unfolding curves of the L76Q, T48RM, and C43Y mutants are visible in Figures 3A–C, respectively.
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et al., 2008; De Baets et al., 2015) or a significant loss in stability of
the protein leading to misfolding and aggregation (Waters, 2001;
Denny et al., 2013; Gandhi et al., 2019). For PAPSS2, many
studies have shown that disease-related gene defects cause
different forms of bone and cartilage malformation (Kurima
et al., 1998; Iida et al., 2013), as a consequence of under-
sulfation of extracellular matrix. Dysregulation of steroid
metabolism causing an increase in androgen activation is
further associated with diseases like PCOS and premature
pubarche (Noordam et al., 2009).

The results of this study show that PAPSS2 disease-related
mutations cause a destabilization and aggregation of the enzyme
in cellular environments for the mutants C43Y, T48R, L76Q. The
G78R mutation however shows a folding stability that is
comparable to wt, preventing aggregation. Regarding catalysis,
Kurima and coworkers have reported that the G78R variant has
very little residual APS kinase activity, but the ATP sulfurylase
activity was comparable to wt (Kurima et al., 1998).
Conformational changes of the APS binding site upon
mutation, modifying the interaction between the ATP γ-
phosphate group, the magnesium ion and the DGDN-loop can
be a potential reason for the catalytic inhibition APS kinase
(Kurima et al., 1998). The mutation may not disrupt the
native fold, however, a catalytic conversion, for example due
to a loss in flexibility within the DGDN-loop, may not be possible
anymore.

The mutations C43Y, T48R, and L76Q destabilize APSK37
and lead to aggregation of both APSK37 and full-length PAPS
synthase. All three mutations reside in the central β-sheet region
of the protein (Figure 1E), suggesting that this is a sensitive
region that maintains the native fold and prevents self-association
and aggregation. Changes in the protein’s native structure,
protein-protein interactions and many other sequential and
parallel events can lead to misfolded/unfolded conformations,
resulting in aggregation. Protein aggregation is often linked with
various pathologies, including neurodegenerative diseases, such

as Alzheimer’s, Parkinson’s and Huntington’s. These disease-
related aggregates are generally sub-divided into loss-of-function
and gain-of- toxic function effects (Ross and Poirier, 2004; Wang,
2005; Soto and Pritzkow, 2018). Indeed, the three above-
mentioned PAPSS mutations were previously classified as
“missense mutants,” causing its loss of function (Noordam
et al., 2009; Iida et al., 2013). Missense mutations in nuclear
deubiquitinase BAP1 were previously shown to induce
destabilization and aggregation of this enzyme, with the latter
being suggested as the main cause of its functional loss
(Bhattacharya et al., 2016). In fact, this hypothesis is further
supported by our previous studies (Brylski et al., 2021) using an
alanine scanning mutagenesis of the substrate binding site of
APSK37 in HeLa cells. The results revealed a large range of
different in-cell stabilities for the single point mutations (ΔGf

0 =
−10.7 to +13.8 kJ/mol).

Our results suggest two distinct possible disease mechanisms,
one related to misfolding and aggregation, and the other one
related to inhibition of catalytic function. However, whether these
processes are causal for the different pathologies needs to be
elucidated in future studies.

CONCLUSION

So far, many sulfotransferase-related mutations are known to be
associated with the sulfation pathway but a lot less is reported for
PAPSS. Our results report that PAPSS2 disease-related mutations
cause misfolding and aggregation (L76Q, T48R, and C43Y), and
inhibition of the catalytic function (G78R). Even though our
study showed that the three missense mutants (L76Q, T48R and
C43Y) lead to aggregation, the molecular details of this process
remains to be explored, particularly putative cytotoxic effects of
amyloid formation. Therapeutic approaches against the rare
diseases that are associated with these mutations may thus be
different, encompassing supplementation of lacking compounds

FIGURE 4 | Expression and distribution of recombinant human PAPSS in HEK293 cells. (A) Exemplary fluorescence image of HEK293 cells showing fluorescence
spots classified according to three categories. (B) Even distribution; no speckles: grade 1, 1–3 speckles: grade 2, 4–10 speckles: grade 3 and more than 10 speckles or
large clumps: grade 4. Data is presented as average ± s.e.m. Cells were counted from four different slides (N = 4) with n > 200 cells in total for each protein variant.
Asterisks indicate significant differences of the fraction of cells showing no speckles compared to PAPSS2 wt (*p < 0.05, ***p < 0.001). Additional statistical
significance within grade 1 was found between G78R and T48R(***) or G78R and L76Q(*).

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8603876

Brylski et al. Disease-Related PAPSS2 Protein Variants

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


(Klinge et al., 2018) or inhibitors to reduce aggregation (Vöpel
et al., 2017).
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