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A B S T R A C T 

The European Pulsar Timing Array (EPTA) collaboration has recently released an extended data set for six pulsars (DR2) and 

reported evidence for a common red noise signal. Here we present a noise analysis for each of the six pulsars. We consider 
several types of noise: (i) radio frequency independent, ‘achromatic’, and time-correlated red noise; (ii) variations of dispersion 

measure and scattering; (iii) system and band noise; and (iv) deterministic signals (other than gravitational waves) that could be 
present in the PTA data. We perform Bayesian model selection to find the optimal combination of noise components for each 

pulsar. Using these custom models we revisit the presence of the common uncorrelated red noise signal previously reported 

in the EPTA DR2 and show that the data still supports it with a high statistical significance. Next, we confirm that there is no 

preference for or against the Hellings–Downs spatial correlations expected for the stochastic gra vitational-wa ve background. The 
main conclusion of the EPTA DR2 paper remains unchanged despite a very significant change in the noise model of each pulsar. 
Ho we ver, modelling the noise is essential for the robust detection of gravitational waves and its impact could be significant when 

analysing the next EPTA data release, which will include a larger number of pulsars and more precise measurements. 

Key w ords: gravitational w aves – methods: data analysis – pulsars: general. 
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 INTRODUCTION  

illisecond pulsars are remarkable for their long-term rotational
tability, comparable with that of the most accurate atomic clocks
n Earth (Matsakis, Taylor & Eubanks 1997 ; Verbiest et al. 2009 ;
obbs et al. 2020 ). The highly beamed radio emission interacts with
ra vitational wa ves (GWs) causing deviations in the time of arri v al
f pulses observed by radio-telescopes. Pulsar timing arrays (PTAs)
re used to search for ultralow-frequency (nHz- μHz) gravitational-
aves by looking for their characteristic imprints on the times-of-

rri v al (ToAs) of the radio signals (Sazhin 1978 ; Detweiler 1979 ;
oster & Backer 1990 ; Perera et al. 2018 ). 
The most promising GW source in the PTA frequency band is

 population of nearby ( z ≤ 2) slowly inspiralling supermassive
 ≥10 7 M �) black hole binaries (SMBHBs) with orbital periods
0.1 −10 yr. Those binaries were formed as a result of galaxy
 E-mail: aurelien.chalumeau@cnrs-orleans.fr (AC); stas@apc.in2p3.fr (SB) 

N  

e  

e  

Pub
ollisions and their mergers will be observed in the LISA band,
hile PTA will see only the early and long lasting inspiral (Sesana

t al. 2004 ). The most massive and closest binaries might be resolved
s individual sources emitting continuous GWs (Sesana, Vecchio &
olonteri 2009 ; Babak et al. 2015 ), but the bulk of the SMBHB
opulation emits rather weak GW signals which superpose and
orm a stochastic GW background (GWB) signal at low (nano-
z) frequencies (Rajagopal & Romani 1995 ; Jaffe & Backer 2003 ;
yithe & Loeb 2003 ). The key feature of this noise-like signal is a

ery specific spatial correlation in the data which depends only on
he angular separation between two pulsars and is described by the
ellings–Downs curve (Hellings & Downs 1983 ) assuming general

elativity. 
Several PTA collaborations are working actively on the detection

nd characterization of such GWs. The three historical PTAs: Parkes
ulsar timing array (PPTA; Kerr et al. 2020 ), the North American
anohertz Observatory for Gra vitational-wa ves (NANOGra v; Alam

t al. 2021 ), and the European pulsar timing array (EPTA; Desvignes
t al. 2016 ) cooperate with the emerging Indian pulsar timing array
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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InPTA) 1 as the International pulsar timing array (IPTA; Verbiest 
t al. 2016 ; Perera et al. 2019 ). The PPTA, NANOGrav, and the
PTA have recently published results produced using with their own 

ndependently processed data sets that show consistent evidence for 
he presence of a red (time-correlated) signal common among pulsars 
Arzoumanian et al. 2020 ; Chen et al. 2021 ; Goncharov et al. 2021a )
ut without the necessary evidence for Hellings–Downs correlations, 
hich would confirm the detection of a GWB. Encouraged by these 
romising results, the IPTA is planning to combine extended data 
ets from each PTA collaboration, in the hope that the GW nature of
he observed signal can be confirmed (or disproved). 

The biggest problem with PTA data is the lack of control of the
oise: there are many potential sources which could contribute to the 
bserved data which we model in a parametrized (and sometimes 
implified) way when it is included in the ‘global fit’ (i.e. that fits
ll pulsars simultaneously). The high frequency end of PTA data is
sually dominated by measurement white noise. The low frequency 
nd is expected to be dominated by red noise processes. Besides the
WB discussed abo v e, some of the red noise is also expected to
e correlated among pulsars as a function of angular separation of
ach pair of pulsars on the sky (Tiburzi et al. 2015 ). Such sources
f correlated noise are errors in the clock time standard (causing 
onopolar-type correlations) or systematic errors in the Solar system 

phemeris (causing dipolar-type correlations). Moreo v er, we also 
xpect the presence of spatially uncorrelated red noise, which is 
ndividual to each pulsar in the array. This is the spin noise (or
iming noise), which is caused by the rotational variations of the 
ulsar arising from a variety of different phenomena (e.g. intrinsic 
rocesses, unmodelled objects in the vicinity of the neutron star, 
tc.). The red noise types described abo v e are commonly referred to
s achromatic red noise since they are independent of the observing 
adio frequency. Most of the PTA data also show the presence of
hromatic red noise that depends on the radio frequency of the 
bservations. In particular, we will consider the long-term variations 
f dispersion measure (DM), which add time delays to the ToAs as
 t ∝ ν−2 , and scattering variations ( � t ∝ ν−4 ), which are both caused

y the time-varying electron column density between the pulsar and 
he radio telescope. 

The sensitivity of PTA data to GWs is significantly affected by the
evels of red noise and our ability to both detect and to characterize
W signals strongly depends on the faithfulness of the pulsar noise 
odel (Caballero et al. 2016 ; Lentati et al. 2016 ; Hazboun et al. 2020 ;
oncharov et al. 2021b ), which can vary significantly from pulsar to
ulsar. Due to the large choice of possible noise components (we see
t as various possible models of the noise) and their description or
arametrization, the search for a GWB usually assumes a common 
and simplified) noise model that is the same for each pulsar. The
arameters of that simplified model are then inferred together with the 
arameters characterizing the GWB. It was shown (see for example 
oncharov et al. 2021b , and the references therein) that the actual
oise model could vary significantly from pulsar to pulsar, which 
ould influence the detectability of a GWB (Hazboun et al. 2020 ).
his is the main moti v ation behind this paper. We consider this paper
s a companion of Chen et al. ( 2021 ), where the main focus was on
nding and characterizing the common red signal (CRS) using two 

ndependent pipelines. 
Based on previous exploratory investigations for each pulsar in 

he DR2, we suggest a finite set of noise models and use Bayes
actors as a ranking statistic to choose between them, assuming that 
 ht tps://inpt a.gitlab.io/profile/index.ht ml 

T  

S
T  
ll models are equally probable a priori. When the Bayes factor is not
nformative (close to one) we make the selection based either on the
implicity of the model or on the basis of computational efficiency
ith very few exceptions, which we explicitly discuss below. Once 
e had customized the noise model for each pulsar, we reproduced

he main results of Chen et al. ( 2021 ), namely we confirmed the high
tatistical significance of a common red signal, but without sufficient 
vidence for a GWB induced Hellings–Downs correlation. We want 
o emphasize that the final noise model used for each pulsar was
uite different from the simpler model assumed in Chen et al. ( 2021 )
or all pulsars. The noise model selection method described in this
aper will be used on the extended (25 pulsars) EPTA data. 
The rest of the paper is organized as follo ws. We gi ve a brief

escription of DR2 data in the section 2. Section 3 gives a detailed
escription of each noise process that will be used in building the
oise model. Section 4 summarizes the Bayesian framework used 
n this paper. The details of the single-pulsar noise model selection
re given in Section 5. In Section 6 we consider the presence of a
ommon red noise and we summarize our results in Section 7. 

 BRIEF  DESCRIPTION  OF  EPTA  DR2  

he EPTA Data Release 2 (DR2) – six pulsars data set (Chen
t al. 2021 ) – comprises up to 24 yr of high cadence observations
f PSRs J0613 −0200, J1012 + 5307, J1600 −3053, J1713 + 0747,
1744 −1134, and J1909 −3744. These pulsars are observed in single-
ish mode at four European radio telescopes: the Effelsberg 100-m 

adio telescope (EFF), the Nan c ¸ay Radio telescope (NRT), the Lo v ell
elescope at the Jodrell Bank Observatory (JBO), and the Westerbork 
ynthesis Radio Telescope (WSRT). In addition, EPTA DR2 includes 
ata from the Large European Array of Pulsars (LEAP), which is
ased on the combination of these four telescopes with the Sardinia
adio Telescope (SRT), forming a tied-array telescope (Bassa et al. 
015 ). The five radio telescopes contribute to all pulsars except
SR J1909 −3744, which has a data set that contains only NRT
bservations because of its low -declination. Upgrades of telescopes, 
ncluding impro v ements to or changes of receivers or backends,
ave been applied during the observational period, which makes 
he data set heterogeneous in timing precision and radio frequency 
o v erage. We label the data by the telescope (or observatory) and the
ystem that collected it, followed by the radio frequency in MHz (e.g.
FF.P200.1400). Having multiple systems in a PTA data set is both a
urse, as we need to combine the data from all systems together
aking into account possible systematics, and a blessing as the 

ultiband observations are required to disentangle and characterize 
he chromatic noise and the system specific instrumental red noise 
e.g. system noise; Lentati et al. 2016 ). 

A characteristic ToA is computed from the time and frequency 
veraged profile of each observation, except for JBO.R OA CH and
RT.NUPPI backends, which use, respectively, 2 and 4 (radio- 

requency) sub-band ToAs per epoch. The ToAs of each pulsar are
ssembled together and used to fit the timing model (TM) parameters
hat describe the pulsars’s sky position and proper-motion, its spin 
requency and corresponding deri v ati ve, and the DM and its two
rst deri v ati v es. F or pulsars in binary systems, the timing model
lso accounts for the orbital motion including Keplerian and post- 
eplerian parameters. Phase jumps are included in the TM for each

ystem and also for each of the JBO.R OA CH & NRT.NUPPI.1484
ub-bands. The fits for the TM parameters were obtained using the
EMPO 2 package (Hobbs, Edwards & Manchester 2006 ) with the JPL
olar system ephemeris DE438 [to transform the local observatory 
oAs to the Solar system barycentre) and with the clock corrections
MNRAS 509, 5538–5558 (2022) 
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T(BIPM2019) (time conversion from the observatory time standard
o the Terrestrial Time (TT) given by the Bureau International des
oids et Mesures (BIPM)]. The end result are the timing residuals ,

.e. the differences between the observed ToAs and those predicted
y the TM, which are then analysed to search for GW signals. 

 MODELLING  NOISE  IN  PTA  DATA  

n this section we describe the basic noise models. We will use an
legant description based on the Gaussian Process (GP) introduced
n van Haasteren & Vallisneri ( 2014 ). Later, we will use those basic
oise components to build a complete noise model for each pulsar in
R2 using Bayesian techniques. 
Let us very briefly introduce the likelihood for Gaussian processes

ollo wing v an Haasteren & Vallisneri ( 2014 ). We assume that all
oise components are Gaussian and stationary and we separate the
hite noise component N from the rest. The Gaussian process can
e introduced in two equi v alent ways: (i) As a sum of deterministic
asis functions 

� 
i F i ( t ) w i , where w i are weights – random Gaussian

istributed variable N ( w 0 i , � ij ), where w 0 i is a mean value for each
eight, � ij is a covariance matrix, and F i ( t ) are the basis functions.
his is the weight-space view. (ii) As a continuous function such

hat the ensemble average is E [ f ( t)] = m ( t) and the covariance is
 [( f ( t) − m ( t))( f ( t ′ ) − m ( t ′ ))] = C( t, t ′ ). This is the function space
iew. Those two descriptions are related via 

( t , t ′ ) = 
� 

a,b 

F a ( t ) � ab F b ( t 
′ ) , (1) 

ith a , b = 1,..., N . The red noise covariance matrix C ( t , t 
′ 
) was

ntroduced in van Haasteren & Levin ( 2012 ) and it was approximated
sing an incomplete Fourier basis in Lentati et al. ( 2013 ). Applying
he Gaussian process approach to the PTA likelihood function we get
van Haasteren & Vallisneri 2014 ): 

( δt | w a , GP ) = 
e −

1 
2 

� 
ij ( δt i −

� 
a F a ( t i ) w a )( N ij ) −1 ( δt j −

� 
a F a ( t j ) w a ) 

√ 
(2 π) n det ( N ) 

× e −
1 
2 

� 
a,b w a ( � ab ) −1 w b 

√ 
(2 π) m det ( �) 

, (2) 

here δt i the i -th observed residuals with i , j = 1,..., n . The equi v alent
epresentation is given by 

( δt | GP ) = 
e −

1 
2 . 

� 
ij δt i ( N + C ij ) −1 δt j 

√ 
(2 π) n det ( N + C ) 

, (3) 

here C rn 
ij = 

� 
a,b F a ( t i ) � ab F b ( t j ). The convenience of the latter

escription is that it can be computed efficiently using the Woodbury
quality: 

 N + C ) −1 	 
�
N + F �F T 

�−1 

= N −1 − N −1 F 
�
� −1 + F T N −1 F 

�−1 
F T N −1 . (4) 

n what follows we consider C as a combination of several (chromatic
nd achromatic) red noise components each decomposed in its own
et of basis functions. 

.1 Mar ginalization o v er timing model 

efore we introduce the noise components, we should explain how
e treat the timing model. We assume that an initial fit of the timing
odel obtained with LIBSTEMPO (Vallisneri 2020 ) reduces it to a

inear model where the coefficients are given by a design matrix.
e analytically marginalize the likelihood o v er the TM parameter
NRAS 509, 5538–5558 (2022) 
rrors described by that linear model. The analytic marginalization
as first demonstrated in van Haasteren et al. ( 2009 ), but van
aasteren & Vallisneri ( 2014 ) have shown that it is equi v alent to

he marginalization of a corresponding Gaussian process with an
mproper prior. 

The implementation of this marginalization in ENTERPRISE (Ellis
t al. 2019 ; the package that we use throughout this project) uses
he equi v alence of weight space and function space description
f a Gaussian process. The design matrices ( M a ( t i )) are used as
asis functions, the covariance for the TM process is given as
 TM = 

� 
a,b M a ( t i ) � TM 

ab M b ( t j ), where the prior on the parameter
rrors is modelled as � = λI with I being a diagonal unit matrix
nd λ is a large numerical number (see van Haasteren & Vallisneri
014 , for details). In the limit λ → ∞ this prior becomes improper,
ut in this analysis the values of λ are fixed but large so the prior is
ormally proper. The marginalization o v er timing errors (‘weights’)
f equation (2) leads to equation (3) (this is a manifestation of the
uality of the two descriptions). 
The use of a very wide or improper prior in Bayesian model

election should be taken with great caution, especially when
omparing two models where only one of them uses marginalization
 v er the improper prior (this was also discussed in Chen et al. 2021 ).
he penalization which is embedded in the prior (for being too
ide) and propagates into the computation of the evidence is lost

nd reliable results from evidence-based model selection cannot be
uaranteed. Ho we ver in all noise models described below we perform
arginalization o v er the TM parameters which brings them all to a

ommon starting point for further comparison. 

.2 White noise 

s mentioned earlier, the white noise dominates the high frequency
nd of the PTA sensitivity band. The ToA errors ( σ ToA ) are estimated
ithin the template-matching method (Taylor 1992 ) that is used to

ompute the ToAs. This method is based on the Fourier domain cross-
orrelation of a template profile with the integrated pulse profile at
he corresponding epoch. The uncertainties of each ToA are further

odified as 

= 

� 

E 2 f σ
2 
ToA + E q 

2 . 

FAC (E f ) is a multiplicative factor that takes into account ToA
easurement errors (or radiometer noise). EQUAD (E q ) is added in

uadrature to account for any other white noise (such as stochastic
rofile variations Liu et al. 2012 ; Shannon et al. 2014 ; Lam et al.
016 ) and for possible systematic errors. The white noise model
herefore is given as 

 = 
�
E f 

2 σ 2 
ToA ( t i ) + E q 

2 � δi,j , (5) 

here i and j indexing the ToAs of the corresponding backend. EFAC
nd EQUAD are phenomenological parameters that characterize the
hite noise for each system and for each pulsar. 

.3 Stochastic red signals 

t is essential for PTA analysis to properly describe the intrinsic
ed noise because of its possible correlation with low-frequency
W signals (Shannon & Cordes 2010 ). Results from simulations

n Hazboun et al. ( 2020 ) have clearly demonstrated the impact of
naccurate red noise modelling on GWB results. 

The single-pulsar stochastic red noise is a time-correlated signal
odelled as a stationary Gaussian process. In this work we adopted
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Table 1. Models and priors used for the single-pulsar model selection. 

Model Parameters Priors (or fixed val.) 
(abbrev.) 

White-noise EFAC U (0 . 1 , 5) 

(WN) EQUAD [s] log 10 U (10 −9 , 10 −5 ) 

Achromatic red-noise A RN log 10 U (10 −18 , 10 −10 ) 

(RN) γ RN U (0 , 7) 

DM variations A DM log 10 U (10 −18 , 10 −10 ) 

(DMv) γ DM U (0 , 7) 

Scattering variations A Sv log 10 U (10 −18 , 10 −10 ) 

(Sv) γ Sv U (0 , 7) 

Free-chromatic noise A FCN log 10 U (10 −18 , 10 −10 ) 

(FCN) γ FCN U (0 , 7) 

χFCN U (0 , 7) 

System-noise A SN log 10 U (10 −18 , 10 −10 ) 

(SN or DMv-SN) γ SN U (0 , 7) 

χSN 0 or 2 

Band-noise A BN log 10 U (10 −18 , 10 −10 ) 

(BN) γ BN U (0 , 7) 

DM events A E [s] log 10 U (10 −10 , 10 −2 ) 

(E) τ E [day] log 10 U (1 , 10 2 . 5 ) 

t 0 [MJD] U (54650 , 54850) or 

U (57490 , 57530) 

χE 1, 2, 4 or U (0 , 7) 

Annual chrom. A Y [s] log 10 U (10 −10 , 10 −2 ) 

(Y) φY U (0 , 2 π ) 

χy 2 or U (0 , 7) 
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he ‘weight-space’ representation of the Gaussian Process. The 
iming residuals due to red noise at each epoch t i are approximated as: 

t SRS ( t i ) = 

N � 

l= 1 

X l cos ( 2 πt i f l ) + Y l sin ( 2 πt i f l ) , (6) 

here X l and Y l are playing the role of weights and the basis
unctions are 

 2 l−1 ( t i ) = cos ( 2 π t i f l ) , 

F 2 l ( t i ) = sin ( 2 π t i f l ) , (7) 

here l = 1,..., N . This representation would correspond to the usual
ourier transform if f l = l / T (where T is the total time span) and we
ad regularly spaced epochs, t i . Ho we ver, the radio observ ations are
uite irregular (besides maybe the last 5 yr or so) which makes the
ourier basis not exactly orthogonal. In addition, we do not use a
omplete set: we usually truncate it at some low frequency as we
re interested in modelling the red noise. The optimal choice of
requencies was considered in van Haasteren & Vallisneri ( 2015 ); 
o we ver, for all results presented here, we have used an evenly
paced � f = 1/ T set of frequencies, starting at f = 1/ T and truncating
t N / T where N is one of the parameters in the model selection. 

The covariance matrix � for the Fourier coefficients (weights X l , 
 l ) is defined by the power spectral density (PSD), S ( f ). The simplest
odel for the PSD of a stochastic red process in a single pulsar data

et is a power law: 

 P ( f ; A, γ ) = 
A 2 

12 π2 

�
f 

yr −1 

�−γ

yr 3 , (8) 

here the amplitude A is the normalized value at the frequency of one
 v er 1 yr ( f = 1/yr). The covariance matrix is given in the frequency
omain by 

 kα,lβ = S P ( f k ; A α, γα) δkl δαβ / T (9) 

here k , l = 1,..., N , and α, β are pulsar indices – we consider spatially
ncorrelated red noise – therefore, we have placed the Kronecker 
elta-function on the right-hand side. 
An alternative description takes into account that the data is 

ominated by white noise at high frequencies, and that is captured 
n the broken power law (Arzoumanian et al. 2020 ): 

 BPL ( f ; A, γ, δ, f b , κ) = 
A 2 

12 π2 

�
f 

yr −1 

�−γ
� 

1 + 

�
f 

f b 

�1 /κ
� κ ( γ −δ) 

yr 3 , (10) 

n which A is the amplitude at frequency f = 1 
yr , f b is the transition

requency, γ and δ are, respectively, the slopes below and above f b , 
nd κ defines the smoothness of the transition. Jumping a bit ahead, 
e will perform Bayesian analysis of the data with priors on κ and f b 

s uniform U(0 . 01 , 0 . 5) and log-uniform log 10 U(10 −10 , 10 −6 ), and
he priors on A and γ are the same as for the simple power-laws mod-
ls given in Table 1 . The high-frequency spectral index δ is fixed at 0.

A completely different approach is not to impose any particular 
pectral shape but rather estimate it from the data itself: this is the
ree-spectrum method (Lentati et al. 2016 ) in which 

 FS ( f i ; ρi ) = ρ2 
i T , (11) 

here ρ i is the spectral amplitude at frequency f i = i / T , with i =
,..., N , in units of residuals. This modelling is particularly useful for
nderstanding the spectral content and for interpreting the results for 
he red noise models given above. The number of parameters in the
ree-spectrum approach is equal to the number of Fourier bins and 
t is therefore computationally more e xpensiv e. The priors used for
ach ρ i will be log-uniform: log 10 U(10 −10 , 10 −4 ). 

In the rest of this subsection, we give more details on each specific
ype of red noise that will be included in the total noise budget for
ach pulsar. 

.3.1 Achromatic red noise 

he achromatic red-noise (which we henceforth denote as RN) 
s commonly used in single-pulsar noise models in order to 
haracterize the long-term variability of the pulsar spin. Also 
eferred to as ‘timing noise’ or ‘spin noise’, RN is a dominant
eature in the ToAs of younger pulsars, and several physical 
rocesses have been suggested to explain it, such as magneto- 
pheric variability (e.g. Lyne et al. 2010 ; Tsang & Gourgouliatos
013 ) or interactions between the pulsar’s superfluid core and 
olid crust (Cordes & Shannon 2010 ). The origins of RN in

SPs may differ from that of young pulsars: due to their much
eaker magnetic fields, superfluid turbulence has been suggested 

s a possible contributor to the RN in MSPs (Melatos & Link
014 ). 
We model RN using the descriptions given above: the power-law 

odel will be our standard approach; ho we ver, we will also use the
ree spectrum and broken power law (red noise becomes white after
ome frequency) to guide the selection of the truncation frequency 
n the sum given by equation (6). This noise component is unique,
ndependent of the observational radio frequency, and uncorrelated 
etween different pulsars. 
MNRAS 509, 5538–5558 (2022) 
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.3.2 Chromatic red noise 

uring its propagation, the pulsar radio emission passes through
nd interacts with the ionized interstellar medium (IISM), the Solar
ystem interplanetary medium and the Earth’s ionosphere, which
eads to frequency-dependent delays on the observed signal. 

An important effect is the interstellar dispersion that induces a
elay in the arri v al time � t DM ∝ ν−2 DM, where ν is the radio
bserving frequency and DM is the dispersion measure, which is the
ath integral of the free-electron density (Lorimer & Kramer 2004 ).
his effect is taken into account during the observations and inside the

iming model which considers its value at a reference epoch together
ith its first and second deri v ati ves. Ho we ver, the inhomogenious and

urbulent nature of the IISM also induces chromatic (i.e. dependent
n the observing radio frequency ν) red noise that are important on
he decade-long time-scales of PTA data (You et al. 2007 ; Keith et al.
013 ). In addition, the orbital motion of the Earth around the Sun
ay induce an additional deterministic chromatic signal. 
Another result of the radio signal’s interaction with the IISM are

cattering variations (Sv), corresponding to the multipath propaga-
ion of the radio signal due to diffraction and refraction in the IISM
Lorimer & Kramer 2004 ; Lyne et al. 2010 ). This causes a chromatic
ulse broadening and a time delay with ∼ν−4 chromaticity. The
cattering variations are described as a stochastic red signal such that
 t Sv ∝ ν−4 . 
We describe phenomenologically any general chromatic red noise

sing the basis functions 

 chrom . 
j ( t i ) = F ( t i ) ∗

	 νj 

1 . 4 GHz 


−χ

, (12) 

here F is the incomplete set of sin/cos basis functions, ν j is
n observational radio frequency for a corresponding residual at
he epoch t i , and χ is the chromatic index. We use the same
ovariance matrices for chromatic red noise as for achromatic red
oise (power law, broken power law, free spectrum). It is essential
o have multiband radio observations to disentangle chromatic from
chromatic red noise (otherwise they are completely degenerate; see
or example Caballero et al. 2016 ). 

During model selection, we will consider the following chromatic
ed processes: (i) dispersion measurement variations (DMv) with

= 2; (ii) scattering variations (Sv) with χ = 4; and (iii) a
henomenological ‘free chromatic noise’ model (FCN) with χ

aken to be a free parameter with prior U(0 , 7). The FCN was
rst introduced in Goncharov et al. ( 2021b ) and is used here as a
iagnostic to verify the combined noise model. 

.3.3 System and band noise 

he EPTA DR2 data set is a combination of ToAs produced by
ve radio telescopes which use different systems observing at radio
requencies ranging from ∼300 MHz to ∼5 GHz. Following Lentati
t al. ( 2016 ) we introduce ‘system’ and ‘band’ red noise. The system
oise (SN) term is a stochastic red signal specific to a single receiver
ystem. Such a signal could, for example, arise from a miscalibration
f polarizations or specific radio frequency interferences. We model
his process as a stochastic red noise applied to the ToAs of only
ne considered system at a time. This noise is considered to be
chromatic for every system except for NRT.NUPPI.1484 that is
ivided into four sub-bands and will be probed for the presence of
oth chromatic red process SN and DMv (labelled as DMv-SN). 
The band noise (BN) is a stochastic red noise assigned to a

pecific radio frequency band. This is to account either for a possible
requency-dependent DM in the amplitude (additional to the o v erall
NRAS 509, 5538–5558 (2022) 
−2 factor) caused by multipath propagation of radio emission
Cordes, Shannon & Stinebring 2016 ) or by frequency-dependent
alibration errors (van Straten 2013 ). Given the frequency coverage
f the EPTA DR2 data set (Chen et al. 2021 ), we consider four radio
ands for the BN: 

(i) Band.1: < 1 GHz 
(ii) Band.2: [1, 2] GHz 
(iii) Band.3: [2, 3] GHz 
(iv) Band.4: > 3 GHz. 

.4 Common red noise 

n this subsection we describe the red noise common to all pulsars and
ifferentiate between two groups of common stochastic red signals:
i) a common spatially uncorrelated red noise (CURN) signal; and
ii) a correlated common red noise signal. The CURN shares spectral
roperties across all pulsars but does not appear with any particular
patial correlation (random) for each pair of pulsars, its covariance
atrix is described as 

 kα,lβ = S P ( f k ; A CURN , γCURN ) δkl δαβ / T , (13) 

here the amplitude and spectral index ( A CURN , γ CURN ) are the same
or all pulsars. 

On the other hand, the stochastic GWB, and the clock and
phemerides errors are examples of truly spatially correlated red
ignals. We describe in detail the GWB, which is the only correlated
ed process considered in this paper (clock and ephemerides errors in
he EPTA DR2 were investigated in Chen et al. 2021 and their pres-
nce was not supported by the data). The dimensionless characteristic
train spectrum of the GWB is given as a power law (Maggiore 2000 ;
enet et al. 2006 ) with a reference frequency at 1 yr −1 : 

 c ( f ) = A GWB 

�
f 

yr −1 

�αGWB 
, (14) 

ith A GWB and αGWB, respectively, the GWB strain amplitude and
pectral index. The corresponding PSD S GWB 

P ( f ) can then be written
s 

 GWB 
P ( f ) = 

1 

12 π2 
1 

f 3 
h 2 c ( f ) 

= 
A 2 GWB 

12 π2 

�
f 

yr −1 

�−γGWB 
yr 3 (15) 

ith γ GWB = 3 − 2 αGWB . 
The spectral slope of a GWB generated by a population of SMB-

Bs on circular and GW-driven orbits (Jaffe & Backer 2003 ; Chen,
esana & Del Pozzo 2017 ) is expected to be αGWB = −2/3, or γ GWB =
3/3. We use the same incomplete set of Fourier basis function as
or the achromatic red noise described abo v e but with a covariance
atrix with spatial correlation coefficients �( θab ) corresponding to

he Hellings–Downs curve (Lee, Jenet & Price 2008 ): 

 kα,lβ = S P ( f k ; A GWB , γGWB ) δkl �( θαβ ) / T , (16) 

here θαβ is the angular separation of a pair of pulsars. This model
escribes an isotropic component of the GWB. 
Note that it is the spatial correlation that distinguishes a GWB

rom the CURN; therefore to clearly identify this it is necessary to
nfer �( θab ). This is not possible with six pulsars and with the present
PTA timing precision as shown in Chen et al. ( 2021 ). 
In addition, a CURN could be mimicked by the RN of the most

ensitive pulsars, so it is crucial to study in detail the red processes
n each pulsar in order to understand the significance of the CURN
eported in Chen et al. ( 2021 ). 
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.5 Deterministic signals 

n addition to stochastic processes, we also consider two types 
f deterministic signals of non-GW nature. We have used prior 
nformation about the (possible) presence of these signals in the 
ata of some pulsars. 

xponential dips 

ev eral pulsars hav e displayed e xponential timing-residual dips (E),
n which there is a sudden frequency-dependent advance in the ToAs. 
t is rele v ant to our analysis that such ev ents hav e been observ ed at
east twice for PSR J1713 + 0747 o v er our observational time span,
n 2008 ( ∼ MJD 54757) and in 2016 ( ∼ MJD 57510). 

The first event, reported in Coles et al. ( 2015 ), Zhu et al. ( 2015 ),
nd Desvignes et al. ( 2016 ), is interpreted as a ‘DM event’, i.e. a
rop in the electron column density along the line of sight producing
 sudden reduction of DM that returns to the previously observed 
ev el e xponentially o v er time. 

The second event, reported in Lam et al. ( 2018 ), was accompanied
y a pulse shape change and corresponding chromatic index lower 
han 2, so it is not compatible with a DM-related process. It was
roposed instead (Goncharov et al. 2021b ) that this event is related
o processes in the pulsar’s magnetosphere. 

We model the exponential dip delay at epoch t i and radio frequency
k as: 

d E ( t i , νk ; A E , τ, t 0 , χE ) = � 
� 
 

� � 

0 , if t i < t 0 

A E 

	 νk 

1 . 4 GHz 


−χE 
exp 

�
− t i − t 0 

τ

�
, if t i ≥ t 0 , 

(17) 

here A E is the amplitude in residual units, t 0 is the reference epoch
f the event, τ is the relaxation time, and χE is the chromatic index,
ither fixed or being a free parameter with prior U(0 , 7). 

nnual chromatic signals 

he second deterministic signal which could be present in the data is
n annual chromatic process (which we label as ‘Y’) that results from
lectron density variations as the line of sight to the pulsar changes
uring the annual Earth motion around the Sun. 
Previous investigations (Keith et al. 2013 ; Main et al. 2020 )

ndicated such a signal is present in PSR J0613 −0200, which we
odel as (Lentati et al. 2016 ; Goncharov et al. 2021b ): 

 Y ( t i , f l ; A Y , φ, χy ) = A Y 

�
f l 

1 . 4 GHz 

�−χy 
sin 

�
2 π

t i 

yr 
+ φ

�
, 

(18) 

here A Y is the characteristic amplitude in residual units, χ y is the 
hromatic index, and φ is the initial phase. We consider either annual 
M variations or annual scattering variations, with a chromatic index 
xed at 2 or 4, respectively. 

 BAYESIAN  INFERENCE  FRAMEWORK  

n this section, we briefly describe the Bayesian framework that will 
e applied to the model selection (see for example Sivia & Skilling
006 for further reading). The main purpose of this section is to
ntroduce notation that will be used in the following sections. 

We will consider a set of models, M a , each characterized by
arameters �a , where the subscript a enumerates the models. The 
robability of a given model M a given the observed residuals � t can
e written using Bayes theorem: 

 ( M a | � t ) = 
P ( � t | M a ) πM a 

P ( � t ) 
, (19) 

here πM a is the prior probability of model M a , P( � t | M a ) is the
robability of observing � t assuming that model M a is the correct 
ne (this is the evidence of model M a and we denote it as Z M a ),
nd P( � t ) = 

� 
b P( � t | M b ) πM b is the probability of the observed

ata set, which we consider as a normalization factor. We have used
reviously published results as a guide for selecting models for a
iven pulsar, assuming that all considered models have equal prior 
robabilities unless otherwise specified. The model selection is based 
n the odds ratio: 

P ( M a | � t ) 
P ( M b | � t ) 

= 
Z M a 

Z M b 

πM a 

πM b 
(20) 

ince we use equal priors, the odds ratio reduces to the Bayes factor
 
M a 
M b = Z M a / Z M b . 
For a given model the posterior on the parameters �a is given again

y Bayes theorem: 

 ( �a | � t , M a ) = 
P ( � t | �a , M a ) P ( �a | M a ) 

P ( � t | M a ) 

= 
L ( � t | �a , M i ) π ( �a | M a ) 

Z M a 
, (21) 

here we will use the likelihood L ( � t | �a , M a ) marginalized o v er
he timing model parameters (see discussion in the previous section) 
nd π ( �a | M a ) are priors on the model parameters. The evidence
f a given model is computed from the fully marginalized posterior
Sivia & Skilling 2006 ): 

 M a = 

� 

d �a L ( � t | �a , M a ) π ( �a | M a ) . (22) 

Our decisions are based on the scale proposed in Jeffreys ( 1961 ),
hich is B 

M a 
M b > 100 indicates a preference for the model M a 

gainst M b with ‘decisi ve’ e vidence. This interpretation criteria has 
een set phenomenologically, and revised in Kass & Raftery ( 1995 ),
hich suggests using the threshold value of 150 ( log 10 B 

M a 
M b � 2 . 2).

herefore, we use the range 2 < | log 10 B 
M a 
M b | < 2 . 2 as a selection

riteria. In the case of a non-conclusive Bayes factor we follow the
ccam principle and select the model with the lowest prior volume

or computational cost). 
The dimensionality of models that we consider varies from 16 to

5 parameters. To infer the parameter posterior for each model, we
av e used sev eral numerical tools: (i) a parallel tempering Marko v
hain Monte Carlo (MCMC) sampler PTMCMCSAMPLER (Ellis & van 
aasteren 2017 ); and (ii) MC 3 ( https:// gitlab.in2p3.fr/ stas/samplermc 
c ), both based on the Metropolis–Hastings algorithm (Metropolis 

t al. 1953 ; Hastings 1970 ). For computation of the evidence we
ave used the DYNESTY (Speagle 2020 ) package based on the nested
ampling algorithm (Skilling 2004 ; Skilling 2006 ). In addition, we
ave used the hyper-model method (proposed in Carlin & Chib 
995 , extended in Hee et al. 2015 and applied to PTA in Taylor, van
aasteren & Sesana 2020 ) to obtain Bayes factors without evidence 
 v aluation. In that approach models and their corresponding param-
ters are sampled using a hyper-parameter that switches between 
he models. We compare both approaches whenever possible. For 

ultichain MCMC runs, we check convergence by computing the 
elman–Rubin ratio (Gelman & Rubin 1992 ; Brooks & Gelman 
998 ). Finally, we use the Jensen–Shannon divergence (JSD; Man- 
ing & Sch ̈utze 1999 ) to compare marginalized posteriors across
odels. This is the symmetric version of the Kullback–Leibler 
MNRAS 509, 5538–5558 (2022) 
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