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Abstract

Improved monitoring of potable water is essential if we are to achieve the UN

Sustainable Development Goals (SDGs), specifically SDG6: to make clean

water and sanitation available to all. Typically monitoring of potable water

requires laboratory analysis to detect indicators of fecal pollution, such as ther-

motolerant coliforms (TTCs), Escherichia coli (E. coli), or intestinal enterococci.

However, these analyses are time-consuming and expensive, and recent

advances in field deployable sensing technology offer opportunities to investi-

gate both the spatial and temporal dynamics of microbial pollution in a more

resolved and cost-effective manner, thus advancing process-based understand-

ing and practical application for human health. Fluorescence offers a realistic

proxy for monitoring coliforms in freshwaters with potential for quantification

of potable water contamination in near real-time with no need for costly

reagents. Here, we focus on E. coli to provide a state-of-the-art review of poten-

tial technologies capable of delivering an effective real-time E. coli sensor sys-

tem. We synthesize recent research on the use of fluorescence spectroscopy to

quantify microbial contamination and discuss a variety of approaches (and

constraints) to relate the raw fluorescence signal to E. coli enumerations.

Together, these offer an invaluable platform to monitor drinking water quality

which is required in situations where the water treatment and distribution

infrastructure is degraded, for example in less economically developed coun-

tries; and during disaster-relief operations. Overall, our review suggests that

the fluorescence of dissolved organic matter is the most viable current

method—given recent advances in field-deployable technology—and we high-

light the potential for recent developments to enhance approaches to water

quality monitoring.
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1 | INTRODUCTION

Globally approximately 2 billion people currently lack access to safe drinking water and 3.6 billion people do not have
access to safe sanitation (WHO & UNICEF, 2021). The limited availability of clean drinking water is one of the major
global risk factors for disease and premature death (Fuller et al., 2022). Pathogenic contamination (i.e., bacteria, viruses)
of water resources due to inadequate sanitation systems (leaking latrines, septic tanks) and discharge of untreated sew-
age effluent and wastewater contributes to chronic public health problems. Children aged <5 years are particularly at
risk in low and middle-income countries where diarrheal diseases are one of the leading causes of morbidity (GBD
2019, 2020). Of all mortality due to diarrhea, �60% has been attributed to water quality (Prüss-Ustün et al., 2019), with
ingestion of water contaminated by human or animal waste the main cause. Hence, there is a critical need to improve
access to safe drinking water—to reduce poverty and improve human health and well-being. Sustainable Development
Goal 6 has the aspiration of achieving “universal and equitable access to safe and affordable drinking water” by 2030,
but this requires new approaches to water quality monitoring to ensure that public health interventions can be targeted
as effectively and efficiently as possible (Hannah et al., 2022).

While there has been limited progress in achieving SDG6, poor health and mortality due to contaminated food and
water account for �8% of all global deaths with most deaths in S Asia and sub-Saharan Africa (UN Inter-agency Group
for Child Mortality, 2020). Monitoring of all known waterborne pathogens is unfeasible; but where possible the
established approach is to quantify fecal indicators. The presence of heterotrophic bacteria, indicated by laboratory cul-
turing and subsequent colony count, has been widely used since the late 19th Century (Charles et al., 2020) to deter-
mine fecal contamination. The WHO recommends enumerations of Escherichia coli (E. coli) as the primary indicator of
fecal contamination in drinking water (UNICEF, 2016) but this requires culturing a point sample for 18–24 h. This,
combined with the costs of laboratory analysis, significantly constrains field investigations of drinking water supply
which may experience large spikes in contamination during rainfall events, or due to poor sanitary practices. These
contamination peaks are transient in nature and can be easily missed when sampling is infrequent or if it relies on an
assay that takes several hours by which time the damage from contamination may have already been completed. While
fecal contamination may be highly variable over time (e.g., seasonally) and spatially, detection of E. coli in water sug-
gests a high probability that the source has been exposed to fecal contamination and therefore the presence of other
pathogenic bacteria and viruses can generally be assumed (Edberg et al., 2000). However, the situation may be compli-
cated by factors: there have been suggestions that the survival rates of E. coli outside the enteric environment are poor
(Odonkor & Ampofo, 2013), and may vary with turbidity (Fluke et al., 2019), physiochemical stressors, and nutrient
availability in the water source (Ishii & Sadowsky, 2008).

At present, our understanding of microbial contamination is significantly constrained by the limitations of routine
methods, particularly the more traditional laboratory-based culture methods used to detect E. coli (Figure 1): these are
not amenable to remote locations, or to situations where drinking waters experience episodic contamination. Ideally,
microbial contamination would be determined by portable, low-cost devices which require only minimal training, cir-
cumventing the need for expensive laboratory analyses or trained technicians. Ideally also, the results would be avail-
able in real-time, without the need for intermediate steps such as incubation, which is a requirement of many
laboratory-based methods. This provides the motivation for this article in which we review currently available technolo-
gies capable of delivering an effective real-time E. coli sensor system to analyze potable water. In the following sections,
we consider current common and novel technologies and summarize the principles (and practical considerations)
underpinning the use of fluorescence-based sensors as an E. coli proxy. We conclude by discussing future directions and
challenges in seeking to use fluorescence sensors to attain SDG6.
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2 | SYNTHESIS OF CURRENT CONVENTIONAL METHODS TO ASSESS
MICROBIAL CONTAMINATION

A wide range of technologies exists for detecting microbial contamination, and by extension E. coli, in potable waters.
These include traditional laboratory-based (e.g., Deshmukh et al., 2016) and molecular detection techniques
(Campbell & Kleinheinz, 2020; Esfandiari et al., 2016; Kuo et al., 2021), Biosensors (sub-categorized into electro-
chemical [Bigham, Dooley, et al., 2019; Thakur et al., 2018; Grossi et al., 2013; Velasquez-Orta et al., 2017] and optical
methods), optical detection techniques and fluorescence (Figure 1). These categories are based on the underlying mea-
surement principles for each method illustrating the broad reach of techniques, some of which are widely and routinely
used while others are currently at the more novel, proof-of-concept stage. Some overlap between the categories is inevi-
table given the potential for more hybrid analytical methods. Fluorescence-based techniques constitute an additional
category encompassing different measurement approaches reflecting the rate (and complexity) of recent technological
development. The selection of a method for testing potable water is highly dependent on the setting and expected qual-
ity of the water to be tested.

2.1 | Molecular detection methods

Molecular detection techniques tend to be highly specific and can target individual strains of known pathogens even in
samples with low concentrations (Girones et al., 2010). No culturing is required nor isolation of the organism
(Gilbride, 2021); however, precursor steps are commonly necessary before analysis which creates potential sources of
error. For example, polymerase chain reaction (PCR) relies on amplification and primer stages, with the former all-
owing pathogenic bacteria to be detected at low concentrations although bias can be acquired at both stages resulting
in an overall quantification uncertainty (Gilbride, 2021). False-negative results can occur when investigating environ-
mental samples where matrix components, such as humic acids and metals, inhibit the amplification stage (Girones
et al., 2010). The degree to which matrix substances inhibit amplification is unknown; however, droplet digital PCR
(ddPCR) has been shown to mitigate their effect through dilution (Ibekwe et al., 2020; Stults et al., 2001).

FIGURE 1 The scope and interconnectivity of methods that can be used to measure E. coli in water: Text in green denotes methods

where their use in the field has been demonstrated in the literature; blue text indicates where potential field use has been identified but not

formally demonstrated. Where a method is novel to a particular paper, numbers identify the following references: 1Bigham, Casimero, et al.

(2019); 2Esfandiari et al. (2016); 3Wildeboer et al. (2010); 4Gunda and Mitra (2016); 5Sherchan et al. (2018).
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PCR-based techniques generally cannot distinguish between alive and dead target DNA, nor the presence of DNA
in the environment leading to potential over-estimation (Paul et al., 1989), although there has been some progress
through the development of PMA-qPCR and reverse transcription PCR which targets RNA; however, these have had
only limited success (Deshmukh et al., 2016; Ju et al., 2016). While qPCR techniques are both sensitive and faster, they
are unreliable in detecting 1 cfu/100 ml of E. coli or Enterococcus although they may be useful for early warning and
pre-screening (Krapf et al., 2016; Walker et al., 2017). Fluorescent in situ hybridization (FISH) can distinguish between
live/dead DNA but is far less sensitive, and increasing the target concentration in samples can lead to increased inhibi-
tion and uncertainty (Gilbride, 2021; Girones et al., 2010; Haffar & Gilbride, 2010). While PCR techniques are a robust
starting point for molecular detection methods, metabarcoding and metagenomics are extensions of the field that take a
sequencing approach to identifying and quantifying microbes, while outside the scope of this review owing to their
complexity and specialist nature, more detail can be found in Clark et al. (2018).

While molecular detection techniques produce highly specific results, they also require a significant time invest-
ment, training, and technological investment if they are to be used successfully and that produces a significant cumula-
tive cost per analysis, both in terms of finances and time taken to achieve this. There is also a lack of standardization
across and between the methods with multiple options for each stage, making cross-comparison difficult
(Gilbride, 2021). Hence, despite potential, there are currently no field deployable sensors using molecular detection
methods.

2.2 | Biosensors

Biosensors are devices that utilize biological material to produce a measurable signal related to the target biological or
chemical species. The main feature of biosensors is the transducer element that monitors the rate of biochemical reac-
tion/interactions in the target species such as E. coli (as reviewed by: Alonso-Lomillo et al., 2010; Razmi et al., 2020;
Rainbow et al., 2020).

Many E. coli-focused biosensors work on the principle of detecting β-D-glucuronidase, an enzyme present in most
E. coli strains. This enzyme is also present in some other members of the Enterobacteriaceae family, however it is gener-
ally not present in sufficiently high concentrations to interfere with E. coli detection and there are existing mitigation
techniques that can be utilized if it is suspected false positive bacteria may become an issue (Tryland & Fiksdal, 1998).
Techniques that target either β-D-glucuronidase, or β-D-galactosidase used for coliform detection, generally involve a
culture media and optical response such as a color change (Gunda & Mitra, 2016), or fluorogenic product (Hesari
et al., 2016). As with other methods, the presence of other bacteria and substances that can provide a response within
the criteria of the test, can lead to an erroneous inference (Fiksdall & Tryland, 2008). The rapidity of enzyme-based bio-
sensors makes them an attractive option and an increasing number of methodologies have been developed to use these
tests either in the field (Gunda & Mitra, 2016; Hesari et al., 2016) or as an online, autonomous, installation (Burnet
et al., 2019; Cazals et al., 2020).

The requirement for easily operated microbiological tests in remote locations and real-time/near real-time data has
spurred additional and increasingly novel monitoring approaches. For example, there has been some success with
voltammetry pH sensing techniques using coliform-specific enzymes. The b-d-galactosidase enzyme, found in both coli-
forms and E. coli specifically, participates in the conversion of lactose through a process that facilitates a change in pH
that can then be measured to indicate the presence of coliforms (Bigham, Casimero, et al., 2019). There has also been
the highly selective use of cyclic voltammetry in conjunction with L-cysteine functionalized iron nanoparticles, where
the amino group L-cysteine is used due to its ability to target and bind to proteins of pathogenic bacteria (Panhwar
et al., 2019). These examples demonstrate current concepts that could potentially be deployed in commercial sensors,
given the potential for lower limits of detection and presence/absence monitoring. However, while biosensors have yet
to satisfy the required presence/absence monitoring threshold, recent technological developments hold the promise of
more successful future field applications.

2.3 | Optical and fluorescence-based approaches

Fluorescence-inclusive assays to detect coliforms and E. coli encompass a wide range of approaches. Defined substrate
technology (DST) is an emerging technology in which a simplified laboratory assay is created to quantify E. coli and
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coliforms, based on the fluorogenic reaction between β-D-glucuronidase possessing E. coli and 4-methyl-umbelliferone
(MUG) (IDEXX, 22022; Tiwari et al., 2016). Despite the requirement for an incubation stage, results from DST systems
tend to be easier to interpret, and are often displayed through a color change compared with traditional culture-based
techniques. Furthermore, the 24 h turnaround time and the lack of any requirement for laboratory training have made
them attractive options for field campaigns, with the investigation into off-grid methods of incubation (Bernardes
et al., 2020).

Flow cytometry, combining microfluidics and fluorescence, enables targeting of coliforms based on characteristics,
that is, alive or dead (Cheswick et al., 2019; Hammes et al., 2012), bacterial species and individual strains, for example,
E. coli O157 via the use of fluorescent probes (McCarthy & Culloty, 2011; Safford & Bischel, 2019; Vital et al., 2012).
Direct enumeration of samples is possible via staining with fluorometric dyes, however, while FCM provides rapid
results during analysis, sample pre-processing is time-consuming and several incubation and filtration steps may be
required. Hence, in most cases, this approach is normally used in the laboratory (Ou et al., 2017; Yu et al., 2015),
although online systems have been recently used in drinking water treatment plants (Favere et al., 2020). While this
seems feasible at specific sites, FCM is currently unsuited to field use or as a roving method.

Fluorescence can also be utilized as a standalone method for laboratory and field-based measurements. Traditional
excitation-emission matrix (EEM) fluorescence spectroscopy entails the scanning of a range of excitation and emission
wavelengths to construct a 3D “EEM” (Figure 3). This approach can target specific organic matter groups which are
excited in the UV and emit in the UV-blue range. The wavelengths can then be displayed on a 3D matrix which also
provides information on the fluorescence intensity (Hudson et al., 2007). More selective fluorescence techniques include
synchronous fluorescence spectroscopy (SFS), in which excitation and emission wavelengths are scanned over a fixed
wavelength interval (Hur et al., 2010). Recently, fluorescence investigations have been further refined using targeted
wavelength fluorescence field deployable, by targeting known excitation/emission pairs, such as tryptophan-like fluores-
cence (Khamis et al., 2017; Sorensen, Vivanco, et al., 2018). While more novel experiments can be done using reagents
to trigger a fluorescence response (e.g., Wang et al., 2022), field deployable fluorescence can capitalize on the intrinsic
fluorescence of different molecules of organic matter (OM) to identify different functional groups present such as pro-
teinaceous compounds and humic and fulvic acids. In situ fluorescence can also yield instantaneous data, at a fine tem-
poral resolution.

Currently, non-fluorescence-based field identification of E. coli is generally limited to proof-of-concept designs
(e.g., Esfandiari et al., 2016; Gunda & Mitra, 2016; Thakur et al., 2018) owing to a lack of suitable methods. However,
several fluorescence-based studies have specifically targeted E. coli in the field (Baker et al., 2015; Bridgeman
et al., 2015; Cumberland et al., 2012; Nowicki et al., 2019; Simoes et al., 2021; Sorensen, Vivanco, et al., 2018; Ward
et al., 2021). Herein, we focus on fluorescence in the context of field-based identification and quantification of coliforms
in potable water.

3 | RECENT DEVELOPMENTS IN FLUORESCENCE SPECTROSCOPY

3.1 | Specific wavelengths of interest

The tryptophan-like fluorophore has excitation/emission pairs at 280/350 nm and 230/350 nm, respectively. Trypto-
phan fluorescence is facilitated by the indole group attached to the molecule and is often referred to as “Tryptophan-
like fluorescence (TLF)” which encompasses both the amino acid identifier and other compounds, such as free indole,
that fluoresce at the same wavelength (Aiken, 2014). In environmental fluorescence spectroscopy, the focus is typically
on the wavelengths 280ex/350–60em nm as this has been shown to be a proxy for biological activity in water (Box 1)
(Baker, 2001; Bedell et al., 2020; Bridgeman et al., 2013; Carstea et al., 2010; Cumberland et al., 2012; Sorensen, Baker,
et al., 2018).

In recent years, attempts have been made to use TLF as a proxy for specific parameters such as biochemical oxygen
demand (BOD; Khamis et al., 2017, 2021), total or fecal coliform counts, (Sorensen, Diaw, et al., 2020; Ward
et al., 2020) and E. coli (Baker et al., 2015; Fox et al., 2017; Sorensen, Baker, et al., 2018; Ward et al., 2021). This has
been facilitated by the development of in situ sensors that target specific wavelength ex/em pairs, as opposed to scan-
ning a full EEM in a laboratory that requires a bench-top spectrophotometer. Other wavelength pairs have been used in
a complementary way, to target different humic peaks.

GUNTER ET AL. 5 of 19
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3.2 | Common interference with fluorescence signals

Fluorescence in both freshwater and marine environment is susceptible to a range of interferences which can affect the
fluorescence signal (Table 1). Some interferences can be mitigated, such as via temperature correction algorithms, but
others are increasingly complex and reliable correction in real-time has not yet been achieved. For a field deployable
sensor, it is advantageous to process statistical corrections instantaneously, but for some scenarios a static coefficient
would be ineffective if thresholds are reached requiring a greater or lesser level of compensation.

While methods of temperature compensation have been suggested (Watras et al., 2011), complications arise as the
level of compensation required differs between fluorophores and can also be influenced by the environmental setting
(Carstea et al., 2014). Even once a compensation coefficient has been established, this can still vary between different
sensors (Khamis et al., 2017). The discussion of universal correction factors is interesting; however, for interferences
which have multiple complicating facets, the likelihood of a reliable correction factor is currently small. For example,
two water samples can have the same turbidity value but very different effects on scattering and absorption when the
particle size distribution varies (Khamis et al., 2015). At the very least, a set of correction factors using additional sam-
pling data from the full range of conditions would be required to have confidence in the data output.

The development of such correction and compensation factors is also challenging, not least because the results tend
to differ between laboratory and field samples, as noted for both pH, turbidity, and inner filter effect (IFE) (Downing
et al., 2012; de Oliveira et al., 2018; Baker et al., 2007; Table 1). In terms of potable water, IFE is probably less of an
issue as organic loads are generally low, particularly when compared with wastewater. However, in cases of drinking
water contamination, IFE should still be considered when using fluorescence-based methods because of the risk of IFE
from the contaminant. While research is advancing, fluorophores themselves can differ in terms of their reaction to
interference and therefore all fluorescence peaks need individual consideration; for turbidity, Peak C is the main fluo-
rescent peak of interest whereas Peak T has comparatively less data available (Carstea et al., 2020; Lee et al., 2015).

4 | FLUORESCENCE FOR REAL-TIME DETECTION OF E. COLI

4.1 | Relationship between tryptophan-like fluorescence and E. coli

Protein-like fluorescence can be used as a proxy for fecal coliforms/thermotolerant coliforms, and there has been inter-
est in using fluorescence to detect E. coli in potable water. E. coli can be identified using TLF wavelength pairs, specifi-
cally the higher excitation pair 270–280ex/350–360em. A raw fluorescence signal at these wavelengths can be correlated
with E. coli counts due to the presence and use of the aromatic amino acid tryptophan in the bacterial membrane (Fox
et al., 1990). However, when considering the use of fluorescence data as a direct proxy for E. coli, the components that

BOX 1 The principles of fluorescence spectroscopy

Fluorescence is one of several components that make up the sub-group photoluminescence; the emission of
light occurs due to de-excitation of an electron from an electronically excited state (Valuer, 2001). Fluorescence
was first recognized by George Stokes in 1852 and refers to an electron that has been excited via irradiation
returning to the ground state via the emission of a photon (Figure 2; Reynolds, 2014; Lakowicz, 2006). A fluo-
rophore, sometimes referred to as a fluorochrome, is a chemical compound, either part of a molecule or inde-
pendent, that can fluoresce following excitation with a light source.

Within aquatic dissolved organic matter, several intrinsic fluorophores can be identified with known excita-
tion and emission wavelength pairs (Figure 3). Early characterization studies identified five fluorescent DOM
peaks in sea water, two protein-like and three humic-like (Coble, 1996). Protein-like fluorescence has three
intrinsically fluorescent amino acids; tryptophan, tyrosine, and phenylalanine (Lakowicz, 2006). Of these, tryp-
tophan is the dominant fluorophore, with the longest extinction coefficient and the strongest fluorescence
intensity (Aiken, 2014; Lakowicz, 2006).

6 of 19 GUNTER ET AL.
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TABLE 1 Summary of the main principles and compensation approaches for common interferences for fluorescence-based methods

Interference Underlying principle Effect and compensation Key references

Temperature Increasing water temperature increases
collisional quenching of electrons, facilitating
a non-radiative return to the ground state.

Increase in temperature can suppress
fluorescence intensity.

Development of algorithms can compensate in
real-time, with prior calibration.

Baker (2005)
Carstea et al.
(2014)

Khamis et al.
(2015)

Watras et al.
(2011)

Turbidity Suspended sediment and particulate matter
within water can alter how light within the
water is scattered and absorbed.

Complex to quantify scattering and absorbance
independently and cumulatively. Empirically-
based corrections must consider sediment
composition and particle size distribution.
General algorithms are inefficient due to
differences between fluorometers and
turbidity sensor construction.

de Oliveira et al.
(2018)

Downing
et al., 2012

Khamis
et al., 2015

pH Higher pH introduces conformational change
resulting in increased exposure of the
molecule and therefore a higher fluorescence
intensity.

Results differ between laboratory and field
samples. Suggested main peak intensity
remains stable over “normal” pH range (5.5–
7.5).

Baker et al.
(2007)

Hudson et al.
(2007)

Reynolds, (2003)
Groeneveld
et al. (2022)

Inner filter
effect (IFE)

Inner filtering occurs due to absorption causing
attenuation of either the excitation (primary)
or emission (secondary) light.

Correction can be achieved using absorbance
measurements, e.g., UV254 or a broader
spectrum. Thresholds for correction are
debated depending on the water matrix and
fluorophores of interest.

Valuer (2001)
Ohno (2002)
Lakowicz (2006)
Murphy et al.
(2010)

Kothawala et al.
(2013)

Goffin
et al. (2020)

FIGURE 2 Simplified Jablonski diagram showing the electron movement between different energy levels in response to excitation by a

photon.
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make up the detectable TLF signal must be considered carefully. The term “fluorescence fingerprint” has typically been
used when describing the fluorescence characteristics of DOM in a water sample in the context of the entire EEM; how-
ever, individual peaks within the EEM could also be considered using the same term.

A TLF “fingerprint” or peak can have a very different composition of compounds and intensity both between and
within water samples/sources (Coble et al., 2014). For E. coli, the two main related fluorescent molecules are trypto-
phan and indole; E. coli produces indole from lactose and tryptophan (Cumberland et al., 2012). However, some of the
TLF signal may be unrelated to the presence of E. coli cells (Coble, 1996; Sorensen, Baker, et al., 2018) and as such, fluo-
rescence data requires careful validation using a secondary method. It is also important to consider the fluorescence fin-
gerprint as the total E. coli related portion of the signal can vary in its fluorophore composition between different
samples (Baker, 2001). For example, indole fluoresces at a 33% greater intensity on its own than when it forms part of
the tryptophan molecule (Sorensen, Baker, et al., 2018). Indole is produced via the tryptophanase enzyme (Li &
Young, 2013) and is utilized as both an intracellular and extracellular signal within bacteria (Gaimster et al., 2014;
Lee & Lee, 2010; Wang et al., 2001). The production of indole by E. coli can vary depending on a range of internal and
external stressors (Li & Young, 2013; Sorensen, Baker, et al., 2018) highlighting how complex just one element of the
TLF signal can be, if trying to relate it to an accurate number of E. coli.

Understanding the cellular nature of TLF in water, and whether there is a predominance toward either intracellular
or extracellular material can yield insight on the likelihood that the detected signal relates to E. coli; and therefore, the
potential occurrence of false positive readings (Sorensen, Carr, et al., 2020). In the case of laboratory-cultured E. coli, it
has been shown the majority of TLF was intracellular (Fox et al., 2017) whereas Sorensen, Diaw, et al. (2020) demon-
strated that groundwater TLF was predominantly extracellular owing to filtration through the aquifer matrix. Indeed,
the size fractionation of fluorescent DOM has been an area of interest in the field for a while (Baker et al., 2007;
Bridgeman et al., 2013; Carstea et al., 2018; Sgroi et al., 2020) and is something that deserves continued attention going
forward. In addition, the environmental conditions (i.e., hydrology and geology) at the point of sample can influence
the observed fluorescent organic matter fraction, a complex issue which is beyond the scope of this review.

4.2 | Field-deployable, in situ fluorometers

Given the current lack of technology for commercially available real-time coliform and E. coli monitoring in the field,
field deployable fluorescence has some useful features. Targeted wavelength fluorometers are increasingly compact
making them highly portable, either as standalone sensors or as part of a multiparameter monitoring platform. Data
can be acquired reagent-less with sensors either deployed directly into the water source/sample of interest or with water
collected in a small cuvette. The ease of operation at the point of measurement is one of the most attractive features of

FIGURE 3 Excitation emission matrix (EEM) showing common aquatic OM fluorophores in a wastewater impacted river sample. Peaks

derived from Coble (1996), intensity and range can vary betwen sample source. RU: Raman units.
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field deployable fluorometry as it allows the sensors to be operated by anyone, which is important when considering sce-
narios following a natural disaster where relief efforts are led by volunteers and aid workers, not laboratory
technicians.

4.2.1 | Calibration

Fluorometers are normally calibrated using a synthetic fluorescence standard of known concentration. LED-based
fluorometers experience minimal drift from their initial baseline, and consume less energy than their deuterium
lamp counterparts, meaning the sensor should not require re-calibration before every deployment. However, output
is not necessarily easily interpreted as fluorescence data can take the form of either a relative fluorescence unit (QSU
or Raman units R.U.) or parts per billion (PPB), which requires a calibration to a known standard for each peak.
None of the options have a quantitative relationship to thermotolerant coliforms / E. coli without additional investi-
gation. A growing body of work is considering categories based on coliform abundance in relation to the raw fluores-
cence reading (Nowicki et al., 2019; Sorensen, Baker, et al., 2018); however, the relationship changes between sites
according to water source and associated matrix components. The relationship is currently based on testing for E. coli
using at least one other method and then correlating the results with simultaneous fluorescence intensity readings.
For accurate calibration, samples need to be taken over a wide range of expected conditions which is not always feasi-
ble. Once a calibration is established, this can be applied to some monitoring platforms so that the coliform count is
added to the output in real-time. While there is a substantial discussion around method selected, the whole process
can be a source of error and introduces an element of laboratory work, at least in the initial phase, which limits the
use of this technology in remote locations. While there is an argument for “global” calibrations based on prior work,
there has been some success in quantifying the TLF–BOD relationship (Khamis et al., 2021). An attempt at a global
calibration would not be robust without prior knowledge of the water source given the potential effect of factors such
as IFE; global calibrations may never be applicable to a wide range of environments and may only suit specific
applications.

4.2.2 | Limit of detection

Drinking water quality standards tend to use methods that work on a simple presence/absence monitoring princi-
ple and the ability to differentiate between 0 and 1 coliforms of a fecal indicator bacteria present in a sample, com-
monly E. coli and I. enterococci (Martins, 1991; Rice et al., 1989). As such, all new methods that seek authentication
with legislation must meet the same standard, usually with a defined positive and negative error percentage
threshold.

Currently, commercial fluorescence technology cannot reliably detect the difference between 0 and 1 coliforms
due to false positives and negatives. However, not all products need a definitive 0–1 differentiation with threshold
minimums being set instead; a UNICEF (2016) procurement profile set out the threshold at 10 cfu/100 ml or less
with a false negative and positive boundary of <10%. Defining lower limits of detection is an area of considerable
interest given the possibility to use fluorescence for bacterial enumeration. Studies focus on different fluorometer
designs to lower the detection limit, Bedell et al. (2020) achieved a LOD of 4 cfu/ml of E. coli and Simoes et al.
(2021) achieved 0.1 μg L�1 of synthetic L-tryptophan. However, where experimental methods use ultrapure
deionized water instead of more representative matrix waters, the LOD has to be challenged if it were applied to a
field water sample with a more complex fluorescent fingerprint. Studies that collect information on the wider EEM
show that the intensity of the different fluorescence peaks vary according to water source (Baker, 2001; Carstea
et al., 2010; Wells et al., 2017). Targeted wavelength field deployable fluorometry is fluorophore specific which does
not allow the same quantity of information to be collected, although multiple fluorometers can be utilized that tar-
get a range of wavelengths.

It is well recognized that a wide range of compounds fluoresce in the optical space covered by most field deployable
fluorometers. This can, in some cases, lead to overlapping fluorescence signals. For example, polycyclic aromatic hydro-
carbons (PAHs) can fluoresce in the TLF emission region and can be a problem when monitoring urban rivers (Carstea
et al., 2010), although less of an issue for drinking water samples. There can also be overlap from some humic-like fluo-
rescence (HLF) wavelengths, particularly when concentrations are elevated. This is more common with environmental
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(riverine) samples but can be accounted for using an instrument set-up that captures multiple peaks (Sorensen,
Vivanco, et al., 2018). In some instances, the overlap from HLF wavelengths can be related to E. coli and coliform activ-
ity as it is produced in different stages of bacterial cell growth (Fox et al., 2017). Studies have found that under certain
conditions HLF could raise the TLF baseline making the signal less sensitive to changes under low concentrations
which will affect the LOD (Ward et al., 2020) and therefore should be considered when using fluorescence sensing in
environmental water samples.

Studies which evaluate the signal of laboratory-grown bacteria at a single, usually stationary, stage of the growth
curve do not necessarily reflect the wider context of fluorescence associated with E. coli. Tryptophan is used in basic
metabolic growth processes throughout the growth and development of E. coli coliforms, linking it to both cell number
and cell activity (Fox et al., 2017). An increasing body of research also questions whether TLF is better at indicating the
presence of E. coli rather than enumerating it, because of the link to activity where tryptophan and cellular exudates
vary at different stages of growth (i.e., the highest fluorescence intensity might not correlate with the highest number of
cells). With regard to potable water testing, consideration should be given to the likely growth status of E. coli within
the sample. Studies conclude that E. coli survival outside the intestinal tract varies depending upon several features
including temperature, strain variation, nutrient availability, and predation (Chekabab et al., 2013; Ishii &
Sadowsky, 2008; Suzuki et al., 2019). The potential for growth and regrowth of E. coli in the environment is lower than
straight survival, yet there is a suggestion that it could be possible particularly where biofilms or communities of periph-
yton form (Abberton et al., 2016; Suzuki et al., 2019). If using field deployable TLF sensors for E. coli detection, while
the activity portion of the signal should not be dismissed, this particular effect may have little practical impact on the
resulting data.

4.2.3 | Tryptophan-like fluorescence and E. coli relationship

The relationship between the validation method and the raw fluorescence signal can then be used to “calibrate” the
instrument and data outputted (Khamis et al., 2021). Within the literature, several different techniques have been
trialed to validate fluorescence data (Table 2). The most common are traditional laboratory culture-based techniques
followed by the use of flow cytometry. At present, no single method has been identified as “best,” leaving an interesting
challenge to the accuracy of fluorescence data when used as a specific proxy for E. coli.

4.2.4 | Culture-based methods

Typically, bacterial enumeration in water quality assessments will use a culture-based method, such as membrane fil-
tration (MF) which is used as a standard across the water industry (ISO, 2014). Consequently, MF is commonly used to
validate fluorescence data; however, direct comparison and correlation of fluorescence data with culture data from MF
have had mixed results. Some studies have shown a consistently high correlation across all sites surveyed (Cumberland
et al., 2012) whereas others have demonstrated a good overall correlation but shown inconsistency between individual
sites (Baker et al., 2015).

Using MF as a method for fluorescence data validation is not straightforward. There are a variety of different culture
mediums available for use in MF methods (Maheux et al., 2008), and the basis on which they work also varies; that is,
enzyme detection, lactose confirmation, or the selective inhibition of certain features/organism processes (Maheux
et al., 2008). However, the inability to detect viable but non-culturable bacteria (VBNC) is a well-recognized disadvan-
tage (Garcia-Armisen & Servais, 2004; Oliver, 2005) that requires additional methods or steps to circumnavigate
(e.g., Guo et al., 2021; Thulsiraj et al., 2017).

Conversely, fluorescence in its raw form is primarily defined as a measure of microbial activity and as such might
not be a suitable proxy for a direct enumeration method (Fox et al., 2019). This was illustrated by Bridgeman et al.
(2015) in a low-contamination environment, where a correlation between the fluorescence signal and MF could not be
achieved at any sites as the cultures were returned with no colonies grown. Filtration at 0.45 μm could also be a compli-
cating factor in equating MF with targeted wavelength fluorescence, as filtration can remove the fluorescent matter
bound in microbial cells. The degree to which this occurs is inconsistent between different wavelength pairs, with TLF
being more affected than HLF (Baker et al., 2007; Khamis et al., 2017).
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4.2.5 | Flow cytometry

Flow cytometry (FCM) takes an entirely different approach to bacteria enumeration than MF as a cultivation-
independent method (Hammes & Egli, 2010). FCM utilizes different fluorescent dyes to identify bacteria, be it a total
enumeration (e.g., Hammes et al., 2008), an assessment of bacterial viability (e.g., Ou et al., 2017), or targeting specific
strains through antigen binding FITC (e.g., McCarthy & Culloty, 2011; Vital et al., 2012). As a cultivation-independent
method, it avoids the traditional problems of VBNC detection and the “great plate count anomaly” (Gillespie, 2016;
Van Nevel et al., 2017); which makes it an interesting method to validate fluorescence-based E. coli data.

While MF failed to correlate with fluorescence, due to the low contamination (e.g., Bridgeman et al., 2015), FCM-
derived total cell counts did correlate with fluorescence. A similar positive correlation between fluorescence data and
FCM has been subsequently found in other studies (Sorensen, Baker, et al., 2018; Sorensen, Diaw, et al., 2020). The fact
that these examples use “total cell counts” and are not only detecting E. coli is likely a reason for the more robust corre-
lation in comparison to MF.

As previously mentioned, TLF signals can be associated with a wide range of matter both related and unrelated to
E. coli. FCM is, in principle, able to detect a wider range of bacteria than culture-based methods, and in this case the
techniques share more similarities than fluorescence, with a culture-based MF method. The broader range of bacteria
captured by FCM is likely responsible for the stronger correlation between the two. However, FCM is not shown to be a
definitively “better” method of validation for fluorescence data than MF as it does not always return the stronger corre-
lation; Sorensen, Baker, et al. (2018) found little difference in the correlation between fluorescence and both validation
methods.

TABLE 2 Summary of methods currently used to validate fluorescence–E. coli relationship

Method Principle Time to results
Results
format Studies

Lab culturing
plate count
via
membrane
filtration

Filtering of samples through a
membrane filer, usually 0.45-μm pore
size, to capture coliforms on agar.
Agar will isolate bacterial species by
identifying unique factors, e.g., lactose
positive.

>12 h CFU/ml Bedell et al. (2020)
Bridgeman et al. (2015)
Cumberland et al. (2012)
Simoes and Dong (2018)
Sorensen, Carr, et al. (2020),
Sorensen, Diaw, et al. (2020),
Sorensen et al. (2015);
Sorensen, Baker, et al. (2018)

Ward et al. (2020), Ward
et al., (2021)

Nowicki et al. (2019)

Flow cytometry Microfluidics whereby fluorescent dyes
are used to tag both alive and dead
cells for enumeration.

<1 h (including
staining and
incubation as
FCM is
instantaneous)

Total bacterial
cells (TBCs)

Bridgeman et al. (2015)
Sorensen, Carr, et al. (2020),
Sorensen, Diaw, et al. (2020)

Colilert Defined substrate technology using
OPNG and MUG. Incubate at 35�C.

E. coli metabolize MUG and create a
fluorogenic product.

Coliforms metabolize OPNG turning it
yellow.

24 h Presence/
absence,
MPN/100 ml

Baker et al. (2015)
Cumberland et al. (2012)

Compartmental
Bag Tests

X-Gluc substrate metabolized by E. coli
causing color change of water to blue.
Incubate at 25�C–44.5�C.

Additional growth medium MUGal
which can be metabolized by
coliforms and turns red under a
365 nm UV light.

20–48 h Presence/
absence,
MPN/100 ml

Ward et al. (2021)
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The clear potential issue in the use of FCM for validation of fluorescence data when pertaining to E. coli is that, if
using a non-selective bacterial stain, it will capture E. coli and any other bacterial cells present. This can cause correla-
tions which are unrelated to the presence of E. coli when accounting for something both methods have detected. Inter-
estingly, Sorensen, Carr, et al. (2020) found that when comparing thermotolerant coliforms (TTCs) enumerated via MF
and total bacterial cell (TBC) counts from FCM in groundwater, TLF offered a better predictor of TBCs. There was also
a close correlation between TBCs and humic-like fluorescence, suggesting the source of the TLF in those samples was
unrelated to E. coli or other fecal indicator bacteria and indicating the potential to use fluorescence to identify the
organic matter signals which are most likely to be associated with a high abundance of E. coli.

5 | REALIZING THE POTENTIAL OF SENSOR-BASED TECHNOLOGY:
WAYS FORWARD

Poor water quality remains a substantial public health issue and there are considerable challenges if SDG6 is to be
achieved by 2030 (Hannah et al., 2022). A reorientation of approach in the way we conduct water quality monitoring is
required to overcome existing challenges along with a wider consideration of the standards used to evaluate new technol-
ogy where this has the potential to improve water quality. Accurate detection of E. coli as a fecal indicator bacteria (FIB)
using portable and time-efficient methods must be a priority; however, culture-based assays remain enshrined in legisla-
tion. While assay-based methods still have an important contribution, there are wider questions concerning their accuracy
and the technical requirements which mean that heterotrophic plate counts (HPCs) are unsuited as a roving, real-time
water quality assessment method. Despite the known accuracy issues, HPCs have become the standard against which
new methods are judged, without regard for any differences in the monitoring approach. In contrast, fluorescence pro-
vides a more thorough assessment of OM content. Fluorescence is also versatile and not limited to detection of E. coli but
can also provide surrogates for BOD, TOC alongside more general microbial activity and pollution indication. The current
state of fluorescence technology renders it unsuitable for use as a direct quantification method. However, it has consider-
able potential as a rapid assessment tool that can function without the need for reagents, specialist training, and other
constraints of pre-existing methods. Field deployable fluorescence spectroscopy can thus be an important component of a
wider suite of monitoring tools that together can optimize microbial water quality monitoring to establish (immediately)
the risk of contamination. While the potential of other approaches using molecular detection and biosensors has been
highlighted in this review, and by others, factors including cost, technical expertise required for operation, and the tech-
nology readiness level prevents them from being viable alternatives at this point in time for a field deployable, real-time
sensor. Fluorescence sensor technology is at a pivotal stage in development, already commercially available in a field-
deployable form however moving forward with E. coli detection is not without its own challenges.

5.1 | Challenges to validation

The limited number of studies using fluorescence to detect E. coli complicates attempts to determine the most effective
method of validation. The raw fluorescence signal is complex but comparing it to a method like MF/heterotrophic plate
counts, which has well-established limitations that do not mirror fluorescence data, potentially weakens it's use as a
tool to detect microbial contamination and E. coli, more in some environments than others. This has the potential to
create confusion and false negatives when the fluorescence data directly contradicts the culture data, as observed by
Bridgeman et al. (2015). Due to the nature of fluorescence as a proxy, this could report as a genuine negative with fluo-
rescence yielding from other TLF-producing components within the sample or as a false negative, whereby the E. coli
present were in a viable but non-culturable state and therefore still posing a risk. There is, therefore, a question regard-
ing the use of MF methods for direct validation via enumeration when fluorescence is technically more able to capture
an additional level of information than MF. There could be a risk of underestimating the usefulness of fluorescence as a
metric for E. coli, TTCs, and so on, if the method it is being compared with is ill-suited for comparison.

From published studies, FCM presents an interesting alternative however it is a technical method which requires
specialized equipment. Culture-based methods are also to some extent commercially available in easy-to-use kits
(Nowicki et al., 2019; Ward et al., 2021). The topic of filtration can confound all three methods as, with fluorescence, fil-
tering is a fine balance between removing optical interferences and removing fluorescent organic matter (Baker
et al., 2007; Khamis et al., 2017). MF requires filtering at 0.45 μm whereas microfluidic flow cytometry requires a
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smaller mechanical filter to avoid instrument clogging (Cheswick et al., 2019). This poses challenges to validation as
variability between methods will depend on the proportion of the fluorescence that is extracellular versus intracellular.
While these could be significant complicating factors, they do not render validation impossible but rather indicate that
further work is needed to assess best practice and ensure that a robust relationship can be established across a range of
environmental conditions.

Considering the potential future use of a real-time, field deployable fluorometer if validation needs to take place then
the method must be something that can be carried out easily, or it will severely limit the application of such a sensor.
This issue of validation is perhaps one of the biggest issues facing fluorescence as a method of E. coli detection moving
forward. Current best practice involves two independent methods to verify the fluorescence data which, although labo-
rious in many ways, should provide mitigation to the inconsistencies between E. coli measurement techniques.

5.2 | Future directions

The field of water quality monitoring is being transformed by the availability of new technology which requires contin-
ual re-evaluation and questioning of our pre-existing knowledge and methodological techniques to ensure that monitor-
ing goals are achieved. Moreover, there have been recent questions over the suitability of various FIB in water
treatment plants or in situations of rapid environmental change where there may be inconsistent correlations, for exam-
ple, with viruses (Teixeira et al., 2020). While E. coli remains a robust indicator of fecal contamination, fluorescence is
providing alternative approaches to monitoring which are not just limited to E. coli and BOD as considered in this
review. The potential to use fluorescence for virus monitoring has yet to be explored in detail, although there has been
some exploratory work in this area (Alimova et al., 2007; Owoicho et al., 2021).

Technological developments are advancing applications of field deployable fluorescence spectroscopy given improve-
ments in both the detection limit and in quantifying interferences to improve the minimum detection limit. In terms of
the “field deployable” aspect, fluorescence technology is still relatively young but recent progress highlights its potential
as a practical and useful technique. Moreover, field deployable fluorescence targeting multiple wavelength pairs has the
potential to yield far more information about water quality than a simple culture assay, thus aiding quick diagnosis of
potable water safety. At a time when water policies are constantly evolving, with laws becoming more stringent for pol-
lution detection (e.g., EPA, 2013) and the threshold for “good” water quality being pushed ever higher (Hannah
et al., 2022), the need for spatiotemporally resolved information on water quality is paramount. The “invisible water cri-
sis” can only be tackled with increasing information and monitoring capabilities to understand every facet of pollution
from occurrence to legacy and how multipollutant cocktails interact with the environment and the implications for
human health (Damania et al., 2019). To facilitate these advances a paradigm-shift is required, there needs to be more
incentives for water managers and governmental agencies to explore the potential new technologies and equally for
technological innovation that can drive down the unit cost of field-deployable instrumentation. We also need to recog-
nize the limitations of current water quality monitoring programs in many parts of the world. This partly reflects the
costs of instrumentation and laboratory analyses, and highlights the wider benefits associated with field-deployable sen-
sor technologies provided sensor output can be appropriately validated.
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