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Whole-genome sequencing of chronic 
lymphocytic leukemia identifies subgroups 
with distinct biological and clinical features
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Pavlos Antoniou11, Melanie Oates12, Doriane Cavalieri13, Genomics England 
Research Consortium*, CLL pilot consortium, Jane Gibson    14, Anika V. Prabhu2, 
Ron Schwessinger4, Daisy Jennings2, Terena James11, Uma Maheswari11, 
Martí Duran-Ferrer    15, Piero Carninci2,16, Samantha J. L. Knight17, 
Robert Månsson18, Jim Hughes    4, James Davies4, Mark Ross11, David Bentley11, 
Jonathan C. Strefford    19, Stephen Devereux    20,21, Andrew R. Pettitt22,23, 
Peter Hillmen24, Mark J. Caulfield25,26, Richard S. Houlston    3, 
José I. Martín-Subero16,27 & Anna Schuh    1 

The value of genome-wide over targeted driver analyses for predicting 
clinical outcomes of cancer patients is debated. Here, we report the 
whole-genome sequencing of 485 chronic lymphocytic leukemia patients 
enrolled in clinical trials as part of the United Kingdom’s 100,000 Genomes 
Project. We identify an extended catalog of recurrent coding and noncoding 
genetic mutations that represents a source for future studies and provide 
the most complete high-resolution map of structural variants, copy number 
changes and global genome features including telomere length, mutational 
signatures and genomic complexity. We demonstrate the relationship 
of these features with clinical outcome and show that integration of 186 
distinct recurrent genomic alterations defines five genomic subgroups 
that associate with response to therapy, refining conventional outcome 
prediction. While requiring independent validation, our findings 
highlight the potential of whole-genome sequencing to inform future risk 
stratification in chronic lymphocytic leukemia.

Chronic lymphocytic leukemia (CLL), the most common adult hemato
logical malignancy in Western countries, is characterized by diverse 
treatment outcomes even in the era of targeted agents. The full comple-
ment of genomic events contributing to this clinical diversity have yet 
to be determined. Thus far, only mutations in TP53 influence clinical 
practice1–7. Other prognostic markers, including the immunoglobulin 

heavy chain variable (IGHV) region mutational status, and existing 
molecular classifications have limited predictive value in individual 
patients7–10.

Previous sequencing studies of CLL have focused largely on muta-
tions affecting protein-coding genes7–13, and whole-genome sequenc-
ing (WGS) has been reported for only a small number of CLL patients, 
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criteria (Methods). While these are potentially interesting, they were 
not considered to be putative CLL drivers and were not taken forward 
for downstream analyses (Supplementary Table 9).

A major advantage of WGS is the power to identify inversions and 
translocations. We identified 1,248 inversions (Extended Data Fig. 2a;  
Methods) with frequent breakpoints involving either the immuno-
globulin light chain kappa (IGK) locus (n = 65, 13.4%), the immuno-
globulin heavy chain (IGH) locus (n = 65, 13.4%) or chr13q14.2 (n = 40, 
8.7%) (Extended Data Fig. 2b and Supplementary Tables 10 and 11). We 
detected 993 translocations, of which two occurred in more than ten 
samples and affected known genes with no previously documented 
role in CLL, including t(14;22) with breakpoints within WDHD1 (n = 12, 
2.6%) and t(5;6) (CTNND2-ARHGAP18, n = 11, 2.4%) (Fig. 1e and Extended 
Data Fig. 2c).

The 22 potential coding driver genes were altered by truncating  
mutations or also affected by CNAs (Fig. 2a, Extended Data Fig. 3a–d,  
Supplementary Table 12 and Supplementary Figs. 2 and 3). Most 
mutations occurred in protein domains, and 62% of mutations were 
detectable in more than 50% of tumor cells (median cancer cell fraction 
(CCF) ≥0.5) and 89% in at least 20%. All previously unreported CNAs 
for which we could predict a target gene(s) were also clonal (median 
CCFs ≥0.8) (Fig. 2b and Extended Data Fig. 3e). Candidate driver muta-
tions affected multiple biological pathways including the DNA damage/
cell-cycle and RNA-ribosome processing (Fig. 2c).

Performing RNA-seq on representative CLL samples from 74 
patients with known and potential coding mutations (for 40 of the 58 
drivers, n variants = 118, Supplementary Table 4; Methods), we vali-
dated the expression of 73% of variants at the RNA level (Extended Data 
Fig. 4a and Supplementary Table 13). As expected, most (29/43) muta-
tions that were either not detectable or were seen at low expression 
levels were truncating mutations consistent with nonsense-mediated 
decay (Supplementary Table 13). Additionally, allelic skewing and/
or a reduction of mutant transcript expression compared with the 
mean expression of wild-type (WT) transcripts across the cohort was 
shown, notably for specific mutations in SPEN, SETD2, TP53 and IRF2BP2 
(Fig. 2d). When considering all mutations, significantly reduced gene 
expression was demonstrated for TP53, ATM and SETD2 (refs. 20,21) 
(Extended Data Fig. 4b).

When we associated the 36 known and 22 putative drivers and 
regions of CNAs with other biological variables such as disease stage, 
TP53 alterations, IGHV mutation status (unmutated, u-IGHV; and hyper-
mutated, m-IGHV) and stereotyped B cell receptor immunoglobulin 
subsets (BCR IG) including IGHV3-21 usage (Fig. 2e and Supplemen-
tary Table 14; Fisher’s exact test, false discovery rate (FDR) < 0.05), we 
found that SETD2/del3p21.31, del9p21.3 and gains of chr17q21.31 were 
associated with relapsed/refractory (R/R) disease and TP53 disruption, 
whereas MED12 and DDX3X mutations were associated with u-IGHV 
CLL. BCR IG subset 2, representing about 3% of all CLL, and known to 
be associated with poor prognosis22, was linked to the putative driver 
FAM50A. The IGHV3-21 rearrangement was also enriched for FAM50A 
and for ATM/del11q22, SF3B1 mutations and chr21q21.3-q22.3 gains.

mostly with low-risk disease1–6. Hence, the association between clinical 
parameters and genomic alterations has largely been restricted to 
driver coding mutations and copy number changes.

Here, to provide the largest and most comprehensive analysis of the 
entire genomic landscape of CLL and its relationship to clinical outcome, 
we performed WGS of 485 clinical trial patients recruited to the United 
Kingdom’s 100,000 Genomes Project. The results of our study provide 
additional insights into coding and noncoding single nucleotide muta-
tions. We then exploit WGS data to provide a detailed map of structural 
alterations and global features, including telomere length, mutational 
signatures and genomic complexity (GC). Finally, we integrate the dif-
ferent modes of genetic alterations to define five genomic subgroups 
(GSs) of CLL and relate these to clinical outcome. Our results provide 
a springboard to indepth functional validation of putative drivers and 
our integrated genome-wide approach could, after independent clinical 
validation, refine current clinical outcome prediction.

Results
We performed WGS of tumor and matched normal samples from 
485 patients with treatment-naïve CLL enrolled in clinical trials to  
a median depth of 109× and 36×, respectively (Supplementary  
Tables 1–3). A second tumor sample was available for a subset of  
25 patients at relapse. In addition, RNA sequencing (RNA-seq; n = 73) 
and assay for transposase-accessible chromatin with high-throughput 
sequencing (ATAC-seq; n = 24) data were generated for a subset of CLL 
samples with recurrent noncoding mutations (Supplementary Table 4).

Coding mutations and structural variants
We initially identified putative coding drivers by (1) screening for genes 
impacted by single nucleotide variants (SNVs) and small insertion/
deletions (indels) and (2) integrating SNV/indels with copy number 
alterations (CNAs) (Fig. 1a; Methods). We identified 36 known and 22 
putative driver genes (Fig. 1b and Supplementary Fig. 1), which were 
not found associated with CLL in the literature and also not prevalent 
above 1% in two landmark genomic studies in CLL3,7. These were classi-
fied as previously unknown putative drivers and included the immune 
checkpoint regulator IRF2BP2 (4.3%) (Supplementary Table 4).

We identified 74 regions of the genome that were recurrently 
affected by CNAs in at least four samples (Fig. 1c, Extended Data Fig. 1a  
and Supplementary Table 6). Using DNA microarray data, 85% of 
CNAs could be validated (Supplementary Table 7). In addition to 14 
well-known CNAs, including del13q14.2, del11q22.3 and del17p13.1, 
we identified a further 60 regions, of which 27 were previously not 
recognized. The breakpoints of the remaining 33 CNAs could be 
refined to a smaller minimally overlapping region14–19. By combin-
ing SNVs/indels with CNAs (discovery method 2; Methods), we pre-
dicted the most likely target gene for nine known regions, including 
TP53/del17p13.1, and seven additional regions including PCM1/del8p, 
IRF2BP2/del1q42.2q42.3 and SMCHD1/del18p11.32-p11.31 (Fig. 1d, 
Extended Data Fig. 1b,c and Supplementary Table 8). We also found 
66 additional genes affected by recurrent CNAs using more permissive 

Fig. 1 | Identification of coding mutations and structural variants.   
a, Methodology used for the discovery of candidate coding drivers. Discovery 
method 1A selected genes with a FDR below significance threshold for two out of 
four algorithms. Discovery method 1B combined the P values of four algorithms 
using weighted Stouffer and weighted Harmonic mean. Genes with FDR below 
significance threshold for at least one result were selected. With discovery 
method 2, CNAs were used to define minimally affected regions (by copy number 
loss or gain). Then, genes included in these genomic regions were selected as 
candidate drivers if they presented at least five SNVs/indels impacting the coding 
sequence focality and recurrence scores greater than threshold and mechanism 
of action of gene in agreement with the type with CNAs (loss for TSG and gain for 
oncogenes). An additional list, not considered as candidate drivers, included 
genes fulfilling all requirements except the SNVs/indels count threshold. 

(Permissive list; see Methods for more details). b , Number of SNVs/indels (left 
axis) and proportion in the cohort (right axis) of the 58 candidate drivers. Other 
CLL cohorts used as comparators are described in (Supplementary Table 5; 
Methods). c, The 76 regions recurrently affected by CNAs. The y axis is shown 
in log10 scale. Known CLL drivers are indicated in blue and putative driver genes 
identified as hotspots are indicated in yellow. d , Candidate drivers found by 
integrating both CNAs and SNVs/indels. The score represents combined focality 
and recurrence scores derived from MutComFocal, integrating SNVs/indels data 
with CNA data (Discovery method 2; Methods); NS, not significant. Known CLL 
drivers are indicated in blue and putative driver genes identified as hotspots are 
indicated in yellow. e, All translocation breakpoint pairs found in more than three 
samples (out of 495), including those occurring in coding and noncoding regions.
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Association of coding mutations with disease evolution
We examined the relationship between recurrent gene mutations and 
disease evolution in three different cohorts (Fig. 3a and Supplementary 

Table 4; Methods): (1) unpaired frontline-treated versus R/R (main 
cohort, unmatched, n = 443 versus 30—excluding the 12 early CLL);  
(2) paired samples from the CLL and Richter’s syndrome (RS) phases  
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of the same patient (previously published cohort23, matched, n = 17) and 
(3) a second sample taken from a subset of the 485 patients at relapse 
who had already been profiled before frontline treatment: paired 
frontline-treated versus relapsed (main cohort, matched, n = 25/485).

Recurrent coding gene mutations were linked to disease evolution 
in all three cohorts. They presented higher mutation counts and fre-
quency in the RS compared with the CLL phase (P = 2.1 ×10−2; Extended 
Data Fig. 4c,d) and higher CCFs at the more advanced stages with a 
median CCF > 0.8 (Fig. 3b and Extended Data Fig. 4e–g).

Restricting analysis to patients with information on long-term 
survival outcome (n = 243 / 485), 13 known or putative drivers and 
recurrent CNAs were significantly associated with progression-free 
survival (PFS) and 11 with overall survival (OS) (FDR < 0.05) (Fig. 3c and 
Supplementary Tables 15 and 16).

Out of the 22 putative drivers, 21 were also related to disease  
progression (Extended Data Fig. 4c–f), including two of the most com-
monly mutated ones. IRF2BP2 (interferon regulatory factor 2 binding 
protein 2), located in the minimally deleted region of chr1q42.3 (Fig. 3d)  
was also affected by deleterious mutations and CNAs (Fig. 3e)  
(in total, n = 28/485, 5.8%) with high CCFs (Fig. 3f, left panel). Muta-
tions showed evidence of clonal expansion in more advanced  
disease (Fig. 3f, right panel) and altered RNA expression (Fig. 2d). This  
gene contributes to the differentiation of immature B-cells and is 
associated with a familial form of common variable immunodeficiency 
disorder24.

Similarly, SMCHD1 (structural maintenance of chromosomes  
flexible hinge domain containing 1), previously reported as a candidate 
tumor suppressor in hematopoietic cancers25 was affected by copy 
number losses (del18p11.32-p11.31) (Fig. 3g) and truncating SNVs/
indels with high CCFs (Fig. 3h) (n = 24/485, 5.0%). SMCHD1 mutations 
showed clonal expansion (Fig. 3i) and were associated with adverse 
OS (median = 48.2 months, P value < 1 × 10−4, log-rank test) (Fig. 3j).

Noncoding putative driver mutations
To gain insight into the significance of noncoding mutations, we 
first identified CLL-specific regulatory elements (REs) by integrating 
ATAC-seq and H3K27ac profiles26,27 as well as chromatin states28 from 

publicly available primary CLL (Fig. 4a; Methods). Out of the 29,224 
promoters and 56,137 enhancers identified, 90% were present in CLL as 
a whole, whereas the remaining 10% were specific for IGHV subgroups 
and were used for the IGHV subtype-specific annotation (Methods). 
Mapping noncoding mutations to REs (Fig. 4b; Methods), we could 
identify 29 untranslated regions (UTRs), 25 enhancers (23 of them 
cataloged by the GeneHancer database29) and 72 promoters that had 
hotspot mutations or were recurrently mutated more frequently than 
expected (FDR < 0.1), defined as significantly mutated (Extended Data 
Fig. 5a and Supplementary Table 17).

Next, we defined the candidate target genes of these 126 mutated 
noncoding regulatory elements. Mutations within UTRs and promoters 
were annotated predominately according to proximity (Methods). For 
enhancers, we calculated the correlation between H3K27ac levels for 
each regulatory elements and the gene expression levels of surround-
ing genes located within the same topologically associated domain 
(TAD) of the B cell lymphoblastoid cell line GM1287830 (Methods). In 
total, 29 regulatory elements had target genes known to be CLL drivers  
or cancer drivers in the COSMIC database (Fig. 4c); 89 were linked  
to other genes (Fig. 4d) and 8 to none (Extended Data Fig. 5a and  
Supplementary Table 17). Four mutated regulatory elements were  
specific for u-IGHV (Extended Data Fig. 5b) and none for m-IGHV. Overall,  
genes targeted by mutated regulatory elements were enriched for gene 
ontology terms linked to the immune system, lymphocyte activation 
and cell death (Fig. 4e and Supplementary Table 18).

Of the 29 mutated UTRs, 58% (n = 17) had a median CCF ≥ 0.5, 
and 83% had a CCF > 0.2, thus indicating their selection during CLL 
pathogenesis (Extended Data Fig. 5c). These included the 3′ UTR 
mutations of NOTCH1 creating a splice site that leads to increased 
gene expression3,31 (n = 16; FDR = 4.57 × 10−2). The NF-κB signaling gene 
NFKBIZ (n = 8, FDR = 2.38 × 10−2) was also found significantly mutated, 
confirming previous findings6 and known to increase levels of mRNA 
and protein in lymphoma32,33. We observed clonal mutations in the 
5′ UTR of IGLL5 (n = 28; FDR < 2.2 × 10−16), previously found to be asso-
ciated with reduced expression4. Previously unreported significantly 
mutated UTRs included the 5′ UTR of BCL2 (n = 6; FDR = 1.01 ×10−6, 
Fig. 5a). We performed RNA-seq on samples carrying these mutations 

Fig. 2 | Biological features of coding mutations and CNAs. a, Annotations of 
genes. CNAs, presence/absence of CNAs affecting the gene; COSMIC, proportion 
of variants reported in the COSMIC database; High impact, proportion of 
nonsense variants, Median CCF, median cancer cell fraction of variants; Prot 
domain: proportion of variants occurring in a protein domain from the Prot2HG 
database40. b, Distribution of cancer cell fractions in selected recurrent regions 
of CNAs (all regions in Extended Data Fig. 3e). The boxplot shows the minimum 
and maximum values and the interquartile range. c, Candidate drivers classified 
in ten main pathways described in CLL3,7. Genes in bold are present in more than 
3% and genes in red font are candidate drivers. Other drivers are absent because 
not involved in these ten main pathways. d , Detection of variants of interest 
(n = 118) by RNA-seq (with minimum depth of five) in selected 73 samples. 

Difference of variant allele frequency (VAF) between RNA-seq methods and 
WGS methods shows allelic skew of variants. Ratio of expression in transcript 
per million (TPM) in sample with variant against all other samples reflects 
change in gene expression. Selected variants annotated with gene names, all 
data in Supplementary Table 13. DP, depth. e, Enrichment of genomic features 
in different CLL subgroups using two-sided Fisher’s exact test (plot showing the 
median, minimum and maximum values). The groups were (1) stage: relapsed/
refractory (R/R), versus frontline (N = 443 frontline versus 30 R/R), (2) TP53: 
altered versus WT (N = 420 WT versus 65 disrupted), (3) IGHV mutational status: 
unmutated versus hypermutated (N = 197 hypermutated versus 288 unmutated), 
where an enrichment for the former is indicated by an odds ratio greater than 
one. Adjusted P values (FDR) are shown.

Fig. 3 | Associations of coding mutations and CNAs with disease progression.  
a, Three cohorts used for studying the presence of variants during disease 
evolution. Unpaired samples are taken from different patients; cohort (1) were 
samples from treatment-naïve patients and R/R patients; cohort (2) were  
paired samples of CLL and RS phase of the same patient; cohort (3) were paired 
samples taken at two different timepoints before treatment and at relapse.  
b, Distribution of cancer cell fractions in the three cohorts studied for selected 
genes. For cohort (1), figures are not shown if no R/R sample carried a mutation. 
Other genes are presented in Extended Data Fig. 4e,f. Boxplots showing results 
for unpaired samples and connected datapoints show results for paired samples 
(corresponding variants are connected by a dotted line). An asterisk indicates 
a candidate driver. c, Genomic features linked to patients’ PFS (left panel) and 
OS (right panel). Hazard ratio and FDR of each genomic feature tested against 
PFS using a Cox proportional-hazards model on the subset of patients for which 
clinical outcomes data were available (n = 243). Adjusted P values (FDR) are 

shown in different colors. (See Supplementary Table 14 for the full detailed list 
of genomic features tested and Supplementary Table 15 and 16 for full results of 
the statistical tests). d–f , candidate driver IRF2BP2 was recurrently affected by 
CN losses (d) and SNVs/indels, especially truncating ones (e), and was associated 
with increased CCF in variants for more advanced disease stage (f). Coloured 
rectangle in (e) represents protein domains. g–j , candidate driver SMCHD1 was 
recurrently affected by CN losses (g) SNVs/indels, especially truncating ones 
(h), presented evidence of increased CCFs in more advanced CLL in cohort (2) 
(no data available in R/R of cohort (1)) (1), and associated with more adverse 
overall survival as shown in the Kaplan–Meier plot where shaded areas show 
the 95% confidence intervals and P values were derived from a log-rank test (j). 
Coloured rectangle in e represent protein domains. Boxplots show the minimum 
and maximum values and interquartile range and each individual variant is 
represented with an individual datapoint.
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(Supplementary Table 4; Methods) demonstrating that 5′ UTR muta-
tions were associated with BCL2 overexpression (P = 4.3 × 10−2; Fig. 5b), 
which is noteworthy given that BCL2 inhibitors are used therapeuti-
cally in CLL34.

A high clonality (>0.5) was also observed when considering the 
97 significantly mutated promoters and enhancers; 72% had a median 
CCF >0.5 and 97% of a CCF >0.2 (Supplementary Fig. 4a). Six discrete 
regions spanning 117 kb contained 50 variants and were annotated in 
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the previously reported PAX5 superenhancer3,6,35 (Extended Data Fig. 5a  
and Supplementary Fig. 4b). Another region spanning 325 kb on 
chr3q27.2 contained seven significantly mutated enhancers and linked 
to BCL6 (Extended Data Fig. 5a and Supplementary Table 17). RNA-seq 
of eight samples with mutations in this region showed overall increased 
expression of BCL6, although the effect was heterogenous (Fig. 5c), 
suggesting that some variants are more or less pathogenic than others 
and variants might exert a positional effect (Fig. 5d).

When considering the 72 significantly mutated promoters, we 
found mutations of known CLL drivers including BIRC3 (n = 31, 6.4%, 
FDR < 1.15 ×10−15), IKZF3 (n = 12, 2.5%, FDR = 8.16 × 10−13) and TP53 affect-
ing splicing regions of noncoding exons/5′ UTR/promoter region (n = 2, 
0.4%, FDR = 5.55 × 10−6). Next, we investigated mutations in these pro-
moters further to identify those predicted to change chromatin state, 
using DeepHaem36, a deep neural network trained on chromatin feature 
data of 73 immune cell types. Seventy-four variants were predicted to 
lead to a loss of open chromatin (that is, loss-of-function variants), 
including those in the BACH2 promoter (Fig. 6a and Extended Data 
Fig. 6a). A recent study showed that decreased BACH2 expression  
in CLL is associated with adverse outcomes37. Notably, the mutations  
we detected in this promoter were mostly clonal (median CCF = 0.99). 
We therefore investigated this promoter further by performing 
ATAC-seq and RNA-seq (Fig. 6b) on mutated samples, when available 
(13 variants investigated, Supplementary Table 12; Methods) to under-
stand the impact of these variants on chromatin accessibility and  
gene expression. Three variants within a 14-bp region were associated 
with allelic skew in the ATAC-seq compared with WGS data, demon-
strating a preference for accessibility on the reference allele (Fig. 6c), 
which mirrored the decrease in chromatin accessibility in that region  
compared with WT samples (Fig. 6d). This allelic skew was also detected 
at the RNA level (Fig. 6e and Extended Data Fig. 6b). In addition, the 
same three samples also showed decreased BACH2 gene expression 
(Fig. 6f).

Finally, we analyzed 20 cases with paired WGS, ATAC-seq and 
RNA-seq data (Supplementary Table 4). We identified five recurrently 
mutated promoters with allelic skewing of chromatin accessibility and 
RNA expression. Three, BTG2, CCND1 and ST6GAL1, were associated 
with allelic skewing towards the mutant allele, whereas ATAD1 and 
BIRC3 showed the opposite effect (Extended Data Fig. 6c). In the case 
of ATAD1, which plays a role in mitochondria protein degradation, 
we additionally observed reduced expression in promoter-mutated 
samples (P = 7.0 × 10−4) (Extended Data Fig. 6d–f).

Collectively, these data suggest that a small subset of the noncod-
ing mutations in CLL have characteristics indicative of a driver and 
target regulatory elements of genes that are critical for B cell develop-
ment and function as well as cancer progression. However, the effects 
on chromatin accessibility and gene expression levels were subtle and 
require further indepth functional characterization.

Clinical impact of combined and global genome features
We recalculated the occurrence of mutations in each known or putative 
driver in CLL by combining coding mutations, noncoding mutations in 
regulatory elements and CNAs (Fig. 7a and Supplementary Table 19).  
In total, 33 of the 58 coding, known or putative driver genes were also 
affected by noncoding mutations in associated regulatory elements 
or by CNAs. Overall, 412 (29%) of all alterations in these genes were 
either CNAs or affected regulatory elements. ATM and BIRC3 were 
most frequently targeted by genetic lesions. The median number of 
mutated known or putative drivers in each tumor was 2 (0–7) or 5 (0–21) 
when excluding or including CNA/copy neutral loss of heterozygo-
sity (cnLOHs) and noncoding variants, respectively (Fig. 7b). A higher 
number of mutated genes was associated with worse PFS, especially 
when noncoding variants were included (Extended Data Fig. 7a,b and 
Supplementary Tables 15 and 16). Furthermore, the number of samples 
containing mutations in particular pathways also increased (by 3.3%) 
(Fig. 7c and Supplementary Fig. 5), in particular for the NOTCH and the 
transcriptional regulations pathways.

We explored whether global genomic features could also be associ-
ated with clinical outcome. Firstly, we evaluated telomere length and 
observed that it was reduced in CLL samples compared with paired  
germline (median length of 2.7 kb versus 3.8 kb, P < 2.2 × 10–16, median 
content of 405 versus 467, P = 3.9 × 10−6, paired Wilcoxon test) (Fig. 7d 
and Extended Data Fig. 8a,b). Shorter telomeres were significantly 
enriched in samples with p53 pathway alterations (P = 1.99 × 10−36; 
Fig. 7d), with R/R samples compared with frontline (FDR = 5.37 × 10−7; 
Supplementary Table 14) and were associated with poorer PFS 
(FDR = 4.39 × 10−4; Supplementary Table 15 and Extended Data Fig. 8c,d).

Secondly, we explored the clinical associations of mutation sig-
natures including single base substitution (SBS), doublet base sub-
stitutions (DBS) and small insertions and deletions (ID)38 (Fig. 7e,f 
and Supplementary Table 20). Considering signatures with known or 
probable etiology, the most prevalent were SBS5 (clock-like), DBS11 
(APOBEC activity) and ID2 followed by other clock-like signatures: 
SBS1 (deamination of 5-methylcytosines), SBS8, DBS2 and the AID 
signature SBS9. As previously documented, SBS9 was highly enriched 
in m-IGHV CLLs (FDR = 4.80 × 10−57, Fisher’s exact test; Supplementary 
Table 14), was mutually exclusive with TP53 alterations (2.29 × 10−3) 
and associated with good PFS (Supplementary Table 15 and Extended 
Data Fig. 8e). De novo signature ID83C was found associated with TP53 
alterations (FDR = 2.53 × 10−2; Supplementary Table 14) and poorer PFS 
(1.57 × 10−2; Extended Data Fig. 8f and Supplementary Table 15). SBS1 
was also associated with adverse outcome (3.70 × 10−2; Supplementary 
Table 15 and Extended Data Fig. 8g).

Thirdly, we analyzed GC using unsupervised clustering (multiple  
correspondence analysis (MCA)) of 17 features related to  
CNAs (Extended Data Fig. 9a,b; Methods). These defined eight groups 
(GC1–GC8) (Extended Data Fig. 9c,d) with distinct genomic profiles 

Fig. 4 | Significantly mutated noncoding REs. a, Methodology to localize 
noncoding REs in CLL primary cells. These REs were defined across the whole 
genome based on chromatin state data from CLL primary cells. We intersected 
H3K27ac peaks and open chromatin regions defined by ATAC-seq (derived from 
104 and 106 primary CLL, respectively)27. Next, these regions were annotated 
using genome-wide segmentations of seven CLL samples (five mutated and two 
unmutated IGHV cases) with available chromatin immunoprecipitation followed 
by sequencing (ChIP–seq) data of six histone marks including H3K4me3, 
H3K4me1, H3K27ac, H3K36me3, H3K27me3 and H3K9me3. As our annotations 
of noncoding variants were based on CLL samples from different cohorts, 
chromatin states defined by ChIP–seq were considered only for regions that 
were seen in at least two samples. Common regions based on shared overlaps 
were used to define these REs. REs active exclusively in samples with m-IGHV and 
u-IGHV mutational status were also defined. REs were linked to target genes by 
correlating RNA expression (gene) and H3k27ac (REs) (Pearson correlation 0.3, 
FDR ≤ 0.05), within topologically associated domains of GM12878 defined by 
Hi-C30. For additional annotations and more details, see Methods. b , Candidate 

noncoding drivers including UTRs, promoters and enhancers affected by SNVs/
indels, were revealed using several discovery algorithms and regions with FDR 
below the significance threshold were selected. The presence of single-site 
hotspots, and regions with high mutational density/kataegis were reported and 
regions with FDR below the significance threshold were selected. Annotations 
and postfiltering of somatic noncoding hits were including immunoglobulin  
loci and known false positive exclusion, AID and APOBEC signature annotations, 
and additional genomic and functional annotations from the literature.  
c,d , Significantly mutated REs for which target genes are CLL drivers or in the 
COSMIC database (c) or other genes (d). Upper panel, number of samples 
mutated; middle panel, proportion of variants with signature attributed to AID, 
APOBEC or other processes; lower panel, FDR of the likelihood these regions as 
mutated more frequently than expected. e, Gene set enrichment analysis based 
on the target genes of all noncoding candidate drivers for gene ontology terms 
biological process (GO:BP) and human phenotype ontology (HP). We applied a 
hypergeometric test and multiple testing correction of P value using the g:SCS 
algorithm41.
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(Fig. 7g and Extended Data Fig. 9e). GC4 (presenting CN losses only, 
n = 210) was enriched in del13q14.2 (FDR = 3.26 × 10−23). GC7 (pre-
senting both CN gains and losses, n = 127) was associated with ten 
recurrent CNAs and seven known coding drivers including XPO1 
(FDR = 3.98 × 10−11) and TP53 (FDR = 8.36 × 10−9). Together with GC8 
(presenting trisomy, CN gains and losses, n = 15), GC7 comprised the 
most patients with conventional genomic complexity, defined by the 
presence of at least four CNAs (Extended Data Fig. 9f). None of the 

genomic complexity groups was significantly enriched in stereotyped 
subsets (Extended Data Fig. 9g). For the subset of samples with survival 
data (n = 243), we combined genomic complexity groups with copy 
number gains only, copy number losses only and both copy number 
gains and losses to increase statistical power. Interestingly, the eight 
groups were associated with different PFS and OS (Extended Data  
Fig. 10a,b), independent of TP53 status (Extended Data Fig. 10c,d).  
Furthermore, patients with both TP53 mutations and GC7/8 
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changes had ultrahigh-risk disease (median PFS = 8 months, median 
OS = 15 months) and fared worse compared with patients with TP53 
mutations but no GC7/8 status (P = 0.03; Fig. 8a,b).

Towards a patient classifier
To evaluate the potential clinical relevance of combining different 
genomic features, we first used penalized multivariate regression analysis  
for least absolute shrinkage and selection operator. This analysis 
led to the identification of 56 individual genomic features that pre-
dicted PFS and/or OS including SMCHD1/del18p11.32-p11.31, which 
retained significance as an independent predictor of OS (Extended Data  
Fig. 10e and Supplementary Fig. 6a).

Next, we applied non-negative matrix factorization (NMF) to iden-
tify robust subgroups of CLLs sharing subsets of the 186 different 
genetic alterations (Supplementary Table 21; Methods). Considering 

the profound clinical impact of the IGHV mutational status, we initially 
divided patients into m-IGHV and u-IGHV. Using this approach, we 
identified five distinct GS: three were u-IGHV (u-GS1, 2 and 3) and two 
m-IGHV (m-GS1 and 2) (Fig. 8c,d and Supplementary Table 22).

When considering u-IGHV CLL (Fig. 8c and Supplementary Table 23),  
u-GS1 was characterized by the presence of high-risk features includ-
ing TP53 disruption, GC7, short telomeres and mutations in targeta-
ble pathways such as MAPK, PI3K and apoptosis, but there was no 
DNA damage response signature. By contrast, u-GS2 was defined by 
ATM/BIRC3/del11q22.2-22.3 alterations, as well as mutations in DNA 
damage response pathways, but without TP53 mutations or genomic 
complexity as defining features. Patients in u-GS2 were predominately 
male. u-GS3 had a high number of mutations in known and putative cod-
ing drivers, introns and UTRs, CN gains including trisomy 12, NOTCH1 
mutations, and was enriched for older patients. All three subgroups 

Fig. 5 | Noncoding mutations impacting BCL genes. a, Genome view of BCL2 
5′ UTR. The significantly mutated region is indicated by a black rectangle. 
Individual somatic mutations are shown in blue. b , Gene expression of BCL2 in 
TPM determined by RNA-seq in samples with BCL2 5′ UTR mutations versus WT. 
Black dots are marks as outliers. P value was derived from a two-sided Welch’s 
t-test. c, Gene expression in TPM determined by RNA-seq of BCL6 in samples 
with BCL6 enhancer mutations versus WT. Expression levels were split in low 
(less than median expression; green), medium (between median expression and 

100; orange) and high (≥100 TPM; purple). P value was derived from a two-sided 
Wilcoxon test. d , Genome view of the BCL6 gene and enhancers. Enhancers within 
these regions are annotated in blue font. eBCL6_2, which was the target of several 
variants is indicated in red. Annotation tracks of ATAC-seq and ChIP–seq are from 
publicly available RE annotation detailed above27 (references containing detailed 
of datasets and figure legends). The lower panel shows the individual mutations 
color coded as defined in c. All boxplots show the minimum and maximum values 
and interquartile range.
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included patients with BCR IG subsets 1 and 8, which are known to be 
associated with aggressive disease39 (Supplementary Fig. 6b). Although 
u-GS2 and u-GS3 were clearly distinct, they were associated with similar 
PFS after chemoimmunotherapy (Fig. 8e).

Regarding m-IGHV CLL (Fig. 8d), m-GS1 was similar to u-GS1 (cosine 
similarity of 0.81) and also to u-GS2 (cosine similarity of 0.7) (Supple-
mentary Table 24). In contrast, m-GS1 was enriched for older men, 
BCR IG subset 2 (FDR = 2.96 × 10−6) and IGHV3-21 (FDR = 7.50 × 10−9) 

(Supplementary Fig. 6b), although most patients in m-GS1 did not 
have any defined CLL stereotype. m-GS2 had high mutation burden 
in enhancers, UTRs and promoters, was enriched for del13q4.2 but 
no other CNAs and had longer telomeres compared with the mean 
length in CLL. Additional clustering (Methods) further refined m-GS2 
into distinct two clusters (Supplementary Fig. 6c). m-GS2 cluster 1 
stood out by the high frequency of SBS9, the presence of GC4 and the 
absence of any other features. In comparison, m-GS2 cluster 2 had 
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MYD88 mutations, trisomy 12 and other CN gains but no CN losses 
(Supplementary Table 25). Both clusters of m-GS2 had a very favorable 
PFS of 75% and showed a plateau of PFS, implying cure after chemo
immunotherapy (Fig. 8f). By contrast, patients belonging to m-GS1 had  
a shorter PFS than u-GS2/u-GS3 (median PFS = 38 versus 50 months; 
Fig. 8e) and there was no plateau.

In our analysis of patients treated with chemoimmunotherapy, 
NMF subgroups could not be defined without the different acquired 
local and global noncoding genomic changes, since combining all 
known coding drivers and the four common recurrent CNAs did not 
cluster patients into the GSs (Supplementary Figs. 6d and 7). Based 
on this observation, we examined whether the NMF method could 
be used to prospectively and precisely assign individual patients into 
their subgroup for individualized outcome prediction in the clinic. Our 
validation, performed by subsetting the dataset (Methods) showed 
that a total of 15/16 m-IGHV samples and 48/51 of u-IGHV samples were 
assigned correctly to their respective subgroup (Fig. 8g).

Discussion
Our study presents the first comprehensive WGS analysis of a large 
series of CLL patients requiring treatment. A main strength of our study 
is that it is based on patients enrolled into multicenter clinical trials, 
thereby reducing heterogeneity. This allowed us to not only define the 
genomic landscape of different stages of CLL3,4, but also to identify 
mutations associated with disease relapse and transformation.

Based on a strict pipeline for discovery of coding drivers, we 
selected the top ranked recurrently mutated genes, which comprised 
36 known CLL drivers3,6,7 and 22 putative drivers. Only 32% of variants 
in those putative driver genes were missense variants, with most being 
truncating and stop-gain mutations. Although these putative drivers 
shared characteristics of known drivers (that is, damaging mutations 
in protein domains, impact on RNA expression, high CCF that further 
increased at disease progression, association with survival), we cannot 
exclude the possibility that some may simply represent passengers.

We defined recurrent translocations (with breakpoints in WDHD1; 
CTNND2-ARHGAP18) and 126 candidate noncoding drivers within REs 

pinpointing potentially druggable target genes (NOTCH1, DTX1, NFKBIZ, 
NTRK2 and BACH2). For a small subset of selected noncoding candidate 
mutations, we were able to demonstrate a modest impact on chromatin 
accessibility and/or target gene expression (5′ UTR of BCL2, enhancer 
of BCL6, promoter of BACH2 and promoter of ATAD1).

Exploring different layers of genomic data including coding, non-
coding and genome-wide global changes allowed us to (1) derive a 
WGS-derived genomic complexity classification that further refines 
risk by identifying an independent ultrahigh-risk group associated 
with complex genomic alterations (GC7/8); (2) more precisely predict 
individual patients who achieve a plateau after chemoimmunotherapy 
(m-GS2) and are functionally cured, thereby clearly differentiating 
them from progressors in the m-GS1 subgroup.

Ideally, only genomic features experimentally validated as disease 
drivers should be included in any prognostic classification system, 
even if they were selected by very stringent criteria as those applied 
in this study (see above). However, it is well recognized that some 
genomic features are clearly not disease drivers, yet carry prognostic 
relevance. For example, in CLL, the IGHV mutation status representing 
the cell-of-origin or telomere length reflecting proliferative activity, 
are associated strongly with clinical outcome, but are not considered 
disease drivers.

In our NMF model using only the known coding drivers and recur-
rent CNAs did not allow us to recover the same level of discrimination 
as that afforded by inclusion of additional local and global noncoding 
information. This observation implies that the combination of coding 
and noncoding information in the classifier increases the precision of 
clinical risk prediction at least in our cohort of clinical trial patients.

Although treatment algorithms for CLL are shifting away from 
chemoimmunotherapy to targeted agents, the subgroups we define 
remain potentially clinically relevant as they reflect distinct biological  
entities. Collectively, our study provides a springboard for down-
stream functional analyses of putative coding and noncoding  
drivers. Robust testing on independent cohorts of patients undergoing 
targeted therapy will be required to further establish the clinical utility 
of this WGS-based classifier.

Fig. 6 | Mutations in the promoter of BACH2 associated with reduction of 
chromatin accessibility and RNA expression. a, Prediction of the impact of 
noncoding mutations in promoters on transcription factor binding from cell- and 
tissue-specific DNase footprints. Mutations in BACH2 promoters are annotated 
(blue), specific BACH2 promoters detailed later are in red. GoF/LoF, gain/loss of 
function; B cell type specific, prediction observed in dataset examined; multi-B 
cell type, prediction observed in several dataset examined (robust); open multi-B 
cell, open chromatin region predicted; none, no prediction. b , Methodology to 
explore the effect of BACH2 promoter mutations. (1) We compared VAF of WGS 
data and ATAC-seq data to find allelic skew, that is, a preference for accessibility 
on the reference or the mutant allele. TSS, transcription start site. (2) We 
examined the change in chromatin accessibility in regions of interest in mutated 
compared with WT samples. (3) We compared VAF of WGS data and RNA-seq data 
to find allelic skew, that is, a preference for RNA expression on the reference or 
the mutant allele. (4) We compared the gene expression in mutated versus WT 

samples by RNA-seq. c, Prioritization of noncoding variants based on sequencing 
depth at the loci in the ATAC-seq data and allelic skew between the ATAC-seq 
and WGS data. Datapoints with difference less then –0.1 or greater than 0.1 and 
sequencing depth of at least ten times are annotated in black font. The BACH2 
promoter is indicated in red font. d , ATAC-seq signal at the promoter of BACH2. 
The blue track shows the combined signal from all 24 patient samples; overlaid is 
the signal from a sample (pink) with a variant in the center of the RE. The location 
of variants in the same RE from three other patients are highlighted. e, Fraction 
of mutant and WT read in three BACH2 promoter variants showing allelic skew in 
ATAC-seq and RNA-seq compared with WGS. Prediction and mean damage scores 
were calculated with DeepHaem. f , Gene expression distribution (the minimum 
and maximum values and interquartile range) of BACH2 in TPM determined by 
RNA-seq in samples with promoter mutations versus sample WT. The statistical 
test used was a two-sided Welch’s t-test.

Fig. 7 | Data integration and genome-wide global lesions. a, Distribution of 
the type of alterations in CLL coding drivers affected only by coding mutations 
(top panel) and affected by coding, CNAs and/or mutations in their REs (bottom 
panels). b, Distribution of the number of mutations per sample when considering 
all functional mutations (blue shading), SNVs/indels in coding drivers (green 
shading) and coding and noncoding drivers and CNAs (purple shading).  
c, Proportion of samples with mutated pathways, when considering coding 
drivers only (green), coding drivers and other genes with high impact mutations 
(involving frameshift and stop coding mutations (yellow)) and all coding as 
well as noncoding drivers (red). d , Telomere lengths distribution (showing the 
minimum and maximum values and interquartile range) in normal samples 

and matched CLL samples. Lines link matched tumor-normal datapoints. 
Significance level shows two-sided paired Wilcoxon test of P value <0.001.  
e, Fraction of each mutational signature detected in different genomic scopes: 
the 58 coding drivers; exonic regions; promoters, enhancers and UTRs; and 
whole genome. f , Fraction of each mutational signature detected in each coding 
driver. DBS not shown as data were too scarce. g, Distribution of the eight GC 
groups, based on presence (dark gray) or absence (light gray) of the three 
variables selected as best predictor by MCA: CN losses (Loss), CN gains (Gain) and 
trisomy (Tri). TP53 alteration status and conventional GC status are indicated in 
the top panel.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 54 | November 2022 | 1675–1689 1686

http://www.nature.com/naturegenetics


Nature Genetics | Volume 54 | November 2022 | 1675–1689 1687

�����������

��

��

��

���

��������������

�
�
��


	

�

����������

��������

�

��

��

��

���

� �� �� �� �� �� �� �� �� � �� �� �� �� �� �� �� ��

��������������

���
�
	

�

�
�
••

•
���

••
� ��•
 ��

­
•�

€€
�­

‚­€
��ƒ

�•
�ƒ

„�
„�

���
�

…
…

†
…

 �‡
� �

ˆ‰
��

�•
��

� ƒ
��­

 �„
���

�ƒ
€�

 �Š
‹€

ƒ�
���

Œ
��

��‹
 ��

 �„
���

���
ƒ�

„�
Ž

���
��‘

Ž
���

�� •�
€’

„�
���

���
��•

�€
�Ž

���
��‘

Ž
���

�
�•

�…
��•

�€
�„

���
��

���
��•

�€
��„

���
�

ˆ“
‰

�•
�€

��Ž
���

�”
�

‰
�ˆ

�•
�€

��Ž
���

�
••

†•
��•

�€
��Ž

���
�

…
••

��•
�€

�„
�•

ˆ�
�•

�€
�„

•†

�•

���
•�

€�
Ž

���
�‘Ž

���
�

�ˆ
••

…
��•

�€
��„

���
��‘

„�
���

�
•�

€�
�Ž

���
��‘

Ž
���

��
��€

���
 ��

€�
�Š

��
�‹

�� 
�­

���
���

��‡
ƒ 

�•
���

� �
�

��‡
ƒ 

��–
—

�†
��‡

ƒ 
��–

—
�†

��‡
ƒ 

���
� �

� �•
��

…
•�

�
…

•�
�

…
•�

�
…

•�
�� •…

�
•…

�
•…

’
•…

��•

�
�
�
�

�

ˆ� ��˜ ‰
Š

�
“•

� “•
�

“•
�

ˆ™
…

��
�
�

•�
•“

••
�

š‰
���

�‰
�

ƒ�
„�

Ž
���

��‘
Ž

���
��

•�
€�

�Ž
���

�
�•

�…
��•

�€
�„

���
��

���
��•

�€
��„

���
�

••
…

��•
�€

��Ž
���

�‘Ž
���

� „•
•†

•�
„…

�›
�

„•
›•

†�
„�

��“
‰

•�
”�

„�
��“

‰
•�

”� „•
••

�
�•

••
�

„•
�“

� „•
�•

„�
���

‰
��

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�

�
�
�
�

� �

�

����������
�

��

��

��

���

��������������

�
�
��


	

�����������

��

��

��

���

� �� �� �� �� �� �� �� �� ’� � �� �� �� �� �� �� �� �� ’�

��������������

�
�
��


	

�‘“����������	

�‘“���­€‹��� ����������	
�‘“���­€‹��� ����������	

����œ•�€��„������’	

‹‘“���œ����œ•�€��„��������	
‹‘“����������	
‹‘“����������	

‹‘“�� ‹‘“�� ‹‘“��

‹‘“�� �� � �
‹‘“�� � �� �
‹‘“�� � � ��

�‘“�� �‘“��
�‘“�� �� �
�‘“�� � �

� �•�­����

�†—•

� �•�­����

�†—•

����ƒ€�ž“•����������	
����ƒ€�����“•����������	

����Œ�ž“•����������	
����Œ�����“•�����������	

��˜ ‰
Š

�
“•

�
“•

�
“•

�
“•

�
“•

­
��€

���
��Š

ƒ�
�

���
 ƒ

���
�‡ � �
��

••
�† •“
†�

����

����

���� ����

����

“•
­

��€
���

��Š
ƒ�

�
���

 ƒ
���

�‡

��•
 ��

­
•�

€€
�­

‚­€
��ƒ

�•
�ƒ

„�
„�

���
�

…
…

†
…

 �‡
� �

ˆ‰
��

�•
��

� ƒ
��­

 �„
���

�ƒ
€�

 �Š
‹€

ƒ�
���

Œ
��

��‹
 ��

 �„
���

���

‰
�ˆ

�•
�€

��Ž
���

�
••

†•
��•

�€
��Ž

���
�

…
••

��•
�€

�„
�•

ˆ�
�•

�€
�„

��€
���

 ��
€�

�Š
��

�‹
�� 

�­
���

���
��‡

ƒ 
�•

���
� �

�
��‡

ƒ 
��–

—
�†

��‡
ƒ 

��–
—

�†
��‡

ƒ 
���

� �
�

„•
†


�
„•

‰
••

�
„�

••
�‰

•“
••

���
–—

�† �•
�’

…
•�

�
…

•�
��•

�•
�’�

��Š
��Š

 �‹
„

Fig. 8 | Relationship between genomic features and patient outcome.   
a,b, Kaplan–Meier curve on PFS (a) and OS (b) of TP53 altered/WT in combination 
with GC7/8. The P value was derived from a log-rank test comparing the most 
two extreme curves (additional data in Extended Data Fig. 10). The dotted 
lines indicate the median survival for each subgroup. c,d , Genomic factors 
comprising the GS (cut-off 0.5) derived using non-negative matrix factorization, 
hypermutated subset (u-GS) (a), unmutated subset (m-GS) (b). The plot only 
shows features that split the data. e,f , Kaplan–Meier curves of PFS of samples 
divided by GS. Only samples with PFS data were included (n = 243). In e, the 
unmutated subset, del17p/TP53 mutated samples are plotted separately (black 
curve), all u-GS1 cluster 1 samples fell into this grouping; In f , the hypermutated 

samples, del17p/TP53 mutated samples are plotted separately (black curve). 
The P value was derived from a log-rank test comparing the most two extreme 
curves. The dotted lines indicate the median survival for each subgroup g, 
Confusion matrix showing agreement between true and predicted subgroup 
assignment. The true subgroup assignment was determined by applying the 
previously described NMF approach (Methods) to the whole set of genomic data. 
The predicted subgroup assignment was determined by first using 80% of the 
genomic data for subgroup assignment (training phase) followed by predicting 
the subgroup assignment in the remaining 20% of the data (testing). In all cases, 
sex and age were included to inform the model (Methods).
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Methods
Patient cohorts, samples and ethics
All patients gave written informed consent and the study was approved 
under the 100,000 Genomes Project Ethics and the CLL Pilot ethics 
(MREC 09/H1306/54). A total of 485 patients with CLL were included 
in the study. A small subset was enrolled into CLEAR (CLL Empirical 
Antibiotic Regimen, early stage of the disease, n = 12, NCT01279252) 
and CLL210 (ref. 42) (relapsed/refractory patients, n = 30, EudraCT 
2010-019575-29). All other patients were treatment-naïve and 
required treatment according to iwCLL criteria43. They were either fit 
patients receiving frontline treatment with fludarabine, cyclophos-
phamide, rituximab (FCR)-based treatment in ARCTIC44 (Attenuated 
dose Rituximab with ChemoTherapy In CLL, n = 61, EudraCT Num-
ber:2009-010998-20) or AdMIRe45 (Does the ADdition of Mitoxantrone 
Improve REsponse to FCR chemotherapy in patients with CLL, n = 65, 
EudraCT number: 2008-006342-25) or frail patients receiving ofatu-
mumab with either bendamustine or chlorambucil chemoimmunother-
apy in RIAltO (A Trial Looking at Ofatumumab for People With Chronic 
Lymphocytic Leukemia Who Cannot Have More Intensive Treatment, 
n = 92, NCT01678430). Patients recruited into FLAIR46 (Front-Line 
therapy in CLL: Assessment of Ibrutinib + Rituximab, n = 225, EudraCT 
2013-001944-76) were randomized to ibrutinib alone or in combination 
with rituximab or venetoclax or standard first-line FCR treatment. In 
line with the studies’ data monitoring committees, baseline charac-
teristics and clinical outcomes data were available only from studies 
once closed to recruitment (see Supplementary Table 1 for details of 
all patients recruited into the 100,000 Genomes Project). For patients 
recruited into the FLAIR study, these data are still awaited.

For a subset of 25 patients, we obtained a sample taken at relapse 
(Supplementary Table 4).

To investigate findings in more advanced disease, we reanalyzed 
WGS data coming from a cohort of 17 patients from whom two concur-
rent samples were collected: the CLL phase and the transformed phase 
(RS). This cohort includes samples and data generation as described 
in Klintman et al.23.

Only samples with a lymphocyte count of greater than 25 × 109 l–1 
were included in the study ensuring a tumor purity greater than 80% 
and a median lymphocyte count of 80 × 109 l–1 (range, 33.9–166.5) 
(Supplementary Table 1).

Peripheral blood mononuclear cells (PBMCs) and a saliva sample 
were collected from each patient, which served as a source of tumor 
and germline DNA, respectively. DNA was extracted from PBMCs and 
saliva using QIAamp DNA mini kit (Qiagen) and the Oragene DNA saliva 
kit (DNA Genotek Inc) kits, respectively, according to the manufac-
turer’s instructions. DNA quality was assessed using Nanodrop (Thermo 
Fisher Scientific) and quantified using Qubit (Thermo Fisher Scientific) 
technology. RNA was extracted from PBMCs using the RNeasy Mini Kit 
(Qiagen) according to the manufacturer’s instructions. The quality  
of RNA was assessed using the Agilent 4200 Tapestation System,  
using High Sensitivity tapes. The concentration was assessed using the 
GeminiTM XPS Microplate Spectroflurometer from Molecular Devices 
and the Quant-iT HS RNA assay.

Whole-genome sequencing
Whole-genome 125 bp paired-end TruSeq PCR–free libraries were 
sequenced using Illumina HiSeq2500 technology. Raw sequencing 
data was aligned with using Isaac v.03.16.02.19 to GRCh38. Alignment 
and coverage metrics were calculated using Picard v.2.12.1 and Bwtool47 
showing a mean read depth of 36× and 109× for normal and tumor 
samples, respectively. All downstream analysis of WGS data was per-
formed on the whole dataset of 485 samples, unless otherwise stated.

RNA-seq
Libraries were prepared from samples of 74 patients using the Illumina 
Stranded Total RNA Prep, Ligation with Ribo-Zero Plus, with additional 

custom depletion probes, using 100 ng RNA. Libraries were sequenced 
on a NovaSeq 6000 system (Illumina) using 100 base paired-end chem-
istry (108–455 million read-pairs per sample). Sequencing reads were 
processed and aligned to Human Reference genome GRCh38 using 
the Illumina Dragen RNA pipeline v.3.8.4. Gentoyping was performed 
using bcftools mpileup48. Allele specific read counts were generated 
at sites of acquired SNVs determined by WGS.

ATAC-seq
ATAC-seq was performed as previously described49. Briefly 7.5 × 104 
cells per technical replicate were resuspended in lysis buffer (10 mM 
Tris-HCl, pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630). Nuclei 
were pelleted (500g for 10 min), PBS was discarded and nuclei were 
resuspended in tagmentation buffer (25 µl 2× tagmentation DNA buffer, 
2.5 µl Tn5 Transposase (Illumina) and 22.5 µl water) then incubated 
(37 °C for 30 min). DNA was extracted using the MinElute PCR Purifica-
tion Kit (Qiagen), half the DNA was amplified (NEBNext High-Fidelity 2× 
PCR Master Mix (New England Biolabs)) and purified with the QIAquick 
PCR Purification Kit (Qiagen). Libraries were sequenced using 40-bp 
paired-end reads (Illumina NextSeq).

Reads were mapped to GRCh38 using the PEPATAC pipeline with 
prealignment to the mitochondrial genome and default settings50. 
Gentoyping was performed using bcftools mpileup48. Allele specific 
ATAC-seq read counts were generated at sites of acquired SNVs deter-
mined by WGS.

Immunoglobulin gene characterization
To determine the IGHV status of our cohort, we prioritized data from 
Sanger sequencing, followed by WGS-derived data including IgCaller51 
results and the presence of noncanonical AID mutational signature 
(SBS9). This prioritizing scheme resulted in 54% (264/485) cases classi-
fied by Sanger sequencing, 40% (194/485) by the IgCaller algorithm and 
6% (27/485) by the mutational signature SBS9. The correlation between 
these three methodologies was high, as can be seen in Supplementary 
Table 26. In addition, the IgCaller algorithm was used to further charac-
terize the IG genes, including to define the IGHV3-21 rearrangement in 
10% (47/485) of cases and CLL stereotypy in 27% (132/485). To assign CLL 
stereotypes, the IgCaller output was used as input for AssignSubsets 
online tool52, which annotates the 19 main subsets, including subsets 
1, 2, 4 and 8, as recommended by ERIC guidelines39. In cases more than 
one rearrangement were detected, we selected the rearrangement with 
the highest score to define the main CLL stereotype. In cases where a 
rearrangement was not assigned, but there was a proximal rearrange-
ment reported, we included this rearrangement in our analysis.

Somatic variant calling and filtering
SNVs and indels were called using Strelka v.2.8.4 7 adopting default 
parameters. Filtering of SNVs/indels was performed as follow: depth 
required greater than ten and allele fraction (AF) greater than 0.05; 
the quality filter annotation should be ‘PASS’ and quality score greater 
than 30; variants with allele frequency less than 0.05 from 1KGP phase 
3 1405.34_GRCh38.p8 and EXAC v.0.3 data (annotated from using 
Ensembl VEP GRCh38 release v.89.4 (ref. 53)). Additional filters accord-
ing to the Illumina v.4 Genomics England annotation pipeline removed 
variants as follows: variants with a population germline frequency 
greater than 1% in either the Genomics England dataset or in the gno-
mAD v.3; recurrent somatic variants with a frequency greater than 5% in 
the Genomics England cohort; variants overlapping with LINE repeats 
or simple repeats found with Tandem Repeats Finder v.4.09 (ref. 54); 
calls within 50 bp either side of an indel where at least 10% of variants 
have been filtered due to quality; locus depth is greater than three times 
mean chromosomal depth in the germline sample; contains multiple 
alternate alleles; germline sample is not the homozygous reference or 
indel Q-score is less than 30; variant quality score recalibration (VQSR) 
score less than 2.75; most overlapping reads do not map uniquely to 
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variant position; within ten bases of Genomics England inhouse data-
base or Gnomad v.3 germline indel with frequency greater than 1%; 
SNVs resulting from systematic mapping and calling artefacts; fails 
somatic panel of normal Phred cut-off (< 80).

The Supplementary Notes include details on cancer cell fraction 
calculation as well as coding and noncoding variant annotations. In 
addition, it includes our approach for assigning target genes of regula-
tory elements, identifying of coding and noncoding candidate drivers.

Structural variant identification
The structural variant (SV) calling pipeline for detection of inversions 
and translocations was as follows. (1) Delly55 was used to call variants 
in each tumor–germline pair, with the following steps: complete 
somatic prefiltering, genotype all potentially somatic sites across all 
CLL germline samples, postfilter for somatic SVs using control samples. 
Variants with an alternative AF less than 0.05 were removed. (2) Lumpy 
v.0.2.13 (ref. 56) and (3) Manta 0.28.0 were also used to call SVs. Variants 
with an alternative AF < 0.05 or for which there was any evidence in the 
germline were removed for consistency. (4) The pcawg-merge-sv con-
sensus calling pipeline57 was adapted for this analysis. SVs supported 
by two or more callers were reported.

Identification of CNAs
We used both DNA microarray (n = 109 samples) and WGS (n = 485 
samples) to determine CNAs and observed high concordance between 
the two methods. Of 282 CNAs detected by WGS, 240 (85%) were also 
reported by DNA microarray with high confidence (Supplementary 
Table 6). In addition, we further reduced false positive signals using 
a combination of intersects between several variant callers and visual 
inspection as detailed below.

Samples from subset of 109 patients enrolled in ARCTIC and 
AdMIRe trials were genotyped using HumanOmni2.5-8 BeadChip arrays 
(Illumina Inc.). Genotypes were called using GenomeStudiov.2009.2 
(Illumina Inc.). CN gains and losses greater than 50 kb and cnLOH less 
than 5 Mb were reported using Nexus Copy Number v.10 (BioDiscovery, 
Inc.), as previously described16,58, with the following settings (SNPRank 
Segmentation): significance threshold, 1 × 10–5; max contiguous probe 
spacing (kb), 1000.0; minimum number of probes per segment, 5; 
high gain, 0.6; gain, 0.2; loss, –0.2; big loss, –1.0; 3:1 sex chromosome 
gain, 1.2; homozygous frequency threshold, 0.95; homozygous value 
threshold, 0.8; heterozygous imbalance threshold, 0.4; minimum LOH 
length (kb), 20; percentage outliers to remove, 3%. We also inspected 
all genomes to scan visually for changes not identified using these 
analysis settings using Nexus visualization tool.

In the case of WGS, Canvas v.1.3.1 (ref. 59) and Manta v.0.28.0 were 
used to call CNAs, filtering out centromeric and telomeric regions as 
defined in the UCSC cytoband table. Variants reported by Canvas with 
a quality score less than ten were filtered out. Variants reported by 
Manta were filtered out as follows: (1) variants with a normal sample 
depth near one or both variant break-ends three times higher than 
the chromosomal mean, and (2) variants with somatic quality score 
of less than 30.

For each remaining CNA, its presence and type (gain or loss) were 
confirmed by visually inspecting the genome-wide mean coverage 
and B-allele frequency data, derived from the aligned reads in 100 kb 
windows. Calls with continuous copy number changes of length greater 
than 100 kb were kept. The Supplementary Notes include details on 
cancer cell fraction calculation.

Counts of number of drivers
We calculated the total number of drivers in each patient by the  
following methodologies: we established (1) the total mutational  
burden by counting the number of functional variants (that is, with 
the following exonic consequences splice acceptor variant, splice 
donor variant, stop gained, frameshift variant, stop lost, start lost, 

transcript amplification, in-frame insertion, in-frame deletion, mis-
sense variant, protein-altering variant or incomplete terminal codon 
variant), (2) the number of mutated coding drivers (out of 58) SNVs/
indels and (3) the number of mutated coding (SNVs/indels and CNAs) 
and noncoding drivers.

Pathway analysis
Two pathway datasets were used: PANCANCER containing 14 pathways 
from The NanoString PanCancer Pathways Panel and KEGG containing 
23 signaling pathways60. For the six pathways in common between the 
two lists, the PANCANCER pathway was selected, resulting in 31 unique 
pathways included in the analysis. We counted the number of patients 
with mutations per pathway considering (1) a gene panel of the coding 
drivers (n = 58); (2) the exome (coding drivers plus exonic mutation 
with high impact according to VEP annotations: splice_acceptor_vari-
ant, splice_donor_variant, stop_gained, frameshift_variant, stop_lost, 
start_lost); (3) a larger driver panel containing both coding drivers 
and regulatory candidate drivers (n = 58 + 126) and (4) all of the above 
combined (coding and noncoding drivers plus exonic mutation with 
high impact according to VEP annotations).

Telomere analysis
Telomere analysis was carried out on all 485 CLL tumor-normal pairs. 
Telomere content was estimated using Telomere Hunter v.1.1.0 (ref. 61). 
Telomere content is normalized by the total number of overall reads 
that comprise a ‘telomere-like’ GC-content range (48–52%). Telomere 
length in basepairs was estimated using Telomerecat v.1.0 (ref. 62). We 
found that telomere content assessed using Telomere Hunter and 
telomere length assessed using Telomerecat were highly correlated 
(P = 0.84, P < 2.2 × 10–16, Extended Data Fig. 8a). We compared the tel-
omere lengths and contents between CLL samples and matched saliva 
samples as germline63, considering that different cell types can natu-
rally present different telomere lengths64.

Chromothripsis analysis
Chromothripsis was identified using Shatterseek65, which aims to 
detect candidate regions on the basis of oscillating copy number states 
(using CNAs as previously described), as well as intersection with clus-
ters of interleaved structural variants (SVs; that is, deletions, duplica-
tions, inversions and translocations) identified from the SV consensus 
pipeline previously described. Potential regions of chromothripsis 
were classified as ‘high confidence’ or ‘low confidence’ using criteria 
as per Cortés-Ciriano et al.65.

Mutational signatures
Extraction of SBS, DBS and small ID signatures was performed using 
SigProfilerExtractor v.1.0.1810 (ref. 66). SigProfilerExtractor de novo 
signature extraction and decomposition were carried out according 
to default parameters, with potential de novo extracted signature 
solutions tested between 1 and 25 signatures. Signatures were refer-
enced to the Catalogue of Somatic Mutations in Cancer (COSMIC) 
v.3; SigProfilerExtractor signatures were decomposed based on a 
cosine similarity greater than 0.9. Following decomposition to COSMIC 
signatures, SigProfilerExtractor estimated the overall signature con-
tributions per tumor, as well as the per tumor signature estimates for 
each mutation context. Through associating these context estimates 
back to the original mutations, signature estimates were attributed 
to individual driver mutations, as well as genomic regions (exome, 
promoters, UTRs, and so on).

GC analysis
We investigated the presence of GC using an unsupervised multiple 
correspondence analysis with FactoMineR67. We included 17 genomic 
measures as binary data, including variables binned as less than median 
or greater than or equal to median: number of SNVs, number of indels, 
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telomere lengths, telomere content and variables binned as presence/ 
absence: SV breakpoint, CNA, CN gain, CN loss, cnLOH, trisomy,  
aneuploidy, CN gain excluding trisomy, CN loss excluding aneuploidy, 
cnLOH excluding whole chromosome cnLOH, inversion, translocation 
and chromothripsis.

Genomic alterations in known risk factors and disease states
All genomic alterations derived from WGS were combined and included 
as follows: noncoding candidate drivers mutated in more than 5% of sam-
ples; coding drivers were combined according to the presence of an SNVs/
indels and CNAs (union); recurrent CNAs that significantly co-occurred 
(mean square contingency coefficient, mu > 0.3) and defined in the same 
chromosome were combined (union). In addition, only genomic altera-
tions with at least five occurrences across all the samples were included in 
the analysis. In total, 186 genomic remained including 58 coding drivers, 
36 recurrent CNAs, 44 noncoding drivers, 12 pathways affected by genetic 
alterations, 28 global genomic features and mutational signatures, and 
eight genomic complexity groups (Supplementary Table 21).

We tested for enrichment (two-sided Fisher’s exact test, 
FDR ≤ 0.05) of each genomic alteration in several known risk factor and 
disease state groups for samples with available data: age (195 samples < 
median age versus 216 samples ≥ median age); sex (338 male versus 136 
female); disease stage (443 frontline versus 30 R/R); TP53 status (420 
WT versus 65 disrupted); IGHV mutational status (197 hypermutated 
versus 288 unmutated); minimal residual disease (MRD; 59 negative 
versus 57 positive); BCR IG subset 2 (33 presenting 2 versus 450 others); 
IGHV3-21 rearrangement (47 with versus 436 without).

Relationship between genomic alterations and patient 
outcome
We examined the relationship between each of the 186 genomic fea-
tures as detailed above (Supplementary Table 21) and patient outcomes 
using Cox proportional hazards models on 243 patients for PFS and 
245 patients for OS. FDR-corrected P values were reported as signifi-
cant if less than 0.05. In addition, several particular comparisons with 
more than two groups were performed using Kaplan–Meier curves 
and the log-rank test. These were: number of mutated drivers, the 
eight genomic complexity groups and the combination of different 
structural rearrangements. We also performed a multivariate analysis  
using penalized Cox regression, as implemented in the R package 
glmnet68, to find a minimal set of predictors with maximal predictive 
power. An optimal value of the penalization parameter λ was selected 
using leave-one-out cross-validation; specifically, the value of λ that 
minimizes the cross-validation error.

Patient stratification using non-negative matrix factorization
All 186 genomic features, as well as IGHV status including percent 
homology to germline (labeled MS), age and sex were selected for 
unsupervised clustering using non-negative matrix factorization69,70 
using the NMF v.0.22.0 R package71 with the offset method72,73. Data 
were converted to a binary matrix using either presence or absence 
of a feature, or above or below the mean to avoid a mixture of binary 
and nonbinary data (Supplementary Note). After removal of samples 
without age information, samples were divided into m-IGHV (n = 168) 
and u-IGHV (n = 243) as defined above. The number of permitted NMF 
clusters in either the m- or u-IGHV subset was determined using a 
combination of rank estimation methods including the cophenetic cor-
relation coefficient74–76. Data were randomized and the ranks estimated 
for comparison to avoid overfitting. NMF was carried out on each IG 
subset of samples separately to produce GSs.

DeconstructSigs v.1.9.0 (ref. 77) was designed to use the mutation 
catalog of a sample to define the linear combination of COSMIC sig-
natures that best reconstruct that sample’s mutational profile. Here, 
we used this tool to define the linear combination of GSs calculated 
using the NMF method that best reconstruct the genomic features of a 

sample. The proportions of each GS within all patients were then clus-
tered using mclust v.5.4.6 (ref. 78) and assigned a cluster that maximized 
parsimony whilst still producing an adequate prediction. The defined 
GSs were then compared with known subgroups such as BCR IG subsets 
and patients harboring an IGHV3-21 rearrangement.

Testing of the method was carried out as follows:

	(1)	 Data were randomly split into two trial groups each represent-
ing 50% of the dataset: and further divided into m-IGHV and 
u-IGHV CLL. The NMF was then performed on all genomic 
features on each group and evaluated using cosine similarity 
between group signature matrices (Supplementary Table 22);

	(2)	 all samples used for NMF were split into 80% (m-IGHV: n = 133, 
u-IGHV: n = 195) training and 20% (m-IGHV: n = 34, u-IGHV: 
n = 49) testing at random. The NMF was performed on the 
training data as described above to produce GS matrixes (m-GS, 
u-GS). The training data were then assigned to a GS using 
deconstructSigs to identify the combination of GSs that best 
reconstructed a sample’s genomic feature matrix and then  
assigning the signature that occurred at the highest percentage. 
The signature assigned to the test samples was then compared 
with the signatures assigned to those same individuals when 
100% of data was used for both training and testing (Fig. 8g).

Data wrangling and plotting
Plotting of data was performed using tidyverse v.1.3.0 (refs. 79,80) in 
R v.3.6.2 (ref. 81). Mutation hotspot graphics were plotted using the 
package GenVisR v.1.18.1 (ref. 82). Lollipop plots were plotted with 
the MutationMapper from cbioportal accessible from https://www. 
cbioportal.org/mutation_mapper. Genomic views were prepared using 
the UCSC genome browser83.

Statistics and reproducibility
The sample size calculation was critical to the success of this program. 
Our power calculations considered the heterogeneity of CLL and a back-
ground somatic mutation frequency of 0.8 mutations per megabase. 
This means that, to reliably detect somatic mutations recurring in 2% 
of patients with CLL, we need to sequence approximately 500 CLL 
genomes (Supplementary Fig. 8). No data were excluded from the anal-
yses. The experiments were not randomized. The investigators were 
not blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The National Genomic Research Library (NGRL) is a ‘reading library’, 
therefore data cannot be extracted directly. All WGS data, BAM files 
and processed files cited can be viewed in situ via the Haematological 
Malignancy Genomics England Clinical Interpretation Partnership 
(GECIP), once an individual’s data access has been approved. The link 
to becoming a member of GECIP to get access can be found here https://
www.genomicsengland.co.uk/research/academic/join-gecip. The 
process involves an online application, verification by the applicant’s 
institution, completion of a short information governance training 
course (circa 30 min), and verification of approval by the Haematologi-
cal Malignancy domain lead (A.S., see contact details for corresponding 
author). Please see https://www.genomicsengland.co.uk/research/
academic for more information.
All RNA sequencing data has been deposited in the European Bioin-
formatics Institute (EMBL-EBI) ArrayExpress Archive of Functional 
Genomics Data database under accession number E-MTAB-12124.
The outcome of the clinical studies has been published (all references in 
Methods). Access to clinical datasets is subject to data sharing policies 
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of the respective clinical trial units that provided legal sponsorship  
for the studies and can be made available on request to A. Pettitt  
(arp@liverpool.ac.uk; Department of Molecular and Clinical Cancer  
Medicine, University of Liverpool, Liverpool, UK) and P. Hillmen  
(peter.hillmen@nhs.net; St. James’s University Hospital, Leeds, UK). 
Source data are provided with this paper.

Code availability
All open source tools used in this manuscript were cited in the Methods 
or Supplementary Notes. No custom code was used for any aspect of 
data processing or analysis.
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Extended Data Fig. 1 | Recurrent CNAs contributing to the identification of 
candidate drivers. a, Number of samples with copy number gains (upper track, 
red) and losses (lower track, blue) (y axis) according to the genomic coordinates 
of the full chromosome from 5’ to 3’ (x axis), for each chromosome (panels).  

b-c , MutComFocal scores for genes affected by CN losses and mutations (b) and 
gene significantly affected by CN gains and mutations (c) Genes classified as  
tier 1 and 2 were selected for further investigations.
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Extended Data Fig. 2 | Recurrent inversions and translocations. a, Number of 
samples with inversions (y axis) according to the genomic coordinates of the full 
chromosome from 5’ to 3’ on each chromosome (x axis), for each chromosome 

(panels). b-c , Distance between all inversion (b) and translocation (c) 
(breakpoints across all 485 samples on each chromosome highlighting hotspot 
breakpoints (named kataegis, in red).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Characterization of candidate genes and regions of 
CNAs. a, Number of variants previously reported in the COSMIC database.  
b, Number of variants for each consequence. c, Distribution of cancer cell 
fractions binned in four groups [1-0.75],]0.75-0.5],]0.5-0.25],]0.25-]. The number 
of variants represented in each boxplot is detailed in Supplementary Table 12.  

d , Number of variants occurring in protein domains including two types of 
protein domains: sites and regions, as defined in by Prot2HG39.e, Distribution of 
cancer cell fractions of recurrent CN gains (red) and CN losses (blue). All boxplots 
show the minimum and maximum values and interquartile range. The number of 
CNAs represented in each boxplot is detailed in Supplementary Table 6.
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