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Abstract Influential theories emphasize the importance of predictions in learning: we learn from
feedback to the extent that it is surprising, and thus conveys new information. Here, we explore
the hypothesis that surprise depends not only on comparing current events to past experience, but
also on online evaluation of performance via internal monitoring. Specifically, we propose that
people leverage insights from response-based performance monitoring ± outcome predictions and
confidence ± to control learning from feedback. In line with predictions from a Bayesian inference
model, we find that people who are better at calibrating their confidence to the precision of their
outcome predictions learn more quickly. Further in line with our proposal, EEG signatures of
feedback processing are sensitive to the accuracy of, and confidence in, post-response outcome
predictions. Taken together, our results suggest that online predictions and confidence serve to
calibrate neural error signals to improve the efficiency of learning.

Introduction
Feedback is crucial to learning and adaptation. Across domains it is thought that feedback drives
learning to the degree that it is unexpected and, hence, provides new information, for example in
the form of prediction errors that express the discrepancy between actual and expected outcomes
(McGuire et al., 2014 ; Yu and Dayan, 2005 ; Behrens et al., 2007 ; Diederen and Schultz, 2015 ;
Diederen et al., 2016 ; Pearce and Hall, 1980 ; Faisal et al., 2008 ; Sutton and Barto, 1998 ;
Wolpert et al., 2011 ). Yet, the same feedback can be caused by multiple sources: we may be wrong
about what is the correct thing to do, or we may know what to do but accidentally still do the wrong
thing (McDougle et al., 2016 ). When we know we did the latter, we should discount learning about
the former ( McDougle et al., 2019 ; Parvin et al., 2018 ). Imagine for instance learning to throw
darts. You know the goal you want to achieve ± hit the bullseye ± and you might envision yourself
performing the perfect throw to do so. However, you find that the throw you performed as intended
missed the target entirely and did not yield the desired outcome: In this case, you should adjust
what you believe to be the right angle to hit the bullseye, based on how you missed that last throw.
On a different throw you might release the dart at a different angle than intended and thus antici-
pate the ensuing miss: In this case, you may not want to update your beliefs on what is the right
angle of throw. How do people assign credit to either of these potential causes of feedback when
learning how to perform a new task? How do they regulate how much to learn from a given feed-
back depending on how much they know about its causes?
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Performance monitoring, that is the internal evaluation of one's own actions, could reduce sur-
prise about feedback and uncertainty about its causes by providing information about execution
errors. For instance in the second dart throw example, missing the target may be unsurprising if per-
formance monitoring detected that, for example, the dart was released differently than desired
(Figure 1A ). In simple categorical choices, people are often robustly aware of their response errors
(Maier et al., 2011 ; Yeung et al., 2004 ; Riesel et al., 2013 ; Maier et al., 2012 ) and this awareness
is reflected in neural markers of error detection ( Murphy et al., 2015 ). Although errors are often
studied in simple categorization tasks in which responses are either correct or incorrect, in many
tasks, errors occur on a graded scale (e.g. a dart can miss the target narrowly or by a large margin),
and both error detection, as well as feedback processing are sensitive to error magnitude
(Luft et al., 2014 ; Ulrich and Hewig, 2014 ; FroÈmer et al., 2016a ; Arbel and Donchin, 2011 ). Peo-
ple are even able to report gradual errors reasonably accurately ( Kononowicz et al., 2019 ;
AkdogÆan and Balcõ, 2017; Kononowicz and van Wassenhove, 2019 ).

This ability may be afforded by reliance on internal models to predict the outcome of movements
(Wolpert and Flanagan, 2001 ), for example, based on an efference copy of a motor command.
These predictions could help discount execution errors in learning from feedback. In fact, if these
predictions perfectly matched the execution error that occurred, the remaining mismatch between
predicted and obtained feedback (sensory prediction error) could serve as a reliable basis for adap-
tation and render feedback maximally informative about the mapping from actions to outcomes
(Figure 1B ).

Although participants are able to evaluate their own performance reasonably well, error detection
is far less certain than outlined in the ideal scenario above, and the true cause of feedback often
remains uncertain to some extent. People are critically sensitive to uncertainty, and learn more from
feedback when they expect it to be more informative ( McGuire et al., 2014 ; Schiffer et al., 2017 ;
Bland and Schaefer, 2012 ; Nassar et al., 2010 ; O'Reilly, 2013 ). Uncertainty about what caused a
given feedback inevitably renders it less informative, similar to decreases in reliability, and this uncer-
tainty should be taken into account when learning from it. Confidence could support such adaptive
learning from feedback by providing a read-out of the subjective precision of predicted outcomes
(Nassar et al., 2010 ; Vaghi et al., 2017 ; Meyniel et al., 2015 ; Pouget et al., 2016 ), possibly relying
on shared neural correlates of confidence with error detection ( Boldt and Yeung, 2015 ; van den
Berg et al., 2016 ). Similar to its role in regulating learning of transition probabilities ( Meyniel et al.,
2015 ; Meyniel and Dehaene, 2017 ), information seeking/exploration in decision making
(Desender et al., 2018a ; Boldt et al., 2019 ), and hierarchical reasoning (Sarafyazd and Jazayeri,
2019 ), people could leverage confidence to calibrate their use of online predictions. In line with this
suggestion, people learn more about advice givers when they are more confident in the choices that
advice is about (Carlebach and Yeung, 2020 ). In the throwing example above, the more confident
you are about the exact landing position of the dart, the more surprised you should be when you
find that landing position to be different: The more confident you are, the more evidence you have
that your internal model linking angles to landing positions is wrong, and the more information you
get about how this model is wrong. Thus, you should learn more when you are more confident. How-
ever, this reasoning assumes that your predictions are in fact more precise when you are more confi-
dent, i.e., that your confidence is well calibrated ( Figure 1B ).

In the present study, we tested the hypothesis that performance monitoring ± error detection and
confidence (Yeung and Summerfield, 2012 ) ± adaptively regulates learning from feedback. This
hypothesis predicts that error detection and confidence afford better learning, with confidence
mediating the relationship between outcome predictions and feedback, and that learning is compro-
mised when confidence is mis-calibrated (Figure 1C ). It further predicts that established neural cor-
relates of feedback processing, such as the feedback-related negativity (FRN) and the P3a
(Ullsperger et al., 2014a ), should integrate information about post-response outcome predictions
and confidence. That is to say, an error that could be predicted based on internal knowledge of how
an action was executed should not yield a large surprise (P3a) or reward prediction error (FRN) signal
in response to an external indicator of the error (feedback). However, any prediction error should be
more surprising when predictions were made with higher confidence. We formalize our predictions
using a Bayesian model of learning and test them using behavioral and EEG data in a modified time-
estimation task.
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Figure 1. Interactions between performance monitoring and feedback processing. ( A) Illustration of dynamic updating of predicted outcomes based on
response information. Pre-response the agent aims to hit the bullseye and selects the action he believes achieves this goal. Post-response the agent
realizes that he made a mistake and predicts to miss the target entirely, being reasonably confident in his prediction. In line with his prediction and thus
unsurprisingly the darts hits the floor. (B) Illustration of key concepts. Left: The feedback received is plotted against the prediction. Performance and
prediction can vary in their accuracy independently. Perfect performance (zero deviation from the target, dark blue line) can occur for accurate or
inaccurate predictions and any performance, including errors, can be predicted perfectly (predicted error is identical to performance, orange line).
When predictions and feedback diverge, outcomes (feedback) can be better (closer to the target, area highlighted with coarse light red shading) or
worse (farther from the target, area highlighted with coarse light blue shading) than predicted. The more they diverge the less precise the predictions
are. Right: The precision of the prediction is plotted against confidence in that prediction. If confidence closely tracks the precision of the predictions,
that is if agents know when their predictions are probably right and when they're not, confidence calibration is high (green). If confidence is
independent of the precision of the predictions, then confidence calibration is low. ( C) Illustration of theoretical hypotheses. Left: We expect the
correspondence between predictions and Feedback to be stronger when confidence is high and to be weaker when confidence is low. Right: We
expect that agents with better confidence calibration learn better. ( D) Trial schema. Participants learned to produce a time interval by pressing a button
following a tone with their left index finger. Following each response, they indicated on a visual analog scale in sequence the estimate of their accuracy
(anchors: `much too short' = `viel zu kurz' to `much too long' = `viel zu lang') and their confidence in that estimate (anchors: `not certain' = `nicht sicher'
to `fully certain' = `voÈllig sicher') by moving an arrow slider. Finally, feedback was provided on a visual analog scale for 150 ms. The current error was
displayed as a red square on the feedback scale relative to the target interval indicated by a tick mark at the center (Target, t) with undershoots shown
to the left of the center and overshoots to the right, and scaled relative to the feedback anchors of -/+1 s (Scale, s; cf. E). Participants are told neither
Target nor Scale and instead need to learn them based on the feedback. ( E) Bayesian Learner with Performance Monitoring. The learner selects an
intended response (i) based on the current estimate of the Target. The Intended Response and independent Response Noise produce the Executed
Response (r). The Efference Copy (c) of this response varies in its precision as a function of Efference Copy Noise. It is used to generate a Prediction as
the deviation from the estimate of Target scaled by the estimate of Scale. The Efference Copy Noise is estimated and expressed as Confidence (co),
approximating the precision of the Prediction. Learners vary in their Confidence Calibration (cc), that is, the precision of their predictions, and higher
Confidence Calibration (arrows: green >yellow > magenta) leads to more reliable translation from Efference Copy precision to Confidence. Feedback is
provided according to the Executed Response and depends on the Target and Scale, which are unknown to the learner. Target and Scale are inferred

Figure 1 continued on next page
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Results

Rationale and approach
Our hypothesis that performance monitoring regulates adaptive learning from feedback makes two
key behavioral predictions ( Figure 1C ): (1) The precision of outcome predictions (i.e. the correlation
between predicted and actual outcomes) should increase with confidence. (2) Learners with superior
calibration of confidence to the precision of their outcome predictions should learn more quickly.
Our hypothesis further predicts that feedback processing will be critically modulated by an agent's
outcome prediction and confidence. We tested these predictions mechanistically using computa-
tional modeling and empirically based on behavioral and EEG data from 40 participants performing
a modified time-estimation task ( Figure 1D ). In comparison to darts throwing as used in our exam-
ple, the time estimation task requires a simple response ± a button press ± such that errors map
onto a single axis that defines whether the response was provided too early, timely, or too late and
by how much. These errors can be mapped onto a feedback scale and, just as in the darts example
where one learns the correct angle and acceleration to hit the bullseye, participants here can learn
the target timing interval. In addition to requiring participants to learn and produce a
precisely timed action on each trial, our task also included two key measurements that allowed us to
better understand how performance monitoring affects feedback processing: (1) Participants were
required to predict the feedback they would receive on each trial and indicate it on a scale visually
identical to the feedback scale ( Figure 1D , Prediction) and (2) Participants indicated their degree of
confidence in this prediction ( Figure 1D , Confidence). Only following these judgments would they
receive feedback about their time estimation performance.

A mechanism for performance monitoring-augmented learning
As a demonstration of proof of the hypothesized learning principles, we implemented a computa-
tional model that uses performance monitoring to optimize learning from feedback in that same task
(Figure 1E ). The agent's goal is to learn the mapping between its actions and their outcomes (sen-
sory consequences) in the time-estimation task, wherein feedback on an initially unknown scale must
be used to learn accurately timed actions. Learning in this task is challenged in two ways: First, errors
signaled by feedback include contributions of response noise, for example, through variability in the
motor system or in the representations of time ( Kononowicz and van Wassenhove, 2019 ;
Balci et al., 2011 ). Second, the efference copy of the executed response (or the estimate of what
was done) varies in its precision. To overcome these challenges, the agent leverages performance
monitoring: It infers the contribution of response noise to a given outcome based on an outcome
prediction derived from the efference copy, and the degree of confidence in its prediction based on
an estimate of the current efference copy noise. The agent then weighs Prediction and Intended
Response as a function of Confidence and Response Noise when updating beliefs about the Target
and the Scale based on Feedback.

We compare this model to one that has no insights into its trial-by-trial performance, but updates
based on feedback and its fidelity due to response noise alone (Feedback), and another model that
has insights into its trial-by-trial performance allowing it to generate predictions, and into the aver-
age precision of its predictions, but not the precision of its current prediction
(Feedback + Prediction). We find that performance improves as the amount of insight into the
agent's performance increases (Figure 1F ): The optimally calibrated Bayesian learner with perfor-
mance monitoring outperforms both other models. Further, in line with our behavioral predictions,
we find in this model that confidence varies with the precision of predictions ( Figure 2A , Figure 2Ð
figure supplement 1 ) and, when varying the fidelity of confidence as a read-out of precision (Confi-
dence Calibration), agents with superior Confidence Calibration learn better ( Figure 2B , Figure 2Ð

Figure 1 continued

based on Feedback (f), Response Noise, Prediction, and Confidence. Variables that are observable to the learner are displayed in solid boxes, whereas
variables that are only partially observable are displayed in dashed boxes. (F) Target and scale error (absolute deviation of the current estimates from
the true values) for the Bayesian learner with Performance monitoring (green, optimal calibration), a Feedback-only Bayesian Learner (solid black), and a
Bayesian Learner with Outcome Prediction (dashed black).
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Figure 2. Relationships between outcome predictions and actual outcomes in the model and observed data (top vs.bottom). ( A) Model prediction for
the relationship between Prediction and actual outcome (Feedback) as a function of Confidence. The relationship between predicted and actual
outcomes is stronger for higher confidence. Note that systematic errors in the model's initial estimates of target (overestimated) and scale
(underestimated) give rise to systematically late responses, as well as underestimation of predicted outcomes in early trials, visible as a plume of
datapoints extending above the main cloud of simulated data. ( B) The model-predicted effect of Confidence Calibration on learning. Better Confidence
Calibration leads to better learning. ( C) Observed relationship between predicted and actual outcomes. Each data point corresponds to one trial of
one participant; all trials of all participants are plotted together. Regression lines are local linear models visualizing the relationship between predicted
and actual error separately for high, medium, and low confidence. At the edges of the plot, the marginal distributions of actual and predicted errors
are depicted by confidence levels. (D) Change in error magnitude across trials as a function of confidence calibration. Lines represent LMM-predicted
error magnitude for low, medium and high confidence calibrations, respectively. Shaded error bars represent corresponding SEMs. Note that the
combination of linear and quadratic effects approximates the shape of the learning curves, better than a linear effect alone, but predicts an
exaggerated uptick in errors toward the end, Figure 2Ðfigure supplement 3 . Inset: Average Error Magnitude for every participant plotted as a
function of Confidence Calibration level. The vast majority of participants show positive confidence calibration. The regression line represents a local
linear model fit and the error bar represents the standard error of the mean.
The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page
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figure supplement 1 ). We next sought to test whether participants' behavior likewise displays these
hallmarks of our hypothesis.

Confidence reflects precision of outcome predictions
To test the predictions of our model empirically, we examined behavior of 40 human participants
performing the modified time-estimation task. To test whether the precision of outcome predictions
increases with confidence, we regressed participants' signed timing production errors (signed error
magnitude; scale: undershoot [negative] to overshoot [positive]) on their signed outcome predictions
(Predicted Outcome; same scale as for signed error magnitude), Confidence, Block, as well as their
interactions. Our results support our first behavioral prediction ( Table 1): As expected, predicted
outcomes and actual outcomes were positively correlated, indicating that participants could broadly
indicate the direction and magnitude of their errors. Crucially, this relationship between predicted
and actual outcomes was stronger for predictions made with higher confidence ( Figure 2C ).

In addition to this expected pattern, we found that both outcome predictions, as well as confi-
dence calibration, improved across blocks, suggestive of learning at the level of performance moni-
toring ( Figure 2Ðfigure supplement 2 ). Note however that participants tended to bias their
predictions toward the center of the scale in early blocks, when they had little knowledge about the
target interval and could thus determine neither over- vs. undershoots nor their magnitude. This stra-
tegic behavior may give rise to the apparent improvements in performance monitoring.

To test more directly our assumption that Confidence tracks the precision of predictions, we fol-
lowed up on these findings with a complementary analysis of Confidence as the dependent variable
and tested how it relates to the precision of predictions (absolute discrepancy between predicted
and actual outcome, see sensory prediction error, SPE below), the precision of performance (error
magnitude), and how those change across blocks (Table 2). Consistent with our assumption that
Confidence tracks the precision of predictions, we find that it increases as the discrepancy between

Figure 2 continued

Figure supplement 1. Model comparison.
Figure supplement 2. Predictions and Confidence improve as learning progresses.
Figure supplement 3. Running average log error magnitude across trials.

Table 1. Relations between actual performance outcome (signed error magnitude), predicted outcome, confidence in predictions
and their modulations due to learning across blocks of trials.

Signed error magnitude

Predictors Estimates SE CI t p

Intercept 4.63 9.99 � 14.94±24.20 0..46 6.427e-01

Predicted Outcome 523.99 29.66 465..86±582.12 17.67 7.438e-70

Block 29.47 8.12 13..56±45.37 3..63 2.832e-04

Confidence � 27.07 11.05 � 48.73 ±� 5.42 � 2..45 1.428e-02

Predicted Outcome: Block � 149.70 21.90 � 192.62 ±� 106.78 � 6..84 8.145e-12

Predicted Outcome: Confidence 322.56 27.31 269.03±376.09 11.81 3.477e-32

Block: Confidence � 25.52 9..15 � 43.46 ±� 7.58 � 2..79 5.297e-03

Predicted Outcome: Block: Confidence 90.68 33.65 24.73±156.64 2..69 7.043e-03

Random effects Model Parameters

Residuals 54478.69 N 40

Intercept 3539.21 Observations 9996

Confidence 2813.79 log-Likelihood � 68816.092

Predicted Outcome 22357.33 Deviance 137632.185

Formula: Signed error magnitude ~Predicted Outcome*Block*Confidence+(Confidence +Predicted Outcome+Block|participant); Note: `:º indicates inter-

actions between predictors.
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predicted and actual outcome decreases. Confidence was also higher for larger errors, presumably
because their direction (i.e. overshoot or undershoot) is easier to judge. The relationships with both
the precision of the prediction and error magnitude changed across blocks, and confidence
increased across blocks as well.

To test whether these effects reflect monotonic increases in confidence and its relationships with
prediction error and error magnitude, as expected with learning, we fit a model with block as a cate-
gorical predictor and SPE and Error Magnitude nested within blocks ( Supplementary file 1 ). We
found that confidence increased numerically from each block to the next, with significant differences
between block 1 and 2, as well as block 3 and 4. Its relationship to error magnitude was reduced in
the first block compared to the remaining blocks and enhanced in the final two blocks compared to
the remaining blocks. These findings are thus consistent with learning effects. While the precision of
predictions was more strongly related to confidence in the final block compared to the remaining
blocks, it was not less robustly related in the first block, and instead somewhat weaker in the third
block. This pattern is thus not consistent with learning. Importantly, whereas error magnitude was
robustly related to confidence only in the last two blocks, the precision of the prediction was
robustly related to confidence throughout.

Having demonstrated that, across individuals, confidence reflects the precision of their predic-
tions (via the correlation with SPE), we next quantified this relationship for each participant sepa-
rately as an index of their confidence calibration. While quantifying the relationship, we controlled
for changes in performance across blocks, and to ease interpretation, we sign-reversed the obtained
correlations so that higher values correspond to better confidence calibration. We next tested our
hypothesis that confidence calibration relates to learning.

Superior calibration of confidence judgments relates to superior
learning
To empirically test our second behavioral prediction, that people with better confidence calibration
learn faster, we modeled log-transformed trial-wise error magnitude as a function of Trial (linear and
quadratic effects to account for non-linearity in learning, that is stronger improvements in the begin-
ning), Confidence Calibration for each participant ( Figure 2D inset), and their interaction ( Table 3).
As expected, Confidence Calibration interacted significantly with the linear Trial component, that is
with learning (Figure 2D ). Thus, participants with better confidence calibration showed greater per-
formance improvements during the experiment. Importantly, Confidence Calibration did not signifi-
cantly correlate with overall performance ( Figure 2D inset), supporting the assumption that

Table 2. Relations of confidence with the precision of prediction and the precision of performance and changes across blocks.
Confidence

Predictors Estimates SE CI t p

(Intercept) 0.26 0.04 0.18±0.33 6.35 2.187e-10

Block 0.05 0.02 0.02±0.08 3.05 2.257e-03

Sensory Prediction Error (SPE) � 0.44 0.04 � 0.52 ± � 0.36 � 10.84 2.289e-27

Error Magnitude (EM) 0.17 0.05 0.08±0.27 3.73 1.910e-04

Block: SPE � 0.08 0.04 � 0.15 ± � 0.00 � 1.99 4.642e-02

Block: EM 0.15 0.05 0.05±0.25 3.07 2.167e-03

Random effects Model Parameters

Residuals 0.12 N 40

Intercept 0.06 Observations 9996

SPE 0.03 log-Likelihood � 3640.142

Error Magnitude 0.06 Deviance 7280.284

Block 0.01

Error Magnitude: Block 0.04

Formula: Confidence ~ (SPE +Error Magnitude)*Block+(SPE +Error Magnitude *Block|participant); Note: `:º indicates interactio ns between predictors.
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confidence calibration relates to learning (performance change), rather than performance per se.
Confidence calibration was also not correlated with individual differences in response variance (r = -
2.07e-4, 95% CI = [� 0.31, 0.31], p=0.999), and the interaction of confidence calibration and block
was robust to controlling for running average response variance ( Supplementary file 2 ).

Thus, taken together, our model simulations and behavioral results align with the behavioral pre-
dictions of our hypothesis: Participants' outcome predictions were better related to actual outcomes
when those outcome predictions were made with higher confidence, and individuals with superior
confidence calibration showed better learning.

Outcome predictions and confidence modulate feedback signals and
processing
At the core of our hypothesis and model lies the change in feedback processing as a function of out-
come predictions and confidence. It is typically assumed that learning relies on prediction errors,
and signatures of prediction errors have been found in scalp-recorded EEG signals. Before testing
directly how feedback is processed, as reflected in distinct feedback related ERP components, we
will show how these prediction errors vary over time, and as a function of confidence.

We dissociate three signals that can be processed to evaluate feedback ( Figure 3A ): The objec-
tive magnitude of the error (Error Magnitude) reflects the degree to which performance needs to be
adjusted regardless of whether that error was predicted or not. The reward prediction error (RPE),
thought to drive reinforcement learning, indexes whether the outcome of a particular response was
better or worse than expected. The sensory prediction error (SPE), thought to underlie forward
model-based and direct policy learning in the motor domain ( Hadjiosif et al., 2020 ), indexes
whether the outcome of a particular response was close to or far off the predicted one. To illustrate
the difference between the two prediction errors, one might expect to miss a target 20 cm to the
left but find the arrow misses it 20 cm to the right instead. There is no RPE, as the actual outcome is
exactly as good or bad as the predicted one, however, there is a large SPE, because the actual out-
come is very different from the predicted one.

Our hypothesis holds that predictions should help discount noise in the error signal and more so
for higher confidence. Prediction errors should thus be smaller than error magnitude and particularly
so when confidence is higher. We find that this is true in our data ( Figure 3B , Supplementary file 3
and 4, note that unlike SPE, by definition RPE cannot be larger than error magnitude and that its
magnitude, but not sign varies robustly with confidence).

To examine changes in these error signals with trial-to-trial changes in confidence and learning,
we regressed each of these signals onto Confidence, Block, and their interaction
(Supplementary file 5 , Figure 3B ). Consistent with our assumption that confidence tracks the preci-
sion of predictions, SPE decreased as confidence increased (b = � 71.20, p>0.001), but there were

Table 3. Confidence calibration modulation of learning effects on performance.
log Error Magnitude

Predictors Estimates SE CI t p

(Intercept) 5.17 0.06 5.05±5.30 80.74 0.000e + 00

Confidence Calibration 0.58 0.58 � 0.57±1.72 0.99 3.228e-01

Trial (linear) � 0.59 0.07 � 0.72 ± � 0.45 � 8..82 1.197e-18

Trial (quadratic) 0.16 0.02 0.11±0.20 6.80 1.018e-11

Trial (linear): Confidence Calibration � 0.86 0.32 � 1.48 ± � 0.24 � 2.72 6.467e-03

Random effects Model Parameters

Residuals 1.18 N 40

Intercept 0..12 Observations 9996

Trial (linear) 0..03 log-Likelihood � 15106.705

Deviance 30213.411

Formula: log Error Magnitude ~ (Confidence Calibration* Trial(linear)+Trial(quadratic) + (Trial(linear)|participant)); Note: `:' indicates interactions between

predictors.
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