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Abstract
Objective. This study aims to explore the potential of high-resolution brain functional connectivity
based on electroencephalogram, a non-invasive low-cost technique, to be translated into a
long-overdue biomarker and a diagnostic method for Alzheimer’s disease (AD). Approach. The
paper proposes a novel ultra-high-resolution time-frequency nonlinear cross-spectrum method to
construct a promising biomarker of AD pathophysiology. Specifically, using the peak frequency
estimated from a revised Hilbert–Huang transformation (RHHT) cross-spectrum as a biomarker,
the support vector machine classifier is used to distinguish AD from healthy controls (HCs). Main
results. With the combinations of the proposed biomarker and machine learning, we achieved a
promising accuracy of 89%. The proposed method performs better than the wavelet
cross-spectrum and other functional connectivity measures in the temporal or frequency domain,
particularly in the Full, Delta and Alpha bands. Besides, a novel visualisation approach developed
from topography is introduced to represent the brain functional connectivity, with which the
difference between AD and HCs can be clearly displayed. The interconnections between posterior
and other brain regions are obviously affected in AD. Significance. Those findings imply that the
proposed RHHT approach could better track dynamic and nonlinear functional connectivity
information, paving the way for the development of a novel diagnostic approach.

1. Introduction

Alzheimer’s disease (AD) is one of the most com-
mon neurodegenerative diseases, resulting in the
loss of memory and other cognitive impairments
(Ferreri et al 2016, Blinowska et al 2017). The num-
ber of patients affected by AD and the difficulties
in treating this disorder provoke massive demands
for the early diagnosis of the condition and effect-
ive approaches for monitoring disease progression.

In the past decades, electroencephalogram (EEG) has
attracted significant interest since it is economical,
non-invasive and with an ultra-high time resolution.
A variety of biomarkers were extracted from EEGs
in AD-related research, such as amplitude (Poil et al
2013), power spectral densities (PSDs) (Wang et al
2015b, Liu et al 2016), phase-related features (Engels
et al 2015, Kent et al 2021), alpha rhythm power
(Babiloni et al 2013, Schmidt et al 2013, Sadaghiani
and Kleinschmidt 2016, Benwell et al 2020) wavelet
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energy (Jeong et al 2016), features from graph the-
ory (Miraglia et al 2016, delEtoile and Adeli 2017)
and brain connectivity estimations (Blinowska et al
2017, delEtoile and Adeli 2017, Vecchio et al 2017, Yu
et al 2018, Durongbhan et al 2019, Zhao et al 2020).
Peak frequency is also a promising biomarker in the
field of dementia and other neurodegenerative dis-
orders (Grandy et al 2013). To support the classific-
ation of AD based on those features extracted from
EEG recordings, many machine learning algorithms
have been employed, such as linear discriminant ana-
lysis, logistic regression, random forest, support vec-
tor machines (SVMs), K-nearest neighbour (KNN)
and deep learning (Qiao et al 2018, Durongbhan et al
2019, Vecchio et al 2020, Gunawardena et al 2021).

Alpha and Beta peak frequency of a single chan-
nel was used as a quantitative EEG (qEEG) measure
for the classification between AD and mild cognitive
impairment (MCI). MCI represents a transitional
period of neurological degeneration from normal
ageing to AD (Poil et al 2013). That is to say, the
peak frequency may be a potential biomarker to eval-
uate the degree of brain degeneration. Dementia with
Lewy bodies can also be discriminated from AD since
it has a significantly lower peak frequency (van der
Zande et al 2018). However, Idaji et al (2022) sug-
gested that the peak frequency in the Beta band may
be a harmonic activity from the Alpha band and this
observation requires further investigation. Besides,
different from young adults, older people show sig-
nificant slowing of individual alpha peak frequency.
In a word, there is increasing evidence from the lit-
erature suggesting the EEG peak frequency has great
potential to advance dementia research and possibly
one day be translated into a clinically useful AD dia-
gnostic tool.

However, most of the previous related techniques
are univariate-based methods. That is to say, those
techniques are trying to obtain independent fea-
tures from each EEG channel. However, there is
evidence suggesting brain disorders affect informa-
tion exchange between multiple brain areas, namely
brain connectivity (Varotto et al 2014, McBride et al
2015, Hassan et al 2017, Cao et al 2021a). To be
more specific, brain connectivity is divided into three
well-accepted categories: neuroanatomical brain con-
nectivity, functional brain connectivity, and effect-
ive brain connectivity (Abbasvandi and Nasrabadi
2019, Cao et al 2021b). Neuroanatomical connectiv-
ity refers to structural links such as synapses or fibre
pathways at the microscopic scale of neurons (Cao
et al 2021b). In terms of effective connectivity, it
indicates the directed causal influence of one neural
region over others. On the other hand, functional
brain connectivity is defined as the statistical strength
of covariance and/or correlation between pairs of
brain regions, typically estimated with correlation,
coherence, and information theory (Mheich et al
2015, Allen 2018). Many researchers demonstrated

that brain connectivity is able to reflect complex cor-
tical interconnections among brain networks and the
state of independent brain regions (Sakkalis 2011, van
Mierlo et al 2014, Durongbhan et al 2019, Tafreshi
et al 2019). Furthermore, it can reveal distinct aspects
characterising various neurological conditions, such
as dementia and other neurodegenerative diseases.
There is evidence that both anatomical and func-
tional connections among neural areas are affected
in various forms of neurodegeneration (Pijnenburg
et al 2004, Cao et al 2021b). In this regard, measures
of functional connectivity from scalp EEG recordings
are of keen interest to elucidate the effect of neuro-
degeneration on intercommunications within widely
distributed brain networks.

Analysing time-varying interactions and dynamic
brain networks is increasingly attractive and challen-
ging for researchers in the field of neurosciences (Li
et al 2019). Recently, many techniques to estimate
dynamic functional connectivity have been developed
to extract biomarkers from EEG signals, including
short-time Fourier transform (STFT) (Ahmadlou
et al 2012, Keijzer et al 2021), wavelet analysis
(Sankari and Adeli 2011, Handojoseno et al 2013,
Jeong et al 2016, Ieracitano et al 2017), error reduc-
tion ratio (Zhao et al 2020) and Hilbert–Huang trans-
forms (HHTs) (Shan et al 2021). Although those
techniques are satisfactory to an extent and can
be extended to estimate time-frequency coherence
between different EEG channels, there are some lim-
itations because of their principles. STFT computes
Fourier spectra on successive sliding windows and the
STFT mainly suffers from the trade-off between tem-
poral and spectral resolution (Fu et al 2014, Moca
et al 2021). Generally, STFT is employed to analyse
the linear and non-stationary signals (Mousavi et al
2020). To avoid the window problem of STFT, wavelet
analysis employs a longer window for lower frequen-
cies and a shorter one for higher frequencies. In this
case, it is more suitable for extracting time-varying
information in different frequency bands (Sakkalis
2011). However, wavelet-based methods suffer from
the Heisenberg uncertainty principle, the wavelet
transform cannot achieve fine resolutions in both the
time domain and frequency domain simultaneously
due to non-adaptivity once the basis wavelet is set
(Fu et al 2014). Wavelet transform is an advanced
technique developed from Fourier analysis, using har-
monic waves as its templates. Therefore, facing some
similar problems of Fourier spectrum analysis, the
wavelet is capable to solve inter-wave frequency mod-
ulation and cannot solve intra-wave frequency mod-
ulation (Shan et al 2021). However, neural oscilla-
tions have not been proved to be sinusoidal (Mazaheri
and Jensen 2008, Jones 2016, Cohen 2017a). Wavelet-
based approaches have the weakness of dealing with
non-sinusoidal oscillations and discriminating them
from sinusoidal ones (Cohen 2017b). Therefore, there
is a need to develop novel methods to fully explore the
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hidden association in the typical nonlinear and non-
stationary EEG recordings. Unlike wavelet transform
with sinusoidal templates, empirical mode decom-
position (EMD) does not need any template assump-
tion of the target signal (Huang et al 1998), which may
improve the ability of extracting non-stationary and
non-linear EEG information to an extent. EMD ana-
lyses the behaviour of non-stationary and non-linear
signals by decomposing them into several intrinsic
mode functions (IMFs) that could be further ana-
lysed by HHTs. Since the decomposition is based
on the characteristics of the local time scale, with
the HHT, the IMFs generate instantaneous frequen-
cies (IFs) as functions of time that separately estim-
ate dynamic structures of different transient inform-
ation. Furthermore, Shan et al (2021) developed a
new brain connectivity method relying on the revised
HHT (RHHT) based on complete ensemble EMD
(EEMD) with adaptive noise (CEEMDAN). It is able
to capture dynamic interconnection between EEG
signals and shows higher time-frequency resolution,
compared with wavelet analysis. The ‘mode mixing’
is a non-negligible issue of the traditional EMD. To
be more specific, one mode may represent different-
amplitude oscillations or there are oscillations with
high similarity found in different modes. To over-
come this, Wu and Huang (2009) developed EEMD,
which performs the EMD over an ensemble of the
signal plus white Gaussian noise. However, there are
still a variety of problems remaining and showing
up. For instance, residual noise exists in IMF, and
adding different white Gaussian noise to the signal
increases the difficulty in controlling the number of
IMFs. Torres et al (2011) improved the algorithm by
proposing the CEEMDAN. The main improvement
occurs in adding noise. CEEMDAN tries to add a dis-
tinct noise at each step of the decomposition process,
while EEMD adds the white Gaussian noise after the
extraction of each IMF.

Considering the aforementioned findings, it is
hypothesised that the functional brain network con-
nectivity of patients with AD differs from networks
of age-matched healthy controls (HCs). The peak
frequency extracted from the functional connectiv-
ity estimates is also hypothesised to act differentially
for these two groups. The present study proposes a
framework to accomplish the discrimination between
AD and HCs based on wavelet cross-spectrum (WC)
and RHHT cross-spectrum, the latter of which is
used for the first time in the field of AD. The
second innovation of this study is to evaluate a
promising biomarker based on the peak frequency
of cross-spectrums (PFoCSs). The proposed method
is advanced in capturing dynamic interconnection
between EEG signals and pointing out frequency-
related biomarkers more precisely, which may help
us to better understand brain dysfunction in AD.
Then, a novel topographic visualisation method is
designed to map the estimated brain connectivity.

Finally, the proposed RHHT technique is critically
compared with other approaches in terms of prin-
ciples, results and limitations.

2. Materials andmethodology

2.1. Experimental data and EEG pre-processing
Participants were recruited from Sheffield Teaching
Hospitals NHS Foundation Trust Neurology clin-
ics. HCs were enrolled through educational meet-
ings, word of mouth, family and friends. The Shef-
field Teaching Hospital memory clinic provided
the majority of these patients. This is a young-
onset memory clinic seeing people predominantly
aged under 65. The study includes participants
recruited between September 2014 to December
2019. Forty participants were recruited in this work
(70 years > age > 48 years) and resting-state EEG
recordings were undertaken from both cohorts by our
research team based at the University of Sheffield.
The subjects from both groups were age-matched,
HC (12 female/8 male, mean age 61y, �SD 6.7y), AD
(8f/12m, 60y � SD 4.4y). The EEG study underwent
ethics approval by the Yorkshire and The Humber
(Leeds West) Research Ethics Committee (reference
number 14/YH/1070). AD patients had their dia-
gnosis confirmed between 1 month and up to 2 years
prior to their EEG recording while they had mild to
moderate cognitive deficits, according to their Mini-
mental state examination. All patients and controls
had brain magnetic resonance imaging (MRI) scans
to eliminate other alternative causes of dementia. For
the age and gender-matched HC cohort, normal MRI
brain scans and cognitive assessments were required
before their EEG recordings. The final diagnosis of
AD was based on the National Institute of Neurolo-
gical and Communicative Disorders and Stroke and
the Alzheimer’s Disease and Related Disorders Asso-
ciation criteria (Dubois et al 2007); diagnosis was
reached based on a consensus of multidisciplinary
evidence, considering clinical history, neurological
examination, neuropsychological scores and neuro-
radiological findings (Blackburn et al 2018).

The dataset includes 19 AD patients and 20 HC
participants. EEG recordings were undertaken with
an XLTEK 128-channel headbox (Optima Medical
LTD) and Ag/AgCL electrodes at a sampling fre-
quency of 2 kHz by implementing a modified 10–
10 overlapping a 10–20 international system of elec-
trode placement, with a referential montage (linked
earlobe reference). Thirty-minute resting-state EEG
recordings (task-free—participants were instructed
to rest and refrain from thinking anything specific)
were obtained from each participant including sus-
tained periods of keeping their eyes closed (EC)
alternating with periods during which they kept their
eyes open (EO). The recordings obtained were sub-
sequently reviewed by a neurophysiologist—on an
XLTEK review station—and for each participant,
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Figure 1. (A) Bipolar channel locations. The numbers 1, 2, 3, 4, 5, 6 and 7 represent the left frontal, right frontal, left temporal,
right temporal, parietal, left occipital and right occipital regions, respectively (B) an example of 23-bipolar-channel EEG
recordings.

three 12 s artefact-free mini-epochs of EC and
EO were selected. To reduce volume conduction
effects related to the common reference electrode,
23 bipolar derivations were created from different
brain regions: the left frontal (F7–F3, F3–FZ), right
frontal (F8–F4, F4–FZ), left frontocentral, temporo-
central, temporal and centroparietal (F3–C3, T3–
C3, T3–T5, C3–P3), right frontocentral, temporo-
central, temporal and centroparietal (F4–C4, T4–C4,
T4–T6, C4–P4), midline frontocentral, centroparietal

and left and right parasagittal central regions (Fz–
Cz, Cz–Pz, C3–Cz, C4–Cz), left parietal, parieto-
occipital and temporo-occipital areas (P3–Pz, P3–
O1, T5–O1), right parietal, parieto-occipital and
temporo-occipital areas (P4–Pz, P4–O2, T6–O2) and
midline occipital region (O1–O2)).

An example of the 23 bipolar channels used in
this work and their locations are shown in figure 1.
The functional connectivity is calculated by using
each pair of EEG signals, and figure 2 shows the 253
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Figure 2. A total of 207 possible channel pair combinations and 46 discarded pairs marked with X (symmetry).

possible channel pair combinations
�
C23

2
�
. It can-

not be ignored that some combinations have com-
mon EEG channels because a bipolar approach is
employed (such as F4–C4 and C4–P4), which may
result in a misleading high false connectivity between
some of the bipolar channels. To avoid this issue, the
authors neglected any pair with common EEG elec-
trodes. Therefore, the 46 channel pairs that have this
characteristic include (F8–F4, F4–FZ), (F8–F4, F4–
C4), (F7–F3, F3–FZ), (C4–CZ, CZ–PZ), (T4–C4, C4–
P4), (F3–C3, T3–C3), (C4–P4, P4–PZ), (FZ–CZ, C4–
CZ), (T3–T5, T5–O1), (C3–CZ, CZ–PZ), (P4–O2,
O1–O2), (T6–O2, P4–O2), (T6–O2, O1–O2), (F7–
F3, F3–C3), (F4–FZ, FZ–CZ), (T3–C3, C3–CZ), (F3–
FZ, FZ–CZ), (T4–C4, T4–T6), (FZ–CZ, CZ–PZ),
(C4–CZ, C3–CZ), (P3–PZ, P3–O1), (F3–C3, C3–P3),
(F4–C4, F4–FZ), (F4–C4, T4–C4), (F4–C4, C4–CZ),
(C3–P3, P3–O1), (C4–P4, P4–O2), (F4–C4, C4–P4),
(T5–O1, O1–O2), (CZ–PZ, P4–PZ), (F3–C3, F3–
FZ), (P4–PZ, P3–PZ), (F3–C3, C3–CZ), (F4–FZ, F3–
FZ), (FZ–CZ, C3–CZ), (T4–C4, C4–CZ), (T3–C3,
C3–P3), (T3–C3, T3–T5), (C4–CZ, C4–P4), (C3–CZ,
C3–P3), (CZ–PZ, P3–PZ), (C3–P3, P3–PZ), (T4–T6,
T6–O2), (P4–PZ, P4–O2), (T5–O1, P3–O1), (P3–O1,
O1–O2) (Cao et al 2021a). In the following processes,
only those pairs without common channels are con-
sidered, while the values of the 46 neglected chan-
nels are set as null (figure 2). Hence, 207 channel
pairs are remaining for the following processing and
discussion.

Figure 3 presents a flowchart of the pro-
posed framework, including pre-processing,
time-frequency brain connectivity analysis, feature
extraction, significance test and machine learning
classification. Before estimating brain connectivity,

data were pre-processed by the following steps: (a)
each signal was filtered to 0–50 Hz; (b) the record-
ings were down-sampled to 100 Hz to decrease
computation cost.

2.2. Time-frequency brain connectivity methods
2.2.1. Wavelet-based cross-spectrum
The continuous wavelet transform (CWT) of a time
series x is defined as:

CWTx (a;b) =
+1�

�1

x(t)	�
a;b (t)dt (1)

where 	 is the mother wavelet, a is the scaling para-
meter and b is the shifting parameter. In this study,
the Morlet wavelet was chosen as the mother wave-
let because it is reasonably localised in both time and
frequency (Ieracitano et al 2017). Each scale corres-
ponds to a specific frequency value, so CWT is a func-
tion of time and frequency. The wavelet formulation
of cross-spectrum between two signals, x and y, can
be formulated as:

WCxy (a;b) = S
�

Wx (a;b)W�
y (a;b)

�
(2)

where Wx (a;b), Wy (a;b) are the wavelet transforms
of x and y at scales a and position b; S denotes a func-
tion of smoothing, and � means complex conjugate.

Smoothing takes place across scale and time axes;
it increases the degree of freedom for each point in
the CWT (Sankari et al 2012). A proper smoothing
function for WC application across time axis Stime is
defined for the Morlet:

Stime (CWT(t; f)) = CWT(t; f) ^ c
��2

2
1 (3)

5



J. Neural Eng. 19 (2022) 046034 J Cao et al

Figure 3. Flow diagram of the proposed framework.

where � = t=a, c1 is a normalisation constant, and
^ refers to the convolution operator. The smooth-
ing function across scale Sscale (frequency) axis is
defined as

Sscale (CWT(t; f)) = CWT(t; f) ^ c2
Y

(0:6a) (4)

where c2 is a normalisation constant, and
Q

is the
rectangular function. In practice, the two convolu-
tions in equations are computed discretely and the
normalisation coefficients are determined numeric-
ally. The width of the rectangular function

Q
used in

Sscale is determined by the scale-decorrelation length
that is empirically determined to be 0.6 for the Morlet
wavelet (Sankari et al 2012).

2.2.2. Revised Hilbert–Huang transformation
(RHHT)-based cross-spectrum
Firstly, an advanced method of EMD is used to
decompose each EEG signal, called CEEMDAN. In
this case, we can obtain a series of complete and oscil-
latory components, named IMFs. Secondly, the HHT
is performed on the IMFs of the signal to capture IF
and amplitude features. Finally, the cross-spectrum of
each pair of channels is calculated based on the HHT
spectrum.

2.2.2.1. CEEMDAN
Given a signal x(t) ; the defined operator Ej (�) pro-
duces the jth mode of x(t) by EMD. Let ni 2 [0; 1],
i = 1; : : : ; I be white noise where I is the realisa-
tion times of adding noise. Coefficient "i allows
selecting the signal-to-noise ratio at each stage. The
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implementation of the CEEMDAN algorithm can be
summarised as follows:

(1) Decompose I realisations x(t) + "0ni (t) by EMD
to obtain the first mode gIMF1 that is defined as:

gIMF1 =
1
I

IX

i=1

IMF1
i: (5)

(2) At the first stage (j = 1) calculate the first residue
r1 (t) :

r1 (t) = x(t) � gIMF1: (6)

(3) Decompose I realisations r1 (t) + "1E1
�
ni� by

EMD to obtain their first modes and the second
CEEMDAN mode gIMF2 is defined as:

gIMF2 =
1
I

IX

i=1

E1
�
r1 (t) + "1E1

�
ni (t)

��
: (7)

(4) For j = 2, 3… I, calculate the jth residue:

rj (t) = rj�1 (t) � gIMFj: (8)

(5) Decompose realisations rj (t) + "jEj
�
ni (t)

�
by

EMD to obtain their first modes and the (j + 1)th
CEEMDAN mode gIMFj+1 is defined as:

gIMFj+1 =
1
I

IX

i=1

E1
�
rj (t) + "jEj

�
ni (t)

��
: (9)

(6) Go to step 4 for the next j and repeat steps 4
and 5 until the residue is no longer feasible to be
decomposed (the residue does not have at least
two extrema).

The final residual R(t) is written as

R(t) = x(t) �
JX

j=1

gIMFj (10)

with j being the total number of modes. The given sig-
nal x(t) can be expressed as:

x(t) =
JX

j=1

gIMFj + R(t): (11)

CEEMDAN needs to adjust its parameters to obtain
a better decomposition of the data (Torres et al
2011, Mousavi et al 2020). Noise standard deviation
(Nstd), the number of realisations (NR), and the
maximum number of shifting iterations (MaxIter) are
important parameters for optimising the results of
decomposition (Mousavi et al 2020). Figure 4 shows
the flowchart of the CEEMDAN algorithm. Three
parameters control the process of CEEMDAN. To be
more specific, noise standard deviation (Nstd) rep-
resents the strength of the added white noise. The

Figure 4. Flowchart of CEEMDAN algorithm.

number of realisations (NR) controls the number
of adding noise. The maximum number of shift-
ing iterations (MaxIter) indicates the number of
decompositions. In the present study, considering
both computation efficiency and separation accuracy,
these parameters were set as: Nstd = 0.1, NR = 100,
and MaxIter = 1000.

2.2.2.2. Hilbert–Huang transform (HHT)
Then, the Hilbert transform (HT) is applied to each
IMF to obtain IFs and instantaneous amplitude fea-
tures. This eventually yields a time-frequency repres-
entation (Hilbert spectrum) for each IMF. For an ori-
ginal signal x(t), its HT h(t) is obtained by (Huang
et al 1998):

h(t) = HT(x(t)) =
1
�

P.V:
1�

�1

x(�)
t � �

d� (12)

where P.V. denotes the Cauchy principal value, t is the
time variable and � is the time interval. In this case,
the HHT of the signal is given as follows:

z(t) = x(t) + ih(t) = a(t)ei�(t) (13)

where a(t) and �(t) denote the amplitude and phase,
respectively.

a(t) is the trace envelope and defined as:

a(t) =
p

x2 (t) + h2 (t): (14)
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Figure 5. Top ten classification accuracies in EO (A), (B), EC (C), (D) and EO&EC (E), (F) using features from wavelet
(left column) and RHHT cross-spectrum (right column).

details and analysis with respect to the Fz–Cz:O1–O2
connections are further discussed below.

3.2. Time-frequency functional connectivity
To evaluate the efficiency of the wavelet and RHHT-
based methods, the time-frequency analysis is imple-
mented on each channel pair. Figure 7 represents
the cross-spectrum of Fz–Cz:O1–O2 obtained from
wavelet (A) and (B) and RHHT (C) and (D), as well
as the average value in time and frequency axes. It
is obvious that the frequency resolution of RHHT is
higher than the WC for both AD and HC participants.
For instance, the WC method suggests that the PFoCS
is located in the Alpha band (figure 6(A)), while
RHHT is capable to indicate a specific frequency of

10 Hz (figure 6(C)). Similarly, figures 6(B) and (D)
also exhibit the same pattern in the AD case. Fur-
thermore, it can be observed that both two meth-
ods have dominating power in the Alpha band. Based
on the resulting cross-spectrum of the channel pair
Fz–Cz:O1–O2, the PFoCS of the AD subject is lower
than the value of the HC subject, observed both from
the wavelet and the RHHT cross-spectrum.

Figure 6(E) plots the distribution of the PFoCS
value of each sample for the Fz–Cz:O1–O2 channel
pair. For both RHHT and WC, there was a significant
difference in the PFoCS (p < 0.0001, ANOVA). For
both methods, the PFoCS for HCs ranges between 8
and 14 Hz with an average of 10 Hz, while the AD
PFoCS varies from 4 to 12 Hz with an average of
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Figure 6. Time-frequency brain connectivity analysis of channel pair Fz–Cz:O1–O2. (A) WC for a HC participant. (B) WC for an
AD participant. (C) RHHT cross-spectrum for a HC participant. (D) RHHT cross-spectrum for an AD participant. (E) A violin
plot to present peak frequency values for channel pair Fz–Cz:O1–O2 (p < 0.0001, ANOVA).

8.5 Hz. Notably, compared with HCs, a majority of
AD participants have an obvious decrease in terms of
PFoCS in the Alpha band, and RHHT seems to out-
perform WT in detecting the difference to an extent
since the p-value of RHHT (2.7 � 10�7) is lower than
the p-value of WT (5.6 � 10�5). Consequently, the
classification accuracy can be improved by using the
RHHT technique. Moreover, the value of PFoCS var-
ies in different bands, although it was mainly concen-
trated in the Alpha band. This may explain that the
feature extracted from the Full band outperformed
the Alpha band to some extent.

3.3. Topographic visualisation of PFoCS
To further compare the difference between AD and
HCs across different brain areas, a novel visualisa-
tion method based on a topographic map is pro-
posed to illustrate an extensive brain connectivity
map. Figure 7 represents the occipital-related con-
nectivity using the PFoCS as an estimation. The topo-
graphy map represents the distribution of Full-band
functional connectivity between channel O1–O2 and
every other derivation included in this work. The
channel O1–O2 and other contiguous channels that
share a common electrode are set to NaN in the

11



J. Neural Eng. 19 (2022) 046034 J Cao et al

Figure 7. Topographic plots representing full-band connectivity PFoCS for each participant (left) and average (right) extracted by
wavelet and RHHT techniques, by using each available derivation against the occipital O1–O2 channel (red circles indicates the
areas that represent obvious difference between HC and AD).

resulting map (i.e. P3–O1, T6–O2, T5–O1, and P4–
O2). On one hand, from the averaged topographic
map, it can be observed that not only Fz–Cz:O1–
O2 can significantly differentiate AD from HCs, but
also many other areas show increased levels of PFoCS
functional connectivity, offering a visual represent-
ation of the striking differences between AD and
HC, clearly more prominent for the averaged RHHT-
based maps. The red circles in figure 7 indicate the

areas that represent the obvious difference between
HC and AD. For instance, WC suggests the PFoCS
of HC is about 4 Hz higher than AD in the right
frontal and centroparietal region (figures 7(B) and
(D)), while RHHT indicates the PFoCS of HC is about
6.5 Hz higher than AD in the right frontal, mid-
line frontocentral, left frontocentral and centropari-
etal region (figures 7(F) and (H)). Clearly, the RHHT
method suggests more differences between the two
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Figure 9. Comparison of the RHHT and previous brain connectivity methods. ∗ Mann–Whitney test, p < 0.001, it means
significant outperformance in a band.

Our study is undertaken on resting-state EEG
recordings and Engel et al (2013) in their pivotal
work introduce the concept of ‘intrinsic coupling
modes’ to denote complex spectral and spatial sig-
natures, likely dynamic in nature that characterise
brain coupling not enforced by a stimulus or task.

They also highlight how phase and amplitude-based
functional connectivity measures have the potential
to capture various pathophysiological and neuro-
physiological aspects of brain function (Engel et al
2013). RHHT cross-spectrum has the ability to cap-
ture both phase and amplitude coupling. Under this
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prism, the dynamic properties of RHHT offer the res-
olution required to capture various intrinsic coupling
modes and translate into higher classification per-
formance like the one observed with the PFoCS.

4.3. RHHT vs single-channel method
This paper demonstrates that RHHT cross-spectrum,
a functional brain connectivity method implemen-
ted in this work to produce strength of associations
between multiple EEG channels, could produce a
higher classification accuracy in distinguishing AD
participants from a group of age-matched HCs, com-
pared to single-channel methods like PSD. PSD is
a widely-used single-channel method dealing with
EEG recordings, which calculates the distribution of
power against the frequencies. Furthermore, the spec-
tral information in different bands can be estimated
by PSD. It normally considers Delta, Theta, Alpha,
Beta and Gamma bands for EEG, since those bands
represent distinct neural activities (Wang et al 2015a,
2015b, 2017, Liu et al 2016). Many previous works
have shown that PSD can be used to evaluate the
changes between HC and AD groups. For example,
it was found that AD groups have relatively higher
PSD than HC groups in the Theta band (4–8 Hz),
while AD patients may experience a decrease in Alpha
power (8–12 Hz) and Beta power (12–32 Hz) (Liu
et al 2016, Benwell et al 2020).

Table 2 compares the highest classification res-
ults of the popular features extracted from EEG in
the literature and the approach proposes in this
paper, using the same dataset of AD and HCs. Evid-
ently, the developed method obtains the highest
accuracy, which is clearly higher than other exist-
ing approaches. Notably, the time-frequency meth-
ods (i.e. WC and RHHT) perform better than other
methods that focus on stationary information with
the superiority at approximately 10%. That is to say,
dynamic and non-stationary methods may have more
potential to reveal hidden changes during the progress
of neurodegeneration.

4.4. Limitations and future direction
However, the proposed framework has several chal-
lenges to address in future research. Firstly, the com-
putation efficiency of the RHHT technique is not sat-
isfying. It could be improved to meet the requirement
of real-time feedback, aiming to translate it into a
clinically useful diagnostic tool. Secondly, the train-
ing dataset for machine learning is not cross-subject,
limiting the universality of the proposed algorithm.
Cross-subject validation means that the data for
training and testing are extracted from different par-
ticipants. Only this type of approach can demonstrate
the universality of the proposed methods, but it usu-
ally requires a significant number of participants to
reveal the degree of variability between subjects. In
the present study, the size of the dataset is limited. The
cross-subject approach is not appropriate to evaluate

Table 2. A comparison of performances of the various functional
connectivity methods and univariate methods (maximum
accuracy achieved by each method).

Features References SVM accuracy

PSD Wang et al (2017),
Benwell et al
(2020)

72.2%

Correlation Chen et al (2018) 77.7%
Coherence Sankari et al

(2011), Wang et al
(2015b)

72.11%

Mutual
information (MI)

Babiloni et al
(2016), Nimmy
et al (2019)

77.23%

Phase locking
value (PLV)

Engels et al (2015),
Kabbara et al
(2017), Su et al
(2021)

72.11%

WC Sankari and Adeli
(2011)

85.2%

RHHT—PFoCS This paper 88.9%

the model performance and therefore has not been
applied. In this case, the data from all subjects were
mixed up and then divided into training and testing.
Thirdly, to reduce volume conduction effects from
a common reference, bipolar derivations were used
to assess the degree of differences between various
pairs of electrodes for two different cohorts of sub-
jects. With this approach—the use of bipolar pairs
of electrodes—the effects of volume conduction are
reduced but not eliminated. We recognise that this
work is based on a sensor-level scalp EEG analysis,
and we do not claim to be able to precisely local-
ise the spatial characteristics underpinning the EEG
sensor findings. Fourthly, the noise tolerating cap-
ability of the RHHT technique may need to be fur-
ther studied. According to our previous study, the
performance of RHHT seems to be more sensitive to
noise (Shan et al 2021). Finally, only a two-group clas-
sification (HCs vs AD) has been carried out in the
present study, without considering preclinical or pro-
dromal populations or staging of disease severity of
AD patients. The proposed method has demonstrated
effective performance in the case of HCs vs AD and it
may have potential in dealing with the classification
of HCs vs MCI vs AD. We are collecting data from
MCI and this three-class classification will be tested
in further studies.

5. Conclusion

In this study, we demonstrate that the peak fre-
quency estimated with the RHHT-based brain func-
tional connectivity is reduced in a group of AD
patients in comparison to an age-matched HC cohort.
A comparison undertaken with various other lin-
ear and nonlinear functional connectivity EEG meth-
ods shows that RHHT is better suited to detect this
difference, because of its superior resolution and
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ability to track non-stationary EEG dynamics and
possibly non-linear interconnections. Notably, this
paper introduces an approach to reveal the areas of
interest at an EEG sensor level, which helps to bet-
ter understand each brain area’s contribution to the
classification, of AD but this can also be applied to
numerous other brain-related disorders.
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