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Author summary

65 million people have epilepsy worldwide. Many of these people report specific triggers
that make their seizures (the primary symptom of epilepsy) more likely. Here, we use a
mathematical model to understand the relationship between possible triggers and
rhythms in epileptiform activity observed across the day.

The mathematical model describes the activity of connected brain regions, and how
the excitability of these regions can change in response to different stimuli. Based on data
collected from people with idiopathic generalized epilepsy, we identify transitions between
sleep stages and variation in concentration of the stress-hormone cortisol as candidate fac-
tors that influence how likely it is for epileptiform activity to occur. By including those fac-
tors into the model, we show they can explain most of the daily variability. More broadly,
our approach provides a framework for better understanding what factors drive the occur-
rence of epileptiform activity and offers the potential to suggest experiments that can vali-
date model predictions.

Introduction
Epilepsy is a common neurological disorder, affecting 65 million people globally [1–3]. The
primary symptom of epilepsy—seizures—is believed to occur as a result of disruptions in the
level of neuronal excitability. In particular, mechanisms that govern the normal balance
between excitation and inhibition can become compromised causing parts of the brain to
become hyperexcitable, which can be characterised at different scales. For example, at the cel-
lular level it is strongly associated with the so-called paroxysmal depolarization shift (PDS) of
cortical pyramidal cells [4, 5]. At the macroscale, it manifests in pathological electrical activity,
captured using electroencephalography (EEG), called epileptiform discharges (EDs). EDs can
be thought of as an umbrella term that encompasses both interictal (i.e., between seizures) epi-
leptiform activity (e.g., spikes) as well as ictal activity (i.e., seizures).

Epileptiform activity has classically been thought to occur at random, but recent studies
have presented compelling evidence for underlying rhythmicity in EDs [6–11]. Although such
cycles have been shown to follow several temporal scales, including ultradian, circadian, multi-
dien and even circannual rhythms [12, 13], relatively little is currently known about the mech-
anisms—i.e., physiological perturbations—governing these rhythms and how intrinsic and
extrinsic factors can modulate the likelihood of EDs. This limits the extent to which this
knowledge of rhythmicity can be used for clinical benefit.

Many people with epilepsy identify triggers that appear to make them more likely, and
some of these triggers are physiological factors known to influence cortical excitability. The
most common of these are stress, sleep, hormones, and medication [14–19].

In this study, we consider some of these factors as candidate mechanisms that modulate the
likelihood of EDs, and present a modelling approach to provide insight into the mechanisms
underlying observed distributions of EDs [19].

The mammalian stress-response is driven by circulating glucocorticoid hormones: predom-
inantly cortisol in humans and corticosterone in rodents, herein CORT. Ultradian and circa-
dian rhythms of CORT are controlled by the hypothalamic-pituitary-adrenal (HPA) axis, a
neuroendocrine axis, wherein a delayed negative-feedback loop mediates hormone secretion
from the pituitary and adrenal glands [20]. The impact of CORT on brain function is well
established. For example, rapid changes in CORT secretion not only have major effects on
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glucocorticoid receptor activation in the brain [21] but also major effects on cognition [22].
Furthermore, Karst et al. [23] demonstrated that neuronal excitability is rapidly and reversibly
determined by changes in CORT levels. At the macroscale, Schridde et al. [24] observed a
CORT dose-dependent increase in EDs in the genetically in-bred Wistar Albino Glaxo/Rij
(WAG-Rij) model of human idiopathic generalized epilepsy (IGE). A similar relationship has
been found more recently in people with stress-sensitive focal epilepsies [25].

One of the most direct ways of measuring human cortical excitability is via transcranial
magnetic stimulation (TMS), with motor and/or EEG responses taken as a proxy for excit-
ability. With this approach, prolonged wakefulness leading to sleep deprivation has been
shown to increase excitability or alter the excitatory-inhibitory balance of the supplementary
motor cortex [26–28]. In addition, TMS-derived cortical excitability is also modulated by cir-
cadian phase, such that excitability is lowest in the early evening prior to bedtime, and peaks
at the end of the biological night [29]. These observations have not always been consistent
[30] with some suggestion of differences between participants with and without epilepsy
[30]. These results are generally consistent with the changing probability of EDs associated
with sleep deprivation and/or fluctuations in the circadian rhythm [31, 32]. The probability
of EDs also varies through the sleep cycle, with non-rapid eye movement (NREM) sleep gen-
erally having a facilitatory effect, and REM sleep an inhibitory effect [32–34]. The latter
observation is consistent with the increase in TMS-defined excitability associated with selec-
tive REM sleep deprivation [35].

However, the complexity of these interrelating factors, alongside the difficulty of simulta-
neously measuring their physiological correlates, makes unpacking them challenging. In this
paper, we analysed distributions of EDs from 107 people with IGE collected over 24-hours.
We found evidence to support the existence of two primary groups with different mechanisms
driving the overnight likelihood of EDs and their likelihood during the day. To explore possi-
ble contributing factors underpinning these different mechanisms we developed a mathemati-
cal modelling framework that:

a) describes transitions between background states and EDs;

b) relates excitability to the likelihood of these transitions;

c) considers the impact of intrinsic and extrinsic factors on excitability.

We calibrated model parameters using independently collected 24-hour hormone profiles
from 6 healthy participants, and sleep staged polysomnography data from 42 healthy partici-
pants. We used synthetic minority oversampling to account for discrepancies in group size,
enabling us to generate synthetic distributions of EDs. We explored the goodness of fit
between these model derived distributions and those observed in the cohort of people with
IGE. Our mathematical analysis revealed evidence to support the view that the likelihood of
EDs is modulated by both transitions in sleep stages, as well as by ultradian fluctuations in
cycling CORT levels.

Results
We analysed distributions of EDs derived from 24-hour EEG recordings from 107 subjects
with IGE (see Materials and methods for a detailed description of this data-set).

Variability in the circadian distribution of epileptiform discharges
We found that the median number of EDs over 24 hours was approximately 29, although sev-
eral individuals had more than 200 events (Fig 1A and 1B). Examination of normalised ED
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patterns on an hourly basis (i.e., for each individual, the number of EDs at each hour was
divided by their total number of EDs and we then normalised over the cohort), suggested that
the likelihood of EDs varied across the day (Fig 1C).

To investigate the possible temporal distribution of EDs across the 24-hour day (herein
referred to as the ‘circadian distribution’), we first considered similarities between subjects.
We used MATLAB R2021a (MathWorks Inc., Natick, MA) to compute the cross-correlation
coefficients of time series representing the individual hourly ED rate. This leads to a correla-
tion matrix �, with entries ��� corresponding to the similarity between the pattern of EDs in
subject � and in subject � (Fig 2A). The closer the value of ��� to 1, the more similar the distribu-
tion of EDs of subject � and subject �. Subsequently, we clustered subjects according to their
correlation coefficients using �-means clustering [36] and the Calinski-Harabasz criterion [37]
to optimise the number of clusters (see Fig A in S1 Text). This analysis revealed two primary
groups within the overall cohort of people with IGE that displayed different temporal ED dis-
tribution patterns: Group 1 of 66 individuals and Group 2 of 41 individuals (Fig 2B). Impor-
tantly, the identified clusters were found to be consistent across a range of bin widths (45–90
minutes) and when the time series were aligned to sleep times (see S1 Text).

Fig 1. ED distribution in people with IGE. (A) Number of EDs from 107 subjects with idiopathic generalized epilepsy (IGE). (B) Boxplot shows basic
sample statistics (minimum, lower quartile, median, upper quartile and maximum) of the number of EDs. (C) Normalised EDs rate per hour.

https://doi.org/10.1371/journal.pcbi.1010508.g001

Fig 2. IGE subjects organised based on different circadian ED distribution patterns. (A) A pairwise cross-correlation matrix (of size 107 � 107)
was calculated using ED hourly rate patterns in order to establish similarities within the IGE cohort. (B) Group 1 (blue, N = 66) and Group 2 (red,
N = 41) were identified based on the similarities of hourly ED rate.

https://doi.org/10.1371/journal.pcbi.1010508.g002
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We found that the groups identified by our cluster analysis were not caused by imbalances
in the type of epilepsy. Specifically, individuals with IGE were classified into childhood absence
epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), general-
ized epilepsy with generalized tonic-clonic seizures only (GTCSO), and genetic generalized
epilepsy unspecified (GGEU) according to the criteria published by the ILAE [38]. We fitted a
linear model (see Table B in S1 Text for details) to assess the dependence of the groups on epi-
lepsy type, finding no evidence of an association (� = 0.756).

Candidate mechanisms impacting the distributions: Sleep and CORT
We explored candidate mechanisms that could explain differences in ED distributions
between the two groups identified by our cluster analysis. The (empirical) likelihood of EDs in
Group 1 (Fig 2B top) displayed a significant increase in the propensity for EDs during the
night and lower levels during day-time. In contrast, the likelihood of EDs in Group 2 (Fig 2B
bottom) displayed greater variation during waking hours.

Fig 3 illustrates the variability of ED distribution across 24 hours for the individuals in
Group 1 (Panel A) and Group 2 (Panel B).

We employed a mixed-effects Poisson regression model (see Materials and methods and
Table C in S1 Text for more details) to study the temporal distribution of epileptiform dis-
charges and the impact of sleep independently in both groups:

ED � Time� Sleep� �1jSubject� �1�

where the observed variable ED corresponds to the ED occurrence during the 24-hour time
window in either Group 1 or Group 2, the predictor Time represents the circadian time
(hours), and Sleep indicates whether the individual is sleeping or not. Due to the intra-subject
variability, we introduce the variable Subject as a random factor.

In both groups, there is a statistically significant change in ED counts across time blocks
and sleep (�-value<0.001). This suggests an impact of sleep on the ED occurrence in Group 1
as well as in Group 2. This result can be explained by observing that the morning peak in ED
events recorded in Group 2 starts during sleep time.

To further assess the impact of inter-individual timing of sleep and its duration on ED dis-
tributions, we adjusted time within each subject such that � = 0 corresponded to either their
sleep onset or sleep offset. The resulting distributions are presented in Fig 4A–4D. For Group

Fig 3. ED occurrence. Boxplots showing the distribution of ED across 24 hours for Group 1 (A) and Group 2 (B). Within each
box plot, the central line represents the median, and the bottom and top edges represent the 0.25 and 0.75 quantiles, respectively. The
whiskers extend to the most extreme data points not considered outliers.

https://doi.org/10.1371/journal.pcbi.1010508.g003
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1, we found that the ED rate was higher for approximately 9 hours starting at habitual sleep
onset (Panel A), while it was relatively low during the rest of the day. In Panel B, we observed
the same trend but shifted to the 9 hours before waking. For Group 2 (Fig 4C and 4D) we did
not find increased levels of EDs during sleep; instead, the distribution suggests a potential day-
time ultradian rhythm.

To quantify this more explicitly, we introduced the parameter ��, � = 1, 2 to measure the
fraction of EDs occurring during sleep for each group:

�� �
1
��

X��

��1

	
�;�

	
���;�
: �2�

Here �� is the number of subjects in Group �, 	
S,� and 	
tot,� are the numbers of ED occur-
rences for the ��� subject in the ��� group occurring during the individual’s sleep time and across
the full 24-hour period, respectively. We found �1 = 0.8, suggesting that 80% of EDs in Group
1 were clustered during the sleep period. In contrast, �2 is 0.37, suggesting that in Group 2 just
over a third of discharges occur during the sleep period, consistent with the 8–9 hour sleep
time (i.e., a third of 24-hour). Interestingly, for Group 2 we found three peaks of similar height
around 8 hours prior to sleep, sleep onset, and sleep offset (Fig 4C). We found the equivalent
pattern when aligning by sleep offset (Fig 4D). A similar pattern can be observed in the levels
of plasma CORT over 24-hours, which displays a circadian rhythm that reaches a peak soon
after awakening and a nadir during the night [39, 40].

Fig 4. Impact of timing of sleep and its duration on ED distributions. Epileptiform discharges for Group 1 (top row) and Group 2
(bottom row) with time normalised such that � = 0 corresponds with sleep onset (A and C) and with sleep offset (B and D). The
transparent grey box highlights the average habitual sleep period. The black arrows indicate the peaks in the ED distribution in Group
2. The peaks were determined by identifying the local maxima of the density function (solid red line).

https://doi.org/10.1371/journal.pcbi.1010508.g004
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regions, as well as the dynamics within regions, contributing to this emergence [42, 43]. In this
regard, both sleep stage and levels of CORT have been shown to impact both functional con-
nectivity [44, 45] and cortical excitability [46, 47]. Several studies have shown the correlation
between sleep and epileptiform discharges [32, 34, 41] and how vigilance states may influence
the likelihood of EDs in subjects with IGE [46, 48, 49]. CORT is the main stress hormone in
humans and its production and secretion are controlled by the hypothalamic-pituitary-adrenal
(HPA) axis, the primary stress response system [20]. In stressful situations, the activity of the
HPA axis increases, resulting in a higher secretion of CORT. In unstressed, basal conditions,
cycling levels of CORT rise and fall over the day, with characteristic ultradian pulses [50]. This
finding is consistent with the literature and self-reported data showing ED frequency increas-
ing during the night time, early in the morning, and in stressful situations.

To investigate the impact of sleep and CORT on the ED likelihood during the day, we
employed a phenomenological mathematical model to simulate brain excitability when per-
turbed by those external forces. Unlike in previous works where the variation of the brain
excitability was constant [51] or perturbed by a fixed constant [52], this model describes corti-
cal excitability as a dynamical variable that is modulated by dynamic external factors, such as
sleep or CORT. We used sleep stages and CORT levels collected from healthy subjects to
inform the dynamics of the variable representing the status of brain activity. Although from
different cohorts, the circadian patterns of the hormone are robust across individuals [53].
However, in future work, the analysis should include CORT levels and sleep stage data derived
from the EEG from the same individual, given that both of these variables show considerable
inter-individual variability. Despite this limitation, our work shows a good fit between our
model simulations and the observations. Indeed, we find that sleep accounts for 90% of the
variability in Group 1 (�2 = 0.9) and CORT for *60% (�2 = 0.59) in Group 2.

Importantly, sleep alone cannot account for the changes in ED likelihood during wakeful-
ness observed in Group 1. Furthermore, the model predicts a reduction in ED likelihood dur-
ing the sleep time after an initial sharp increase during the first hours. This effect can be
explained by the fact that NREM sleep, which is positively correlated to an increase of EDs, is
predominant during the first third of the sleep period. However, the data shows an increase in
ED occurrence before waking, which the model simulations fail to capture. Given that the level
of CORT is known to increase around waking, this result suggests a combined effect of sleep
and CORT. This result is quantitatively highlighted by the improvement in the accuracy of our
model prediction when a combination of sleep and CORT have been considered and by the
high percentage of variability explained by the combined model (95%, �2 = 0.95). It is impor-
tant to emphasise that we only considered linear combinations, and future work could investi-
gate a richer class of non-linear interactions and effects, especially given that sleep and CORT
themselves interact. This interaction may potentially lead to non-linear impacts on the likeli-
hood of EDs.

Our model predicts peaks occurring during the day, for example, one around 13:00 and
one around 19:00, in Group 2. Those two peaks seem to occur a couple of hours earlier in the
model than in the IGE cohort. The reason for such behaviour requires further investigation.
One explanation could be additional physiological or behavioural drivers that we have not yet
accounted for. Alternatively, it is important to highlight that CORT levels were measured in an
independent control cohort. A future study would critically include simultaneous recordings
of EEG and CORT, as well as detailed summaries of any anti-seizure treatment (e.g. timing
and dose). Finally, it is important to consider the presence of inherent natural variability in
these types of distributions in future studies.

In summary, we provide a mathematical model as a tool to examine the role of external fac-
tors on the modulation of ED likelihood. We provide quantitative evidence that underlying
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physiological modulators for ED events exist. We identified sleep and CORT as such modula-
tors by comparing our model predictions with data on ED events collected from IGE patients.
Our choice of such factors is guided by the ED distribution in the EEG data and by previous
studies investigating sleep and CORT, and the influence they have over the cortical excitability
dynamics. Using only these two processes, we are able to account for the majority of the vari-
ability in the two groups. However, our results are not technically inferential due to the differ-
ent data sources, nor do they exclude other potential mechanisms affecting cortical excitability
during the day, such as sleep deprivation or anti-seizure medication [29, 31]. Furthermore,
other factors showing circadian rhythms, such as melatonin production or glucose levels, have
also been shown to impact seizure incidence [54, 55, 55, 56]. Further research is needed to
fully understand the overall mechanism underlying the modulation of ED events. In particular,
simultaneous recordings of EEG and those factors are necessary to overcome the high intra-
and inter-individual variability of the latter. Critically, measurements should be taken from the
same individual over prolonged periods, which would then inform the model framework (in
particular the network structures and the excitability dynamics) with robust statistical testing
(e.g., null distribution).

Ultimately, the modelling approach provides a starting point to better understand what
drives the occurrence of epilepsy-related activity observed in recordings of the brain.

Materials and methods

Ethics statement
The EEG study was approved by the Human Research Ethics Committees of St. Vincent’s Hos-
pital and Monash Health. A written informed consent was obtained from all participants
included in the study. See [57] for more details on the data collection and processing. The
sleep study was approved by the Monash University Human Research Ethics Committee
(CF14/2790-2014001546; 2017-4204-11012; 2017-6008-8120; and 2020-5453-43401).

Statistical analysis
Statistical analysis was done using MATLAB R2021a (MathWorks Inc., Natick, MA). A linear
model was fit using the MATLAB command ���������� to assess the dependence of the groups
on epilepsy type with the formula Group � Syndrome, where the predictor Group corre-
sponds to the group the individual has been assigned to and Syndrome to the individual’s epi-
lepsy type, as described in Results and Table B in S1 Text. We also employed the function
���������� to fit a linear model to assess whether the model outputs are only due to random noise
using the formula Y � Time� Sleep, where � is either the null model (no external perturba-
tion) or the model simulation with sleep and CORT only for Group 1 and 2, respectively,
Time represents the circadian time (hours), and Sleep indicate whether the individual was
sleeping or awake (see Results and Tables D and E in S1 Text).

A linear mixed-effects Poisson regression model was fit using the MATLAB command
������������ to assess the dependence of the ED distribution on Time and Sleep. The model for-
mula is as follows: ED � Time� Sleep� �1jSubject�, where the predictor ED corresponds
to the different ED occurrence across the 24 hours and the variable Subject is introduced as a
random factor to account for the intra-subject variability, as described in Results and Table C
in S1 Text. Similarly, we fit a mixed-effects Poisson regression model using the command
������������ to study the differences in cortisol levels across the subjects with the formula
CORT � Subject� �1jTime�, where CORT corresponds to the CORT levels for each indi-
vidual (Subject), and Time is the random factor to account for the physiological daily changes
of the hormone (see Table G and Fig L in S1 Text).
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EEG data: Epileptiform discharges in people with idiopathic generalized
epilepsy
EDs were identified by an experienced EEG reader (U.S.) within EEGs from 107 people diag-
nosed with idiopathic generalized epilepsy (IGE). Scalp EEG recordings were collected for 24
hours using a 32-channel ambulatory EEG system (Compumedics Ltd.; Melbourne, Australia).
Gold cup electrodes were attached with electrode paste according to the international 10–20
system. Subjects were encouraged to have at least seven to eight hours of night-time sleep prior
to the EEG recording to guarantee optimum capture of ED.

EEG data: Sleep-stages from healthy participants
Sleep-stages from 77 healthy participants were identified from EEG data collected at Monash
University (Melbourne, Australia). Sleep polysomnography (PSG) was recorded across two
consecutive nights in the laboratory (Compumedics Grael, Melbourne, Australia), using a bi-
lateral 18-channel EEG, and two electro-oculographic (EOG, left and right outer canthi) and
three electro-myographic (EMG, sub-mentalis) channels. EEG data were sampled at 512Hz.
Sleep data for night 2 (following adaptation to the laboratory on night 1), were scored by a
trained scorer, and in accordance with AASM criteria [58]. We restrict our analysis to the 42
participants with sleep efficiency equal to or higher than 85% for night 2 (Table 1), as values
less than this can be indicative of sleep disturbance.

Blood data: CORT levels in healthy participants
Cortisol data was kindly provided by Elizabeth A. Young, University of Michigan. Blood sam-
ples for cortisol assay were collected from 6 healthy adult subjects via an intravenous catheter
at 10-minute intervals over a 24-hour period (Fig 8), as described previously [40, 59].

Table 1. Characteristics of the subjects from the sleep cohort used in the simulations.

Number Female Male Mean Age (min, max) [year]

42 8 34 30.71 (18,64)

https://doi.org/10.1371/journal.pcbi.1010508.t001

Fig 8. CORT 24-hour recordings. Blood samples for cortisol assay were collected from 6 healthy adult subjects via an
intravenous catheter at 10-minute intervals over a 24-hour period.

https://doi.org/10.1371/journal.pcbi.1010508.g008
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A mixed-effect Poisson regression model was implemented to investigate the differences in
cortisol levels across the subjects. We found that there is a statistically significant inter-subject
variability (�< 0.001). See Table G in S1 Text for the complete analysis.

Constructing a virtual cohort
A ‘virtual cohort’ approach was used to compensate for the differences in size and data modal-
ity across study groups (Group 1 (people with IGE): 66, Group 2 (people with IGE): 41, CORT
(healthy participants): 6, sleep (healthy participants): 42). In order to assess the potential
impact of CORT and sleep on the distributions of EDs, new time series were sampled from the
sleep and CORT data.

Sleep. To compensate for the smaller number of subjects in Group 1 compared to the
sleep cohort, we randomly added 24 subjects (without repetition) from the sleep cohort and
added them to the original sleep cohort to reach the 66 individuals of this group. On the con-
trary, Group 2 includes 41 individuals, a smaller group than the sleep cohort. Therefore, a sub-
group of the same number of subjects (41) was randomly chosen from the 42 sleep
participants.

CORT. To address the significant difference in group sizes (6 healthy participants vs 66 or
41 people with IGE), at each time-point (� = 1, . . ., 145), we used the Synthetic Minority Over-
sampling Technique (SMOTE) [60] to perform data augmentation. We therefore generated 60
synthetic CORT profiles for Group 1 and 35 synthetic CORT profiles for Group 2 (Fig 9).
SMOTE oversampling, based on the �-nearest neighbour algorithm, was performed with � = 3
(50% of the total).

Mathematical model
The model used in this study is based on the normal form of a subcritical Hopf bifurcation [51,
52, 61], whose co-existing states reflect two distinct types of neural activity. The first is a back-
ground state, represented by a steady-state solution in the model, whilst the second is an epi-
leptiform state, represented by a high-amplitude oscillation. Transitions between these states
are typically governed by either a white noise process or external perturbations. The model

Fig 9. Synthetic CORT surrogates created using SMOTE. Original (red) and synthetic (blue) CORT profiles for Group 1 (A) and Group 2 (B).
The synthetic data are obtained with the SMOTE oversampling algorithm with � = 3.

https://doi.org/10.1371/journal.pcbi.1010508.g009
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63. Haller J, Éva Mikics, Makara GB. The effects of non-genomic glucocorticoid mechanisms on bodily
functions and the central neural system. A critical evaluation of findings. Frontiers in Neuroendocrinol-
ogy. 2008; 29:273–291. https://doi.org/10.1016/j.yfrne.2007.10.004 PMID: 18054070

64. Milani P, Piu P, Popa T, Volpe RD, Bonifazi M, Rossi A, et al. Cortisol-induced effects on human cortical
excitability. Brain Stimulation. 2010; 3:131–139. https://doi.org/10.1016/j.brs.2009.07.004 PMID:
20633442

65. Symonds CS, McKie S, Elliott R, Deakin JFW, Anderson IM. Detection of the acute effects of hydrocorti-
sone in the hippocampus using pharmacological fMRI. European neuropsychopharmacology : the jour-
nal of the European College of Neuropsychopharmacology. 2012; 22:867–874. https://doi.org/10.1016/
j.euroneuro.2012.03.008 PMID: 22521875

PLOS COMPUTATIONAL BIOLOGY Mechanisms underlying circadian epileptiform discharge distribution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010508 October 5, 2023 19 / 19


