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Abstract

As a non-invasive approach to monitor heart rate (HR), the photoplethysmography (PPG) signal provides a simple and accu-
rate measurement in silence. However, difficulties are found when dealing with signals monitored during physical activities,
because complex noise shares a very close frequency bin with HR. Traditional analogue filters can hardly derive HR in this
situation. This paper is aimed to establish a joint framework for HR monitoring from PPG signals during physical activi-
ties. A combination of Short-time Fourier Transform (STFT) and spectral analysis was adopted as the principal part, with a
medium filter as assisted. The time-frequency resolution in low frequency is enhanced by the size-fixed window function in
STFT. Based on 12 datasets sampled at 25 Hz and recorded during different physical activities, the HR data derived via the
proposed algorithm was analysed. The average absolute estimation error was 1.06 beats/min and the standard deviation was
0.69 beats/min. Compared with the true HR via ECG, the cross-correlation average was 0.9917 beats/min and the standard
deviation was 0.0141 beats/min. Therefore, the proposed framework is proved reliable for HR monitoring from PPG during
physical activities of high intensity. It can be applied to smart wearable devices for fitness tracking and health information
tracking.

Keywords: PPG, STFT, heart rate monitoring, spectral analysis

1. Introduction

Heart rate (HR) can be observed using the photoplethys-
mography (PPG) signal via the electrical equipment [1]. It
is widely used for wearable devices in research and develop-
ment [2]. Compared with the electrocardiogram (ECG) sig-
nals, the PPG signal gets rid of the complex hardware imple-
mentation and the requirement of the reference signal [3]. At
the beginning, analogue filtering techniques are suggested
to process PPG signals monitored at rest [4]. However, mo-
tion artefacts (MA) and HR share a very close frequency bin
in physical activities, resulting in extreme difficulties for HR
estimation. To address this issue, most proposed algorithms
are dealing with the time domain. Yet they are not so effec-
tive to enhance the accuracy, nor feasible for signals detected
during high-intensity physical activities.
One of the popular methods is the adaptive noise cance-

lation (ANC) [5]. It is demonstrated reliable for electroen-
cephalography (EEG) signals [6]. The acceleration signal
provided by the micro-electro-mechanical system (MEMS)
reflects MA in a certain extent. It is then used as the ref-
erence signal in the adaptive filter [7]. At the same time,
the performance of ANC is sensitive to the reference signal
[8]. Some other adaptive algorithms such as adaptive least
mean square (LMS) [9], adaptive comb filters [10], adaptive
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step-size least mean squares (AS-LMS) [11], two-stage nor-
malised least mean square adaptive noise canceler [12] are
then proposed. On the other hand, the independent compo-
nents analysis (ICA) model [13] is put forward for MA re-
duction [14] [15]. It is also used associated with the adaptive
filter [16]. In this algorithm, features of different sources in
the linear signal will be detected [17], then artefact noise can
be reduced [15]. Kalman filtering [18] and singular value de-
composition (SVD) [19] are also applied.
As for frequency-based methods, wavelet noise reduction

is introduced [20]. Improved techniques include double-tree
wavelet transform (DTWT) [21] [22] and ICA-associatedWT
[23]. Besides, power spectral analysis [24] and sparse spec-
tral analysis [25] [26] also make sense.
In this study, we proposed a robust framework for HR

monitoring from PPG signals based on STFT. Traditionally,
fast Fourier transform (FFT) was suggested to process the
whole raw signal. Then real-time HR cannot be derived us-
ing FFT. In this situation, signal segmentation is required,
in order to focus a small period of the signal. On the other
hand, FFT does not workwell for short-time signals, because
the resolution is limited. Therefore, FFT is replaced by STFT
in our framework [27]. In this paper, a reformative algorithm
for HRmonitoring using the combination of STFT and spec-
tral analysis is proposed, named as Short-time Fourier Spec-
tral Tracking (SFST). The spectral tracking consists of spec-
tral Detection, verification and predication.
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Figure 1: A simplified representation of the PPG signal’s acquisition princi-
ple. The light sensor is placed on the body surface. Blood flow is monitored
by the light sensor, then PPG signals are obtained.

2. Background andMotivation

2.1. PPG Principle
The principle of PPG helps with the foundation of the

whole framework. The PPG signal is measured from the vas-
cular blood flowmeasurement sensor. It is originally used to
detect arterial oxygen saturation andHR, for cardiac arrhyth-
mias diagnosis [28]. As shown in Figure 1, infrared light is
utilised through the skin and into the blood vessels. After
that, it is sent back to the detector to measure the blood. The
results mainly depend on the oxygen and blood flow to the
capillary vessel at every heartbeat. Therefore, the PPG signal
can be used to monitor HR. Theoretically, a pure PPG signal
contains two parts. The large one is a direct current (DC) sig-
nal representing the constant absorption of light when pass-
ing through the skin-tissue-bone. The small one indicates
the light passing through the arteries aroused by the heart-
beat, which is an alternating current (AC) signal.
Practically, the signalmonitored from the front-end circuit

during physical activities contains several components:

1. The desired vascular volumetric changes caused by
blood pulse, which is the desired PPG signal.

2. The ambient noise caused by the ambient light. It can
be decreased by shielding the ambient light.

3. The pressure noise caused by breath and muscle move-
ment. It can be removed using an IIR digital filter.

4. The mechanical noise caused by the friction on the skin
and the electromagnetic interference (EMI) of the mon-
itor device. It is hard to remove [29].

2.2. Short-Time Fourier Transform
STFT provides a spectrum of high resolution in a short

time period, because the fixed-time window 𝑔𝑢,𝜉 causes a
fixed time-frequency resolution [30]. This is explained by
Heisenberg Inequality. That is, one can only trade time res-
olution for frequency resolution.
In STFT, the information slice provided by ⟨𝑓, 𝑔𝑢,𝜉⟩ is rep-

resented in a time-frequency plane (𝑡, 𝜉). It can be treated
as a rectangle of a position and size depending on the time-
frequency spread of 𝑔𝑢,𝜉 . 𝑔𝑢,𝜉 is centred at 𝑢, for 𝑔 is even.
Therefore, the time spread around 𝑢 is denoted by 𝜎2𝑡
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Figure 2: The Heisenberg box of the STFT atom illustrates as the time-
frequency plane (𝑡, 𝜔). It can be treated as a rectangle centred at (𝑢, 𝜉),
of size 𝜎𝑡 × 𝜎𝜔.

𝜎2𝑡 = ∫
ℝ
(𝑡 − 𝑢)2|𝑔𝑢,𝜉|2𝑑𝑡 = ∫

ℝ
𝑡2|𝑔(𝑡)|2𝑑𝑡. (1)

Since 𝑔 is also real and symmetric, the Fourier transform
of 𝑔 is

�̂�𝑢,𝜉(𝜔) = �̂�(𝜔 − 𝜉)𝑒−𝑖𝑢(𝜔−𝜉), (2)

where the centre frequency is 𝜉. Thus the frequency
spread around 𝜉, also known as bandwidth, is denoted by
𝜎2𝜔,

𝜎2𝜔 =
1
2𝜋 ∫

ℝ
(𝜔 − 𝜉)2|�̂�𝑢,𝜉(𝜔)|2𝑑𝜔

= 1
2𝜋 ∫

ℝ
𝜔2|�̂�(𝜔)|2𝑑𝜔.

(3)

Two sinusoids will be discriminated only if they are more
than 𝜎𝑡 apart [31], [32]. The root-mean-square measure is
adopted here. Likewise, two pulses in time can be also dis-
criminated only if they are more than 𝜎𝜔 apart. Therefore,
the resolution in the frequency of the STFT analysis is given
by 𝜎𝑡 and 𝜎𝜔. The window function translates in time when
𝑡 increases. In addition, the increase in 𝑓 causes transposi-
tion in frequency with a constant bandwidth. Once a speci-
fied window is chosen for the STFT, the time-frequency res-
olution given by (1) and (3) is fixed over the entire time-
frequency plane. In fact, the same window is adopted for all
frequencies. The STFT window restricts the temporal and
frequency resolution cells [33].
Based on Heisenberg Uncertainty, the temporal variance

and the frequency variance of 𝑓 ∈ ℒ2(ℝ) jointly satisfy

𝜎2𝑡 𝜎
2
𝜔 ≥

1
4 , (4)

which is independent of 𝑢 and 𝜉. Thus, 𝑔𝑢,𝜉 corresponds
to a Heisenberg box of area 𝜎𝑡𝜎𝜔, as shown in Figure 2.
The box size is independent of (𝑢, 𝜉), so a windowed Fourier
transform has the same resolution across the time-frequency
plane [34].
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Figure 3: A typical example of true HR via ECG. The two figures show rel-
ative percentage and absolute value change of HR during different physical
activities, respectively.

By setting a size-fixed window in STFT, the frequency res-
olution is also fixed. While inWT, the window size is related
to the frequency. Therefore, WT does well in time resolu-
tion and STFT gains advantages in frequency resolution, in
the case of PPG. For the HR-related frequency range, the fre-
quency resolution of STFT is much higher than WT, due to
their own properties [35]. Since our aim is to estimate HR by
spectral analysis, a higher frequency resolution will be more
helpful. Therefore, STFT is chosen instead of WT.

2.3. Heart Rate Observation

The complex noise produces false peaks and makes true
peaks vanish, which decreases the accuracy of HR tracking.
In this situation, features of true HR shall be observed, in or-
der to formulate the tracking algorithm. Several groups of
data were recorded and analysed. 𝑀1 denotes the absolute
difference, defined in (5). 𝑀2 denotes the percentage differ-
ence, defined in (6). Taking the result shown in Figure 3 as
an example, in 0.1s𝑀1 can only change within [-2.00, 4.00],
and𝑀2 also changes with [−2.00%, 4.00%]. Then we can in-
fer that HR does not change a lot in a very short time period.
To measure and verify the guess, statistic results during dif-
ferent physical activities has been computed. The situations
include running, staging and jumping. The result is shown
in Table 1. Based on this statistical result, the HR tracking
algorithm is proposed.

𝑀1 =
1
𝑛

𝑛∑

𝑖=2
|HRT[𝑖] −HRT[𝑖 − 1]| (5)

𝑀2 =
1
𝑛

𝑛∑

𝑖=2
|HRT[𝑖] −HRT[𝑖 − 1]

HRT[𝑖 − 1]
| × 100% (6)

Table 1: Statistic result: the absolute difference𝑀1 and the percentage dif-
ference𝑀2 based on trueHR,monitored during different physical activities.
The unite of𝑀1 is BPM.

Dataset #01 #02 #03 #04 #05 #06
𝑀1 1.0202 1.2590 1.1974 1.2451 1.1132 0.9527
𝑀2 0.956% 0.122% 0.992% 1.066% 0.832% 0.832%

Dataset #07 #08 #09 #10 #11 #12
𝑀1 0.8053 1.3502 1.0467 0.9159 0.8958 1.1440
𝑀2 0.648% 1.188% 0.918% 0.6112% 0.620% 0.862%

Figure 4: Observation of the frequency spectrum using STFT. The estimated
result by spectral peak tracking is right in subplot 1 and 2. However, the peak
used in the former two subplots disappears in subplot 3. Another false peak
is recognised, which makes the result go wrong from then on.

2.4. Spectrum Observation

The acceleration signal used to carry out spectral subtrac-
tion [36]. For validation, we adopted it to our experimental
data. A typical result is given byFigure 4. In the first two sub-
plots, the results tracked by the spectral peaks are accurate,
according to the true HR via ECG. However, the tracking re-
sult from 67.6s to 77.6s is totally wrong, because a false peak
is tracked and the target peak vanishes. Even using spectral
subtraction, thismistake cannot be corrected. Therefore, im-
proved HR estimation algorithm is required.

3. Method

The flowchart of SFST can be sketched in Figure 5. In the
beginning, the signal detected from front-end electric circuit
is pre-treated by a baseline filter. Secondly, the signal is seg-
mented with a sliding window and converted into STFT fre-
quency spectrum. In this approach, the spectrum resolution
can be improved. After that, HR estimation is carried on via
spectral peak tracking. This step contains two parts, verifica-
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tion and prediction. In the end, the moving average filter is
applied to decrease the influence of values of high variance.

Pre-treatment

Signal Segmentation

Amplitude-frequency Conversion

Spectral Peak Tracking

Cyclic Moving Average Filter

Figure 5: The flowchart of SFST.

3.1. Pre-treatment
The pressure noise performs as the baseline drift. Taking

𝑥𝑎(𝑡) as the raw and analogue PPG signal, obtained from the
front-end circuit. 𝑥𝑎 is converted into discrete digital data as
𝑥𝑑:

𝑥𝑑 ← 𝑥𝑎. (7)

The primary signal is filtered using a zero-phase forward
and reverse digital IIR filter [37], whose coefficients are
shown in (8). The baseline drift caused by respiration distur-
bance is then removed. The pre-treatment facilitates signal
analysis. The detailed algorithm is given by Algorithm 1.

𝜈 = 2𝜇 sin2(𝜋𝜇𝑓𝑠
) −

2
√
𝜇

1 − 𝜇 sin(
𝜋𝜇
𝑓𝑠

) + 1 (8)

𝑥[𝑛] = 𝜈
𝜈 − 1(𝑥𝑑[𝑛] − 𝑥𝑑[𝑛 − 1]) (9)

where

𝜇 the cut-off coefficient;

𝜈 the parameter for the zero-phase forward and reverse dig-
ital IIR filter.

𝜇 is often set to 0.3. In some other cases, the value may
be various, depending on the intensity of physical activities.
The pre-treatment does not change the signal features, but
convert it more suitable for peak recognition and HR track-
ing [37].

Algorithm 1 Pre-Treatment
1: procedure Pre-Treatment(𝑥𝑑, 𝜇, 𝑓𝑠) ⊳ 𝑥𝑑:the
discrete PPG signal, 𝜇: the cut-off coefficient for the IIR
filter, 𝑓𝑠: the sampling frequency of 𝑥𝑑.

2: 𝜈 ← 2𝜇 sin2(𝜋𝜇
𝑓𝑠
) − 2

√
𝜇

1−𝜇
sin(𝜋𝜇

𝑓𝑠
) + 1

3: 𝑥 ← 𝑥𝑑−filtfilt(1 − 𝜈,[1 −𝜈],𝑥𝑑) ⊳ Filter with the
zero-phase IIR filter.

4: return 𝑥
5: end procedure

3.2. Signal Segmentation
To estimate HR in real time, a sliding window is in need.

Then the signal can be segmented into several periods. The
average HR during a time period can be computed. There-
fore, a series of results can be estimated, reflecting the real-
time HR [38]. The segmentation approach is described by
(10) and (11).

𝑁 = 𝑙𝑥 − 𝑇𝑤𝑓𝑠
𝑇𝑠𝑓𝑠

, (10)

𝑦𝑖[𝑛] = 𝑥[𝑇𝑠𝑓𝑠(𝑖 − 1) + 𝑛], 1 ≤ 𝑛 ≤ 𝑇𝑤𝑓𝑠, 1 ≤ 𝑖 ≤ 𝑁, (11)

where

𝑁 the total number of the segmented signals;

𝑙𝑥 the length of 𝑥;

𝑇𝑤 the duration of the sliding window;

𝑇𝑠 the step size of the sliding window;

𝑦𝑖 the 𝑖-th segmented signal.

3.3. Amplitude-frequency Conversion
To obtain HR from PPG, STFT realises an exact spectral

estimation of the input signal spectrum for a short interval,
especially for non-stationary signals. The detailed algorithm
is given by Algorithm 2. The formula in the discrete time
domain can be described as

𝑠𝑖[𝑛] =
𝑁∑

𝑘=1
𝑦𝑖[𝑘]𝜔[𝑘 − 𝑙𝜔]𝑒

−𝑗 2𝜋
𝑁
𝑛𝑘, 𝑛 = 1 ∶ 𝑁 (12)

where

𝑠𝑖 the 𝑖-th STFT sequence;

𝜔 the window function for STFT.

𝑙𝜔 the width of the window function for STFT.

Algorithm 2 Short Time Fourier Transform Algorithm
1: procedure Short Time Fourier Trans-
form(𝑦𝑖 , 𝑙𝜔, ℎ, 𝑛𝑓 , 𝑓𝑠) ⊳ 𝑦𝑖: the 𝑖-th segmented
signal; 𝑙𝜔: length of the function window; ℎ: hop size;
𝑛𝑓: number of FFT points; 𝑓𝑠: sampling frequency.

2: 𝜔 ←hamming(𝑙𝜔,‘periodic’) ⊳ Form a periodic
function window, Hamming is adopted here.

3: 𝑙𝑠 ←ceil((1 + 𝑛𝑓)∕2)
4: 𝑥𝜔 ← 𝑥. ∗ 𝜔
5: 𝑠 ←FFT(𝑥𝜔,fix(𝑛𝑓)) ⊳ Use FFT to calculate STFT.
6: 𝑓 ← 0∶𝑙𝑠−1

𝑛𝑓
∗ 𝑓𝑠

7: return [𝑠, 𝑓] ⊳ 𝑠:the STFT sequence, 𝑓: the
corresponding frequency sequence.

8: end procedure
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The 𝑖-th STFT spectrum: 𝑠𝑖

Detection

Verification

Prediction

The analysed HR: HRA

No

Yes

Figure 6: The sub-loop, tracking procedure.

3.4. Spectral Peak Tracking
Although MA has complex effects on PPG signals, their

frequency spectrums do not change too much in a short
time period. Once the peak representing HR is detected, the
change of HR could be tracked. According to the observation
on ground truth, HR contains an acceptable divergence in a
short time. Therefore, the tracking rules can be proposed, as
shown in Figure 6.

3.4.1. Detection
In “Detection", the peak representing HR is detected. For

each 𝑠𝑖 , all peaks of the STFT spectrum from 0 to 3Hz are
found. The corresponding frequency of the peaks are de-
noted by the sequence 𝑓𝑝.
For the first signal period, the MA is not strong in our

experiments, so we treat the HR at this time very close to
60BPM. As the initialisation, the analysed HR is set via

HRA[𝑖] = 60 × argmin
𝑓𝑝

|𝑓𝑝 − 1|. (13)

After that, the analysed HR for each loop is detected via

HRA[𝑖] = 60 × argmin
𝑓𝑝

|𝑓𝑝 −
HRA[𝑖 − 1]

60 |. (14)

If no 𝑓𝑝 was found, the loop will be skipped, and the
HRA[𝑖] will be set the same to the former loop.

3.4.2. Verification
“Verification" mainly helps to make sure that the peak de-

tected is not false. Based on the observation of the true HR,
its change in a short time is limited. Inspired by this fact, the
rule is set by

|HRA[𝑖] −HRA[𝑖 − 1]
HRA[𝑖 − 1]

| < 𝜁, (15)

where 𝜁 is the parameter making sure that the point verified
should not be out of a tolerance. If the limitation cannot be
satisfied, the HR shall be predicted instead.

3.4.3. Prediction
“Prediction" deals with the situations that the verification

requirement is not satisfied. The prediction rule is based on
the change of true HR, given by (16) and (17).

HRA[𝑖] = HRA[𝑖−1]+
1
𝑙𝑝

𝑙𝑝∑

𝑗=1
𝜆𝑗(HR𝐴[𝑖−𝑗]−HR𝐴[𝑖−𝑗−1]), 𝑙𝑝+1 < 𝑖 < 𝑁

(16)

𝜆𝑗 = { 0 if |HRA[𝑖 − 𝑗] −HRA[𝑖 − 𝑗 − 1]| > 𝜅
1 if |HRA[𝑖 − 𝑗] −HRA[𝑖 − 𝑗 − 1]| < 𝜅 , (17)

The parameters 𝑙𝑝 avoid unexpected iteration caused by
one or two detection results. 𝜅 and 𝜆 help to abandon sin-
gular HR values, making the output stable. In this method,
most points can be restricted into an acceptable range. The
detailed algorithm is given by Algorithm 3.

Algorithm 3 Spectral Peak Tracking
1: procedure Spectral Peak Tracking(𝑓𝑖 , 𝑠𝑖 , 𝑙𝑝, 𝜁, 𝜅) ⊳
For the 𝑖-th signal period, import its frequency and STFT
amplitude response.

2: [𝑓𝑝, 𝑠𝑝]← find peaks of 𝑠𝑖 in [0, 3Hz] ⊳ Detection
3: if 𝑖 == 1 then
4: HRA[𝑖]← 60 × argmin𝑓𝑝 |𝑓𝑝 − 1| ⊳ Initialisation
5: else
6: HRA[𝑖]← 60 × argmin𝑓𝑝 |𝑓𝑝 −HRA[𝑖 − 1]∕60|

7: if |HRA[𝑖]−HRA[𝑖−1]
HRA[𝑖−1]

| > 𝜁 then ⊳ Verification
8: 𝜆𝑗 ← HRA[𝑖 − 𝑙𝑝] ∶ HRA[𝑖], 𝜅
9: HRA[𝑖]← HRA[𝑖 − 𝑙𝑝] ∶ HRA[𝑖], 𝑙𝑝, 𝜆𝑗 ⊳
Prediction

10: end if
11: end if
12: return HRA
13: end procedure

3.5. Cyclic Moving Average Filter

Due to the complex MA, several values in HRA may have
unexpected variance. Such values shall be filtered to improve
the accuracy. According to the rules adjusted previously, the
time spacing in 𝑦 is 0.1𝑠. For HR monitoring, it is not neces-
sary to compute HR with such frequency. In this situation,
the cyclic moving average filter is introduced to process HRA
[39].
Considering the analysed result HRA, it can be segmented

into many periods, where each period contains 𝐶 values.
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Then the total number of the periods is 𝑁∕𝐶. For each pe-
riod, the mean value is derived. The final estimated HRHRE
is derived via

HRE[𝑖] =
1
𝐶

𝐶∑

𝑗=1
HRA((𝑖 − 1)𝐶 + 𝑗), 1 ≤ 𝑖 ≤ 𝑁

𝐶 . (18)

The corresponding time of HRE[𝑖] is derived via

𝑡E[𝑖] = (𝑖 − 1)𝐶𝑇𝑠 +
𝑇𝑤
2 , 1 ≤ 𝑖 ≤ 𝑁

𝐶 . (19)

The frequency of the final result is derived via

𝑓E =
1
𝐶𝑇𝑠

. (20)

In practical work, the output HR at time point 𝑡𝑖 is the aver-
age value of the previous time period, and the following pe-
riod will have no effect on this value. That is, once a period
is finished, a result is generated as the average value of this
period. In this method, the real-time monitoring is realised.

Algorithm 4 Cyclic Moving Average Filter
1: procedure Cyclic Moving Average Fil-
ter(HRA, 𝑁, 𝐶, 𝑇𝑠, 𝑇𝑤)

2: 𝑀(𝑁∕𝐶, 𝐶)← HRA ⊳ Reshape the signal into a
matrix.

3: HRE[𝑖]← 𝔼[𝑀(𝑖, ∶)], 1 ≤ 𝑖 ≤ 𝑁∕𝐶
4: 𝑡E[𝑖]← (𝑖 − 1)𝐶𝑇𝑠 + 𝑇𝑤∕2, 1 ≤ 𝑖 ≤ 𝑁∕𝐶
5: return HRE, 𝑡E
6: end procedure

4. Experiments

4.1. Implementation
Tomeasure the accuracy of SFST, real-time HR via ECG is

used for comparison. Several PPG datasets in [25] have been
used to validate the performance of SFST. All datasets were
recorded simultaneously from 12 healthy male subjects with
age ranging from 18 to 351. In each dataset, the PPG was
recorded from the wrist (dorsal) using a pulse oximeter with
a green light emitting diode (LED). The wavelength of the
green light is 515 nm. The ECG signal was recorded from
the chest using wet ECG electrodes. All signals were sent to
a nearby computer via Bluetooth, with a sampling frequency
of 125 Hz. A signal example is shown in Figure 7, including
the raw PPG signal and the ECG signal reference.
The physical activities of subjects are also carefully set.

During data recording, the subjects walked or ran on a tread-
mill with the following speeds in order: the speed of 1 ∼ 2
km/hour for 0.5 minute, the speed of 6 ∼ 8 km/hour for
1 minute, the speed of 12 ∼ 15 km/hour for 1 minute, the
speed of 6 ∼ 8 km/hour for 1 minute, the speed of 12 ∼ 15
km/hour for 1 minute, and the speed of 1 ∼ 2 km/hour for
0.5minute.

1For older people and kids, their PPG data may contain unexpected vari-
ance for medical reasons.

Figure 7: Result of HR tracked using SFST based on dataset 08, randomly
selected. As shown in the picture, the estimated HR track is almost of a
framework the same with the real-time HR.

4.2. Parameters and Results
To make the result definitely reasonable, a lot of experi-

ments have been conducted in order to increase accuracy.
Several parameters of this algorithm have been adjusted by
controlling the variables, also observe the input and output
of each step or loop. As for the sampling in the first step, the
moving windows are controlled by a width of 8s and a step
size of 0.1s2. Tomake the outputHR refreshwith a frequency
of 1Hz, the window size in the moving average algorithm is
set to be 10. On the other hand, the window function used in
STFT is a Hamming window. Hanning, Gaussian and Sine
functions are also executable [40] [41].
Figure 8 shows a HRE derived from a randomly selected

data. Estimated HR is represented with the red dotted line,
and the blue line denotes trueHR via ECG. Aswe can see, es-
timatedHR constructs nearly the same frameworkwith real-
time HR.
To visualise the result, the STFT frequency spectrogram is

computed and shown in Figure 9. Two obvious channels can
be found in the figure and one of them represents the real-
time change of HR. With the help of the high resolution by
STFT, the HR can be locatedmeticulously, making the result
proven reasonable.

4.3. Performance Measurement
To measure the performance of HR estimation algorithm,

a method proposed in [26] has been adopted here. 𝜀1 repre-
sents the average absolute error (in BPM), and 𝜀2 represents
the average absolute error percentage (both lower is better),
defined as

2The exact values of window width can be adjusted. A larger window
width will enhance the spectrum resolution. The step size is based on the
former HR statistic results. A smaller step size will track HR more accu-
rately, but may increase the algorithm complexity at the same time.
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Figure 8: Result of HR tracked using SFST based on dataset 08, randomly
selected. As shown in the picture, the estimated HR track is almost of a
framework the same with the real-time HR.

Table 2: Comparison between SFST and JOSS in terms of 𝜀 on the 12
datasets, AVG denotes average value and SD denotes standard deviation,
the unit is BPM.

Dataset #01 #02 #03 #04 #05 #06 #07
SFST 1.23 1.51 1.19 0.92 0.61 0.78 0.48
JOSS 1.33 1.75 1.47 1.48 0.69 1.32 0.71

Dataset #08 #09 #10 #11 #12 AVG SD

SFST 0.49 0.58 3.00 0.73 1.24 1.06 0.69
JOSS 0.56 0.49 3.81 0.78 1.04 1.28 0.89

𝜀1 =
1
𝑛

𝑛∑

𝑖=1
|HRE(𝑖) −HRT(𝑖)|, (21)

𝜀2 =
1
𝑛

𝑛∑

𝑖=1

|HRE(𝑖) −HRT(𝑖)|
HRT(𝑖)

. (22)

According to Table II and III, it is obvious that SFST per-
forms better than results in [26] for most datasets. As for
statistic results of SFST based on all datasets, the absolute
estimation error 𝜀1 is 1.06±0.69 and the absolute estimation
error percentage 𝜀2 is 0.94% ± 0.53%. As a comparison, the
results of JOSS are 1.28±0.89 and 1.02%±0.61%, respectively.
As for cross-correlation between estimated HR by SFST and
true HR via ECG based on all 12 datasets, shown in Table IV,
the result is 0.9917 ± 0.0141. For 10 out of 12 datasets, the
cross-correlation result is higher than 0.99, while the other
two sets are also more than 0.95.
The Bland-Altman plot is adopted based on all 12 datasets,

given by Figure 10. The limit of agreement between true and
estimated HR data is [−4.3, 3.9] BPM, and the coefficient of
variation is 1.6%. In addition, a fitting line has been plotted

Figure 9: STFT frequency spectrogram of raw PPG signal in dataset 08. The
𝑥 axis denotes time and HR axis denotes HR. The power denotes the value
of amplitude frequency response. A channel in the figure gives the change
of HR, referred from real-time HR from ECG signal shown in Figure 8.

Table 3: Comparison between SFST and JOSS in terms of Error2 on the 12
datasets, AVG denotes average value and SD denotes standard deviation, the
unit is BPM.

Dataset #01 #02 #03 #04 #05 #06 #07
SFST 1.11% 1.66% 1.27% 1.41% 0.46% 0.66% 0.38%
JOSS 1.19% 1.66% 1.27% 1.41% 0.51% 1.09% 0.54%
Dataset #08 #09 #10 #11 #12 AVG SD

SFST 0.42% 0.50% 1.95% 0.49% 1.01% 0.94% 0.53%
JOSS 0.47% 0.41% 2.43% 0.51% 0.81% 1.02% 0.61%

based on all estimated and true HR data, given by Figure 11 ,
where the line can be denoted as 𝑦 = 1.009𝑥−1.414, the sum
of squares due to error is 7107, R-square (coefficient of deter-
mination) is 0.9927, adjusted R-square (degree-of-freedom
adjusted the coefficient of determination) is 0.9927, and root
mean squared error is 2.096.

5. Discussion

Adaptive filters and spectral subtraction adopt accelera-
tion signals and help to improve the accuracy of HR estima-
tion, but such work wasmainly proposed for scenarios when
MA is not strong [26]. Until now, there has beennobibliogra-
phy that could give a specific description of the relationship
between acceleration signals and PPG signals [42]. Never-
theless, some experiments adopting acceleration signals via

Table 4: Cross-Correlation 𝜌HRT ,HRE between true and estimated HR using
SFST on the 12 datasets, AVG denotes average value and SD denotes stan-
dard deviation
Dataset #01 #02 #03 #04 #05 #06 #07
𝜌HRT ,HRE 0.9982 0.9950 0.9953 0.9977 0.9977 0.9977 0.9995

Dataset #08 #09 #10 #11 #12 AVG SD

𝜌HRT ,HRE 0.9978 0.9993 0.9530 0.9970 0.9728 0.9917 0.0141
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Figure 10: Bland-Altman plot between true and estimated HR, based on all
12 datasets.

Figure 11: Fitting line between true and estimated HR, based on all 12
datasets.

spectral subtraction are conducted, but their results do not
show advantages than SFST’s results. In fact, PPG’s spec-
trum does not show connections with acceleration signals
based on our research. Therefore, acceleration signals are
not listed in our algorithm.
Although Fourier transform or wavelet transform’s appli-

cation in PPG signal processing has been used before [43]
[44], the accuracy remains to be improved. In this paper,
the proposed solution provides a more general and accu-
rate framework for HR estimation. Despite some methods
such as wavelet processing and sparse spectral analysis were
adopted before, the proposed method provides a better ac-
curacy, because the change of true HR has been considered
and the spectral peak tracking becomesmore reasonable. On
the other hand, the algorithm may be not feasible for some
practical challenges like arrhythmia because its spectral peak
tracking is based on trueHR, but useful for healthy people for
HR monitoring during physical activities.
Compared with methods before, this algorithm has many

benefits. Firstly, STFT has the advantage for frequency vari-
ation compared with WT [34], helping to improve the track-
ing accuracy. Secondly, the sampling frequency is set higher
than before to make sure HR does not have sudden change.
With the help of observation for true HR, the algorithm
avoids false tracking between neighbouring loop. Thirdly,

moving average filter is added at the end since the sampling
frequency is quite high, achieving a continuous result with
discontinuity removed. Due to the benefits above, SFST is
able to provide higher accuracy.
The Fourier-based algorithm is not the only way to com-

pute frequency spectrum. Other time frequency methods,
such as Huang Hilbert Transform and also Gabor transform
[45] are known to be more frequencies specific. For the next
period, we would like to focus on such methods to process
spectrums, in order to develop the algorithm and improve
the HR tracking accuracy. On the other hand, the proposed
framework relies on the features of health people HR. In the
future work, more subjects like older people, women and
kids will be tested.

6. Conclusions

In this paper, a robust framework for HR monitoring us-
ing PPG signals during physical activities has been proposed,
named as SFST. STFT is used to convert frequency spectrum,
and peak tracking algorithm is used to carry out spectral
analysis in order to estimate HR from PPG signals, without
acceleration signals’ implementation. With the help of high
resolution in low frequency of STFT and second filtering by
moving average method, the estimated result is quite reli-
able, validated by true HR via ECG. Therefore, the proposed
robust algorithm is able to derive accurate HR from PPG sig-
nals monitored during physical activities. Therefore, SFST
is confirmed able to promote the development of wearable
devices to monitor HR.
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Appendix A. Proof of Heisenberg Uncertainty

The following proof is from [46]. Suppose that
lim|𝑡|→+∞

√
𝑡𝑓(𝑡) = 0, but the theorem is valid for any

𝑓 ∈ ℒ2(ℝ).
If the average time and frequency localisation of 𝑓 is 𝑢 and

𝜉, then the average time and frequency location of 𝑒−𝑖𝜉𝑡𝑓(𝑡+
𝑢) is zero. Thus, it is sufficient to prove the theorem for 𝑢 =
𝜉 = 0. Observe that

𝜎2𝑡 𝜎
2
𝜔 =

1
2𝜋||𝑓||4

∫
+∞

−∞
|𝑡𝑓(𝑡)|2𝑑𝑡 ∫

+∞

−∞
|𝜔𝑓(𝜔)|2𝑑𝜔. (A.1)
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Since 𝑖𝜔𝑓2(𝜔) is the Fourier transform of 𝑓′(𝑡), according to
the Plancherel identity

∫
+∞

−∞
|𝑓(𝑡)|2𝑑𝑡 = 1

2𝜋 ∫
+∞

−∞
|𝑓(𝜔)|2𝑑𝜔, (A.2)

we have

𝜎2𝑡 𝜎
2
𝜔 =

1
||𝑓||4

∫
+∞

−∞
|𝑡𝑓(𝑡)|2𝑑𝑡 ∫

+∞

−∞
|𝑓′(𝑡)|2𝑑𝑡. (A.3)

Based on Cauchy–Schwarz inequality

| ∫
ℝ𝑛
𝑓(𝑥)𝑔(𝑥)𝑑𝑥|2 ≤ ∫

ℝ𝑛
|𝑓(𝑥)|2𝑑𝑥 ⋅ ∫

ℝ𝑛
|𝑔(𝑥)|2𝑑𝑥, (A.4)

we have

𝜎2𝑡 𝜎
2
𝜔 ≥

1
||𝑓||4

[∫
+∞

−∞
|𝑡𝑓′(𝑡)𝑓∗(𝑡)|𝑑𝑡]2

≥ 1
||𝑓||4

[∫
+∞

−∞

𝑡
2[𝑓

′(𝑡)𝑓∗(𝑡) + 𝑓′∗(𝑡)𝑓(𝑡)]𝑑𝑡]2

≥ 1
4||𝑓||4

[∫
+∞

−∞
𝑡(|𝑓(𝑡)|2)′𝑑𝑡].

(A.5)

Since lim|𝑡|→+∞
√
𝑡𝑓(𝑡) = 0, an integration by parts gives

𝜎2𝑡 𝜎
2
𝜔 ≥

1
4||𝑓||4

[∫
+∞

−∞
|𝑓(𝑡)|2𝑑𝑡]2 = 1

4 . (A.6)

To obtain an equality, Schwarz’s inequality applied to (A.3)
must be an equality. This implies that there exists 𝑏 ∈ ℂ
such that

𝑓′(𝑡) = −2𝑏𝑡𝑓(𝑡) (A.7)

Thus, there exists 𝑎 ∈ ℂ such that 𝑓(𝑡) = 𝑎𝑒−𝑏𝑡2 . The other
steps of the proof are then equalities so that the lower bound
is indeed reached. When 𝑢 ≠ 0 and 𝜉 ≠ 0, the corresponding
time and frequency translations yield

𝑓(𝑡) = 𝑎𝑒𝑖𝜉𝑡−𝑏(𝑡−𝑢)2 . (A.8)

Appendix B. Statistic Approaches

Let HRT denote the true HR, HRE denote estimated HR
by SFST, 𝑛 denote the total number of all signal points. For
Bland-Altman plot[47], the reproducibility coefficient is de-
rived via

𝜇𝐷 = 𝔼[𝐷] = 1
𝑛

𝑛∑

𝑖=1
𝐷[𝑖], (B.1)

𝕍[𝐷] = 𝔼[(𝐷 − 𝜇𝐷)2], (B.2)

RPC =
√
𝕍(𝐷). (B.3)

The coefficient of variation is calculated via

CV = 𝕍(𝐷)
𝔼(𝐷)

× 100%, (B.4)

where

𝐷[𝑖] = 2 × HRT[𝑖] −HRE[𝑖]
HRT[𝑖] +HRE[𝑖]

, 1 ≤ 𝑖 ≤ 𝑛. (B.5)

The sum of squared errors of prediction (SSE) between HRT
and HRE is calculated via

SSE =
𝑛∑

𝑖=1
(HRT[𝑖] −HRE[𝑖])2. (B.6)

The Pearson’s correlation coefficient [48] between HRT and
HRE is calculated via

𝜌HRT,HRE =
∑𝑛

𝑖=1(HRT[𝑖] − 𝜇T)(HRE[𝑖] − 𝜇E)
√∑𝑛

𝑖=1(HRT[𝑖] − 𝜇T)2
√∑𝑛

𝑖=1(HRE[𝑖] − 𝜇E)2
,

(B.7)
where

𝜇T = 𝔼[HRT], (B.8)

𝜇E = 𝔼[HRE]. (B.9)
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