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thermal maps and then used for daily forecasting alongside
numerical forecast models [�, ����]. Other uses for thermal
mapping include the optimisation of routes for anti-icing
[��] or identi
cation of locations for the installation of
road weather outstations. However, thermal measurement
campaigns are very time-consuming. It is impossible to
survey a whole road network at the same time, and the task
has to be partitioned into stretches that could be done in the
open timewindow at dawn to avoid temperature artefacts due
to a rising sun.

	e extent of RST variation along a route (and thus
the amplitude of the thermal 
ngerprint) is controlled by
atmospheric stability. 	e greatest variations are observed
during stable conditions associated with anticyclonic weather
patterns as indicated by 	ornes [�]. With decreasing atmo-
spheric stability, the amplitude of the thermal 
ngerprint
subsequently reduces. Shao et al. [�] have shown that under
certain weather conditions the spatial variation of RST
along a route appears in a consistent pattern. It is this
consistency which enables thermal mapping surveys to be
conducted under a few selected weather conditions (i.e.,
extreme, intermediate, and damped) and quanti
ed through
the analysis of the average wind speed and cloud cover during
the ��-hour period preceding the survey [�]. 	is has led
to an operational standard of 
ve to six surveys (two for
each category) typically commissioned to provide coverage
of the conditions encountered in a winter season. However
this is inadequate with respect to the full variety of winter
conditions actually experienced and results in daily forecasts
being �pigeon-holed� into one of the categories when used
operationally [��].

	e last decade has seen a gradual change in practice,
moving away from thermal mapping and its associated
limitations to a new spatialmodelling based approach. Route-
based forecasts take into account both meteorological and
geographical data to provide a high resolution forecast of
road surface temperature and condition around the road
network [�]. Whilst this provides a potentially signi
cant
improvement in the quality of forecasts, it has also brought
about a new set of challenges. Whereas traditional site-
speci
c forecasts could be easily validated against sensor data
from outstations located at the forecast sites, this is clearly
impossible for a route-based forecast [�]. Consequently,
thermal mapping is still required to provide data to verify
the spatial component of a route-based forecasting system.
However, this approach is too expensive and time-consuming
to provide detailed data at a high temporal resolution and
means that route-based forecasts can only presently be
veri
ed using �snapshots� from occasional thermal mapping
surveys.

	e aim of this study is to use principal components
analysis (PCA) to statistically analyse thermal mapping data
to obtain ameans of interpolation between surveys to provide
a more comprehensive picture of RST variation for a broader
range of atmospheric conditions than that traditionally cov-
ered by thermal mapping surveys. Such an approach could
have the potential to improve the veri
cation of route based
forecasts and to have a cost e�ective thermal mapping and

could even lead to a simplistic model of ice susceptibility for
use on road networks.

2. Experimental and Methodology

�.�. Study Areas. Both the University of Birmingham and
Nancy Laboratory have been using vehicles for thermal
mapping from the beginning of the existence of the technique
[�, ��]. As such, both organisations have accumulated a
substantial quantity of thermal data for analysis. For this
investigation, two historic research routes covering both
urban and rural areas were selected for detailed analysis. 	e

rst route, located in France (Figure �(a)), is almost �� km
long and covers a range of land uses and lane con
gurations.
A vast thermal dataset is available for this route contain-
ing approximately �� thermal 
ngerprints obtained under
extreme and intermediate weather conditions (Figure �(c)).
	e second route (Figure �(b)) is based in Birmingham, UK,
and also contains a range of di�erent land uses, road-types,
and lane con
gurations. 	is dataset contains approximately
�� thermal 
ngerprints, collected under extreme, intermedi-
ate, and damped conditions (Figure �(d)). Both roads belong
to the same climate classi
cation zone [��, ��].

�.�. Equipment. On both routes, RST was calculated by using
an infrared radiometer 
tted to the underside of a survey
vehicle which measures the energy �ux density � �ux emitted
by the surface. It is calculated through simple manipulation
of the Stefan Boltzmann equation [�]:

� �ux = � � � � � 4, (�)

where � is the RST, � is the Stefan Boltzmann constant, and
� is the emissivity of the road surface. 	e road surface is
considered to be a grey body and as such emissivity is held
constant at �.�� [��, ��]. In the case of the French study
route, air temperature and relative humidity data are also
obtained via sensors located on the roof of the vehicle, with
an electrical turbine generating a laminar �ow.All vehicles are
equipped with GPS to facilitate the plotting of measurements
in a geographical information system (GIS). Figure � displays
thermal mapping vehicles used in France and in the United
Kingdom.

�.�. Principal Components Analysis and RST Forecast. Prin-
cipal component analysis (PCA) is a statistical method
that enables reduction of dimension by projecting the data
onto a lower-dimensional space, when dealing with large
datasets [��, ��] by nonlinear iterative partial least squares
algorithm (NIPALS) or by singular value decomposition.
	e statistical tool used is the variance-covariance matrix.
Linear transformations of a group of correlated variables are
obtained in such a way that certain optimal conditions are
obtained. 	e most important of these conditions is that
the transformed variables are uncorrelated and resulting in
orthogonal eigenvectors. In the PCA approach, the physics
that generates the variations is ultimately substituted for a
statistical approximation containing a linear combination
of current physical factors. 	e number of initial variables
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F����� �: 	ermal mapping routes in France (a) and United Kingdom (b) and associated thermal 
ngerprints for French (c) and United
Kingdom (d) routes.

(a) France (b) United Kingdom

F����� �: 	ermal mapping vehicles in France (a) and United Kingdom (b).

involved in the description of the physical phenomena
resulting in thermal 
ngerprints is reduced to a lower number
called principal components. 	e data is then projected into
another space of the so-called principal components built on
the linear combination real physical factors. Calculations are

conducted to identify the space gathering the highest vari-
ance, generating axis along which data tend to gather. In the
case of thermal mapping, each run is considered to be a sam-
ple. Each RST series of measurement on the same route (over

�y samples for France and near twenty for UK) corresponds
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T���� �: PCA statistical indicators for the French and UK routes.

Case study �� thermal 
ngerprints (���C to ���C)  thermal 
ngerprints
below ��C

� thermal

ngerprints below

��C

French route

Weather conditions Intermediate and extreme Intermediate and extreme Intermediate and
extreme

Number of principal
components (PC) used �� � �

Percentage of explained
variance (with �st PC) � �� ��

Outliers detected
(number of data points) ���� �� �

Case study �� thermal 
ngerprints (Š�.� to �.��C)  thermal 
ngerprints
below �.��C

� thermal

ngerprints below

�.��C

UK route

Weather conditions Intermediate, extreme, and damped � intermediate, � damped, �
extreme

� intermediate, �
damped, � extreme

Number of principal
components (PC) used � � �

Percentage of explained
variance (with �st PC) �� �� ��

Outliers detected
(number of data points) ��� �� ��

to one data point in a multidimensional space. 	e variables
are attached to the location where the measurements were
made. Variables include meteorological, geographical, and
road ones, as indicated by Hammond et al. [��], but this is
not exhaustive. In the case of a route tens of kilometres long,
with measurements done at a given spatial frequency of a few
meters, each thermal 
ngerprint sample contains thousands
of points, each being a variable. Among all possible phys-
ical variables per location, an illustration of �� commonly
considered a�ecting RST could be air temperature, relative
humidity/dew-point, precipitation, cloud cover, wind speed,
solar radiation, ground radiation, weather situation (extreme,
intermediate, damped) for meteorological variables, latitude,
altitude, topography, screening, topographic exposure, sky
view factor, land use, infrastructure speci
city (bridges, . . .)
for geographical variable and thermal conductivity thermal
di�usivity, emissivity, convective coe�cient, albedo, tra�c,
construction depth, and water soil content for infrastructure
variables. As an example, the water content of soil is clearly
not applicable in the case of a bridge, whereas the convective
coe�cient is critical. All will vary from location to location,
sometimes signi
cantly.

Each principal component (PC) axis is then built as a
linear combination of these variables (with the ones given
in Table � among them) multiplied by several thousands of
locations. By using the data from several thermal surveys,
a data matrix, designed as RSTPCA, was generated. 	e
matrix has as many lines as thermal 
ngerprints available
and asmany columns as distance points wheremeasurements
were performed. Each thermal 
ngerprint will correspond
to one point in the PC space, as illustrated in Figure �.
Clusters of points could be detected in this multidimensional
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F����� �: Illustration of principal component analysis (PCA).

space. 	e further along each component, the greater the
di�erence between samples. An approximation of each sam-
ple is obtained with the projection onto the 
rst principal
components. Similar data points appear close each other,
while �extreme� ones appear at an increased distance from
the PC space origin. 	e initial variables have been centred,
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F����� �: Illustration of principal component coordinates (a) and residues (b).

so that the barycentre of data points corresponds to the PC
axis origin. Since the variables are similar (RST with similar
variance), the data have not been standardized. 	e quality
of the representation is determined by the residuals (i.e., the
distance between each data point to the selected number of
axis).

An orthogonal set of eigenvectors, called loadings, is
being generated that spans the variance space of the data.
Each successive eigenvector is chosen to minimize the
residual variance (Figures �(a) and �(b)). 	is operation is
performeduntil the optimal number of principal components
selected for the description is reached. Once completed, the
samples are represented by a new system of coordinates, or
�scores,� and are represented by a matrix � . 	ese scores are
computed by a linear combination of the initial variables, with
given weights. 	ese weights are represented by a loadings
matrix usually named � .

With respect to thermal mapping, PCA can be used to
determine how many components are needed to describe
the variability of data constituting the thermal 
ngerprints
of the two routes obtained in various weather conditions.
Once these components are identi
ed, they can then be used
to build additional 
ngerprints for other weather conditions
provided that they are not signi
cantly di�erent from the
ones used for the original PCA calculations. 	erefore, the
PCAmodel could be written as follows, with the le�over part
of the variations is represented as an error matrix � :

RSTPCA = � � �� + �. (�)

Hence, the larger the number of thermal 
ngerprints,
the larger the number of principal components available to
describe RST variations for PCA. 	e number of relevant
principal components is determined by the explained vari-
ance and by the loadings that enable deduction of the physics
hidden in the statistical description.	e greater the principal
components number, the greater its assimilation to noise. By
using the scores and loadings matrix, it becomes possible

to build a RST pro
le from PCA, eventually neglecting the
errormatrix. Based on this approach, the 
rst objective of this
paper is to identify the global bene
t of PCA and the correct
number of thermal mapping runs required to produce an
accurate daily temperature pattern along a given route based
on PCA. 	e next objective is to extend the process to build
forecast thermal 
ngerprints, thus providing a simple spatial
forecasting model, based on a cost e�ective and realistic
number of mapping runs.

To do so, a RSTPCA pro
le needs to be assimilated to a
one-columnmatrix, where each element of the column is the
RST at a point of the itinerary (RSTPCA,1, RSTPCA,2, . . ., and
RSTPCA,�), � being the 
nal point of this given route. For two
RSTPCA pro
les, RSTPCA 1 and RSTPCA 2, and an interpolated

ngerprint, RSTPCA interpolated, will be obtained by using (�),
traditionally used to denote continuation of form:

RSTPCA interpolated

= 	


 � RSTPCA 1,1 + (1 Š 
) � RSTPCA 2,1

 � RSTPCA 1,2 + (1 Š 
) � RSTPCA 2,2

...

 � RSTPCA 1,� + (1 Š 
) � RSTPCA 2,�

� ,
(�)

where 
 is a coe�cient whose value ranges between �
and �. In winter maintenance, it is logistically impossible
to obtain daily thermal 
ngerprints to verify RST. Instead,
there is a dependence on using site-speci
c RWIS outstations
to monitor atmospheric and road parameters such as air
temperature, relative humidity, andRST. As such, it is di�cult
to build a full RST pro
le over a route on the basis of one
single data point obtained from an outstation. Numerical
weather models have long been able to provide a forecast
for this speci
c spot or more recently over the whole route
using route based forecasting techniques [��]. In the same
way, using the RST at a single outstation, RSTPCA can be
used to extend the forecast away from the outstation site.
Here, coe�cient 
 is used to match the local data point with
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T���� �: PCA statistical indicators for the UK route.

Number of
principal

components
(PC) used

Percentage of
explained
variance

(with �st PC)

Outliers
detected

(number of data
points)

� thermal

ngerprints
(Š��C to
+��C)

� � ���

the corresponding point in RSTPCA interpolated, upon which the
whole RST pro
le could be built.

3. Results and Discussion

�.�. Computing the Optimum Number of Measurements Sets.
	e route survey in France contains data collected at a
�m resolution. For consistency, the ����� measurement
points on this route were reduced and resampled with a
moving average to approximate the spatial resolution of the
route in the UK which was surveyed at a ��m resolution.
Using the Unscrambler X ��.� so�ware package, PCA was
then performed on the full set of the �� measured French

ngerprints and the ��measured UK 
ngerprints.	e results
are given in Table � and Figure �. Almost all the variability
(��%) in the data is explained by the 
rst and secondprincipal
components with very few outliers (especially given the size
of the dataset), with data gathering around the axis of the

rst principal component (Figures �(a), �(c), and �(e)). 	e
next analysis focused on a subset of eight and then four

ngerprints where the mean RST was below ��C, consistent
with a winter maintenance con
guration. Again, the same
conclusion was reached on both the high value of explained
variance and the low number of outliers (Table � and
Figure �). Figure � also shows the absence of clusters of points
which could indicate the speci
c e�ect of given variables in
such global approach.	ese results indicate that as few as four
thermal 
ngerprints are su�cient to resolve RST around the
route, covering a set of weather conditions representative of
winter (extreme, intermediate, and damped).	e further use
of PCA to thermal 
ngerprints will then have to be performed
on data obtained in weather conditions similar to the ones
used for this PCA.

In theory, PCAwould permit the use of � 
ngerprints (i.e.,
� -� principal components for a set of � thermal 
ngerprints),
while originally 
ve to six surveys are speci
ed to have a
forecast as adequate as possible when numerical models are
used. Indeed, even then with just three 
ngerprints, ��% of
the explained variance is with the 
rst component. However,
a fourth thermal 
ngerprint is recommended to provide
a more reliable result, and still constitutes an operational
saving on current practice. Ideally, this additional 
ngerprint
would allow further emphasis of one weather condition (e.g.,
damped condition) in the 
nal result. 	e loadings in the
case of PCA of thermal 
ngerprints for further principal
components will mostly be noise, however contained in
these loadings will be thermal singularities (e.g., bridges and

decks), which might prove useful for a more detailed analysis
on a speci
c spot but is not the topic of this paper. 	is
is illustrated in the case of the four 
rst loadings of PCA
calculations performed on all thermal 
ngerprints of both the
French (Figure �(a)) and theUK (Figure �(b)) routes. In such
global approach, no speci
c in�uence of one of the chosen
variables a�ecting RST could be identi
ed.

Once the initial PCA calculations are performed, thermal

ngerprints from PCA are built using (�). A comparison
between thermal data and PCA results in the case of four
selected French thermal 
ngerprints and with RSTwas below
��C, which yielded a good 
t between the observed RST
measurements and PCA results curves (Figures �(a) and
�(b)). 	e error distribution indicates that ��% of the error is
within a ±�.��C interval and ��% is within ±��C, con
rming
the ability of PCA to generate an accurate representation
of thermal 
ngerprints. 	e same PCA calculations were
performed with four UK thermal 
ngerprints (Figures �(c)
and �(d)), giving an error distribution of ��% within a ±�.��C
interval and �% a ±��C interval. A similar PCA calculation
was run for two thermal 
ngerprints of the UK route,
corresponding to a damped and an intermediate weather
situation. 	e error distribution indicated that ��% of the
error is within a ±�.��C interval and ��% is within ±��C for
only two thermal 
ngerprints. In the case of 
ve thermal

ngerprints on theUK route and 
ve corresponding ENTICE
outputs (Figure �(e)), nearly ��% of the error is within ±��C
and roughly �% is within ±��C (Figure �(f)).

�.�. Spatial Forecasting Model. 	e previous section has
demonstrated the ability of PCA to obtain a representation
of RST at given temperatures. Next, the ability to build new
interpolated 
ngerprints RSTPCA interpolated from the results of
the PCA (RSTPCA) is investigated. Such an approach would
enable an improved veri
cation strategy for route based
forecasting or indeed a basic linear spatial forecasting model
in its own right. Figure  shows the di�erent RST (
eld
measurements and interpolated from PCA results using (�))
in France and the UK. Using separate testing 
ngerprints not
used in the PCA calculations, it appeared that �% of the
RST di�erence between statistically interpolated and actual
measurements is within a ±��C interval. However, in the
case of the French route, in a similar PCA con
guration but
with extreme and intermediate weather situations, the error
distribution indicates that only �% of the data is within a
±��C interval. Such di�erences can be explained by the nature
of the two study routes. 	e UK route has more thermal
variations than the French route, a consequence of distinct
land use types. 	is gives rise to a very distinctive thermal

ngerprint with very warm urban areas and cold rural areas
readily identi
able across the dataset.

�.�. Comparison with a Numerical Model Approach. Route
based forecasting was developed by Chapman et al. [�, �]
and is essentially an improved roadweather predictionmodel
(ENTICE) based around the 	ornes model [�], with an
added high resolution and site-speci
c spatial component to
predict local variations in RST over both time and space.	e
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F����� �: Results of PCA calculations ((a) and (c)) scores for the 
rst and second principal components; ((b) and (d)) variance as a function
of principal components for all thermal 
ngerprints for French and UK routes and for only � thermal 
ngerprints ((e) and (f)) for the UK
route.












