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Abstract 

Introduction: 

The introduction of multivariate statistical methods in the analysis of neuroimaging 
data allowed the generation of highly predictive models. These allow the 
differentiation of patients from healthy controls solely based on neuroimaging data. 
However there exist substantial heterogeneity in the reported accuracies making it 
difficult to evaluate the overall potential of these studies to inform clinical diagnosis. 

Methodology: 

We conducted a comprehensive literature search to identify all studies that used 
multivariate statistical methods to differentiate patients with schizophrenia from 
healthy controls based solely on neuroimaging data. A bivariate random-effects 
meta-analytic model was implemented to investigate diagnostic accuracy across 
studies. The robustness of the results as well as the effect of potentially confounding 
continous variables was investigated by moderator analysis. 

Results: 

Meta-analysis of the complete sample (n=36 studies, n=1525 patients, n=1536 
healthy controls) showed a sensitivity of 80.7% (95%-CI: 77.0 to 83.9%) and a 
specificity of 80.2% (95%-CI: 83.3 to 76.7%). Moderator analysis showed significant 
effects of age of patients (p=0.021), imaging modality (p=0.019) and stage of disease 
(p=0.003) on sensitivity as well as of positive-to-negative symptom ratio (p=0.028) 
and chlorpromazine equivalent (p=0.016) on specificity. 

Discussion: 

Our analysis indicate an overall sensitivity and specificity of around 80 % of 
neuroimaging-based predictive models for differentiating schizophrenic patients from 
healthy controls. However the diagnostic accuracy is affected by several potentially 
confounding factors such as the age of patients, their disease stage, previous 
medication as well as clinical symptoms.  
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Introduction 

Schizophrenia shows prevalence rates of 0.5-1% in the general population making it 
one of the leading factors of global disease burden (WHO, 2004). Diagnosis of 
schizophrenia is based on the psychiatrist‘s evaluation of patients’ reported 
symptoms and behaviour. Substantial efforts have been invested in identifying 
biomarkers that can potentially guide the diagnostic process and allow more accurate 
diagnosis than the current state-of-the-art. As an example, multiple functional1,2 
(Kambeitz et al., in press) and structural brain changes3–5 have been associated with 
schizophrenia. Even though these results indicate significant differences in e.g. brain 
structure between healthy controls and patients at the group level - there is a 
substantial overlap between groups. This makes brain changes unsuitable to guide 
diagnosis at the individual level. Therefore alterations in brain structure and function 
have not been successfully integrated into the diagnostic process as disease 
markers for the individual subject6–8. Traditional univariate or mass-univariate 
statistical approaches neglect the heavily interconnected nature of functional and 
structural brain data9. An increasing number of studies have applied novel 
multivariate statistical approaches to the analysis of brain alterations in patients with 
schizophrenia (e.g.10,11). The results indicate that a constellation of subtle structural 
or functional changes can be highly distinctive of schizophrenia-related brain change, 
even though each individual component might not. 

Most importantly multivariate statistical methods can provide predictive models that 
allow for the diagnostic classification of unseen individuals. This might open up the 
possibility of neuroimaging contributing to the clinical diagnostic process. For 
instance, support vector machines11, partial least squares analysis10,12, random 
forests13,14 and artificial neural networks15–17 have been shown to differentiate 
patients from healthy controls with diagnostic accuracies of up to 100% using 
neuroimaging data. However, these studies differ with respect to multiple aspects 
such as the demographic characteristics of the investigated populations, the clinical 
symptoms of the patient samples, the imaging modalities employed, the 
preprocessing of neuroimaging data prior to analysis, the statistical models as well as 
the evaluation scheme of the models’ performance. As a result, the diagnostic 
accuracy of the reported predictive models differ largely, making it difficult to evaluate 
the overall potential of these studies to inform clinical diagnosis. Little is known about 
which factors determine the success of neuroimaging-based predictive modeling. 
Some studies have compared two or more algorithms16–18. However, a systematic 
investigation of different imaging modalities or multivariate methods is still missing. 
No comparative reports exist on the relationship between clinical variables of the 
tested samples and diagnostic accuracies of neuroimaging-based predictive models. 
Age, gender, psychiatric symptoms or current medication represent potentially 
confounding variables, which might affect the diagnostic success of such models.  

Thus, to shed light on the potential application of multivariate models for disease 
classification, we conducted a meta-analysis of the performance of these models 
when applied to neuroimaging data of patients with schizophrenia and healthy 
controls, as measured by their overall diagnostic accuracy. Within this framework, we 
evaluated the potentially moderating impact of different clinical variables on the 
observed diagnostic accuracies. 

 



Methods 

Search and selection strategy 

The entire PubMed electronic database was searched from 1st January 1950 up to 
31st May 2013. Initially, studies were screened using a comprehensive search term 
[("support vector" OR "SVM" OR "classification" OR "categorization") AND ("MRI" OR 
"fMRI" OR "magnetic resonance" OR "imaging" OR "grey matter" OR "gray matter" 
OR "white matter" OR "DTI" OR "diffusion tensor imaging" OR "PET" OR “positron 
emission tomography” OR "SPECT" OR “single photon emission tomography”) AND 
("schizophrenia" OR "psychosis" OR "psychotic" OR "schizophreniform")]. 
Subsequently, all studies were screened according to the following criteria: To be 
included in the meta-analysis a paper needed to report results of a neuroimaging-
based multivariate classification model separating patients with schizophrenia from 
healthy controls. We included all available multivariate approaches such as support 
vector machines, random forests, discriminant analysis, logistic regression, neural 
networks as well as combinations thereof. Studies were included if the following 
measures of classification performance were available or if data was available that 
allowed the calculation of the following parameters: true positives (TP), true 
negatives (TN), false positives (FP), false negatives (FN). In case insufficient data 
was reported, authors were contacted via email to provide additional information 
regarding their published reports. In multivariate classification it is of high importance 
to apply some form of crossvalidation while estimating model parameters to avoid 
overfitting, which is associated with low generalizability (“avoid double dipping”19). 
Thus, only studies that applied crossvalidation (e.g. leave-one-out, n-fold, out-of-
bags) were included in the analysis. In some cases there were multiple published 
studies based on the same sample or with large overlap between samples. We 
verified sample overlap by contacting the corresponding authors. In order to avoid 
bias we excluded samples with large overlap (shared n>20%). The results of the 
literature search are presented in a flow-chart following the PRISMA guidelines20 
(see Supplementary Figure 1). 

 

Data extraction 

The main outcome measure was the diagnostic test performance of the different 
multivariate approaches for separating schizophrenic patients from healthy controls 
as measured by sensitivity (

), specificity (

), true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). The following 
additional information was extracted from all studies: names of the authors, year of 
publication, population characteristics of the healthy control and patient groups 
(group size, age, gender, antipsychotic use, diagnosis, symptom ratings), type of 
neuroimaging data (magnetic resonance imaging 'MRI', functional MRI 'fMRI', 
resting-state fMRI 'rsfMRI', positron emission tomography 'PET', single photon 
emission computed tomography 'SPECT', diffusion tensor imaging 'DTI', scanner 
type, resolution), characteristics of the employed preprocessing methodology, 
characteristics of the classification procedure (e.g. linear discriminant analysis, 



support vector machine) and characteristics of the crossvalidation procedure. Data 
extraction was performed by two authors separately (LKI, JK) to ensure accuracy and 
disagreements were discussed in a consensus conference. The QUADAS-2 
guidelines were used to assess study quality of all publication included in the present 
meta-analysis (see Supplementary Figure 2)21. 

 

Data analysis 

In studies of diagnostic test accuracy sensitivity and specificity are often negatively 
correlated and therefore pooling them in the context of a meta-analysis might lead to 
biased results22. Instead a bivariate approach23 and an approach based on a 
hierarchical summary ROC model (HSROC24) have been suggested to estimate 
diagnostic accuracy across studies. However, in most situations both approaches 
lead to identical results25. In the present analysis we implemented the approach by 
Reitsma et al.23. In this bivariate approach, log-transformed sensitivity and specificity 
are combined in one bivariate regression model while explicitly accounting for their 
correlation. It is assumed that sensitivity and specificity vary across studies due to 
differences in study populations, sampling errors, and differences in implicit 
thresholds applied to the data to separate patients from healthy controls. Thus a 
random-effects model is applied in order to account for between-study heterogeneity. 
As larger samples are associated with smaller sampling error and thus with more 
precise effect size estimates, the studies included in the meta-analysis are weighted 
according to their sample size. Results from the meta-analysis are presented in 
forest plots separately for sensitivity and specificity. Summary estimates for 
sensitivity and specificity are provided separately for MRI, for fMRI, for rs-fMRI 
studies as well as for all studies combined. We considered n=5 to be the minimum 
number of studies to justify a separate meta-analysis26. The robustness of the results 
as well as the effect of potentially confounding variables (e.g. age, gender ratio, year 
of publication) was investigated by adding moderator variables to the bivariate 
regression model. Publication bias was assessed via computation of log diagnostic 
odds ratios (logDOR) for all studies as suggested by Deeks et al.27. LogDOR are 
plotted against the effective sample size in order to create funnel plots27. Symmetry 
of funnel plots was investigated via visual inspection. All computations were 
performed using the R statistical programming language version 2.10.1328 with the 
package mada29. 

 

Results 

The initial literature search identified 397 studies of interest. After screening all 
studies and applying the inclusion criteria, 360 studies were excluded. Fan et al.30 
and Davatzikos et al.11 used overlapping samples. Only Fan et al.30 was included in 
the main analysis as it is the most recent report of this sample. For additional 
moderator analysis we included Davatzikos et al. as additional data was provided11. 
Between Liu et al.31 and Shen et al.32 there was an overlap of only 4 out of 32 
subjects. This was considered a minor overlap and both samples were included in 
the analysis. The final sample consisted of n=36 studies with of a total of n=1525 
patients with schizophrenia and n=1536 healthy controls. Among the included studies 
were n=19 studies using structural MRI, n=7 studies using rsfMRI, n=6 studies using 



fMRI, n=3 studies using PET and n=1 study using DTI to build predictive models (see 
Supplementary Table 1 for an overview of the characteristics of the included studies). 

For all studies combined there was a sensitivity of 80.7% (95%-CI: 77.0 to 83.9%, 
see Figure 1) and a specificity of 80.2% (95%-CI: 83.3 to 76.7%, see Figure 2). A 
summary ROC-curve of the included studies as well as the estimated summary is 
presented in Figure 3. Visual inspection of a funnel plot did not show evidence for a 
publication bias (see Supplementary Figure 3). Regression with year of publication 
did not show any effect on sensitivity (p=0.866) or specificity (p=0.812).  

There was no significant effect of gender ratio in patients or controls, illness duration, 
PANSS positive scores, PANSS negative scores or analysis method (SVM/LDA) on 
either sensitivity of specificity (all p > 0.1). There was a significant effect of age of 
patients on sensitivity (p=0.021) indicating better diagnostic accuracy in older 
patients (see Figure 4). There was no evidence for an effect of patient’s age on 
specificity (p=0.207) and no effect of age of the healthy controls on sensitivity 
(p=0.114) of specificity (p=0.494). There was a significant effect of positive-to-
negative symptom ratio on specificity (p=0.030), indicating higher specificity in 
patients with predominantly positive symptoms (see Figure 4). There was no effect of 
positive-to-negative symptom ratio on sensitivity (p=0.805). Comparing studies that 
investigate first-episode patients with patients in a chronic stage of schizophrenia, 
there was a significantly higher sensitivity in patients in a chronic stage (p=0.003, see 
Figure 4) but no effect on specificity (p=0.235). There was a significant effect of the 
chlorpromazin equivalent of the investigated samples on specificity (p=0.016) 
indicating higher specificity in subjects with higher dosis of medication (see Figure 4). 
Chlorpromazine equivalent did not effect sensitivity (p=0.06). When the structural 
MRI studies were analyzed separately the meta-analysis showed a sensitivity of 
77.3% (95%-CI: 72.7 to 81.3%) and a specificity of 78.7% (95%-CI: 82.3 to 74.5%). 
For the fMRI studies it showed a sensitivity of 81.4% (95%-CI: 67.3 to 90.2%) and a 
specificity of 82.4% (95%-CI: 90.5 to 69.6%). For only the rs-fMRI studies there was 
a sensitivity of 86.9% (95%-CI: 81.4 to 91.0%) and a specificity of 80.3% (95%-CI: 
88.1 to 69.2%). “Data source” was added as a moderating variable to the bivariate 
meta-analysis model to investigate significant differences between different data 
sources (MRI, fMRI, rs-fMRI). There was a significant difference (p=0.019) between 
the sensitivity of rs-fMRI and MRI studies, indicating higher sensitivity in rs-fMRI 
studies (see Figure 4). There was no significant difference in sensitivity and 
specificity between any other source of data (see figure). In order to investigate the 
potential effect of different multivariate approaches the data set was restricted to 
studies that applied support-vector machines (n=12) and discriminant analysis 
(n=13). The bivariate meta-analytic model no significant difference between DA and 
SVM studies regarding sensitivity (p=0.766) and specificity (p=0.801). 

 

Discussion 

We present a meta-analysis of a total of n=36 studies including n=1525 patients with 
schizophrenia and n=1536 healthy controls are presented. Our results indicate an 
overall sensitivity and overall specificity of around 80% of neuroimaging-based 
predictive models for differentiating schizophrenic patients from healthy controls. 
Similar results were obtained when analysis was restricted to individual imaging 
modalities (structural MRI, fMRI, or rs-fMRI). Also this finding was robust against the 
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inclusion of potential confounding factors such as year of publication and there was 
no evidence for a publication bias.  

Effect of age 

Interestingly, older age of the investigated subjects was significantly associated with 
higher sensitivity. While illness duration did not have a significant impact on 
diagnostic accuracy, there was a higher sensitivity in patients in a chronic stage of 
schizophrenia as compared to first-episode patients. These findings might result from 
more pronounced brain changes in older subjects with schizophrenia. In support of 
this previous studies report accelerated “brain aging” in schizophrenia potentially 
indicating a neurodegenerative process33–35. In addition this finding might result from 
secondary effects of the disease, not related to the underlying pathology but to 
environmental factors. Numerous studies report progressive brain changes to be 
associated with short-term36 and long-term37 antipsychotic treatment. Thus, 
pronounced brain changes and higher diagnostic accuracy of neuroimaging-based 
models in older patients might additionally result from long-standing antipsychotic 
treatment35,38,39. The investigation of antipsychotic treatment as a moderator in the 
present analysis indicated a potential effect of the current antipsychotic dose. 
However while older age was associated with a higher sensitivity, higher 
chlorpromazine equivalents was associated with higher specificity. 

 

Effect of psychotic symptoms 

Another interesting finding of the present analysis is the association between 
predominant positive symptoms and higher specificity of the neuroimaging-based 
diagnostic models. It has been reported that brain changes associated with 
schizophrenia are related to the extent of psychopathology as measured by psychotic 
symptom scales40,41. Similarly there seem to be differences in brain changes 
between schizophrenic patients with predominantly positive and predominantly 
negative symptoms42,43. This might seem counterintuitive as previous studies indicate 
larger brain structural abnormalities in patients with predominantly negative symptom 
symptoms42. However it might be the case that the pattern of gray matter alterations 
in patients with mainly positive symptoms - even if it is subtle – is more distinctive as 
compared to patients with negative symptoms and thus allows for greater diagnostic 
accuracy. It migth be hypothesized that patients with predominantely positive 
symptoms also received higher dosages of antipsychotic medication. Therefore the 
finding that positive symptoms are associated with higher diagnostic accuracy might 
be confounded by previous treatment. This is supported by the finding that 
chlorpromazine equivalent significantely affected specificity. Another more 
hypothetical explanation of the association between predominant positive symptoms 
and diagnostic accuracy might be related to the current, purely symptom-based 
diagnostic system, which forms the ground truth for fully supervised neuroimaging-
based disease classification. In this regard, greater homogeneity between clinical 
raters can be expected when they diagnose schizophrenia in full-blown psychotic 
patients as compared to patients with predominant negative symptoms, who are 
difficult to differentiate from patients with major or psychotic depression. Thus, 
predominant negative symptoms might be associated with higher neurobiological 
variability compared to the full-blown psychosis phenotype, which creates an area of 
diagnostic ambiguity for neuroimaging-based classification approaches. This would in 
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fact limit the maximal diagnostic accuracy that could be achieved by the 
neuroimaging-based predictive model. 

Differences between multivariate methods 

In our analysis there was substantial heterogeneity regarding the different statistical 
methods used to build the predictive models. The most frequent approaches were 
discriminant analysis and support vector machines, which were used by 26 out of 36 
studies (72%). Both approaches showed almost identical sensitivity and specificity. 
Three studies15–17 applied an artificial neural network model to structural MRI and 
PET data with slightly higher sensitivity (86 to 100%) and slightly higher specificity 
(85 to 100%). Two studies13,14 applied a random-forest approach to fMRI and MRI 
data. These studies report a slightly lower sensitivity (64 and 73%) and slightly lower 
specificity (83 and 74%) compared to other studies. However it needs to be noted 
that the comparison of different classification methods in the context of the present 
meta-analysis might be confounded by the characteristives of the investigated 
sample such as age, medication, symptoms and disease stage. Until today a 
systematic investigation of multiple classification algorythms is missing. 

Limitations of the presented study 

It needs to be noted that most of the published studies on neuroimaging-based 
predictive models for prediction of clinical diagnosis, largely focus on methodological 
details of the applied machine learning algorithms. This results from the fact that 
multivariate prediction of psychiatric diagnosis is a young research topic. Thus most 
studies aim at a ‘proof of concept’, showing that multivariate models are principally 
able to predict disease status. Another reason might be the availability of numerous 
competing algorithms. Most studies so far have tried to compare new techniques to 
previous ones while paying little attention to the systematic investigation of 
methodological factors within the same sample. 

On the other hand most studies provide only limited information regarding the 
investigated patients samples and their clinical characteristics. As pointed out by 
Deville et al.44, a detailed description of the patients’ disease status, symptoms, 
length and course of illness, current medication or comorbidities is crucial information 
to evaluate the potential of such a model to enter clinical practice. Also as pointed out 
by the results in the present meta-analysis, clinical factors such as age or symptoms 
affect diagnostic accuracy. As such some patient samples might be more suitable for 
the application of neuroimaging-based predictive models than others. This also has 
implications for the interpretation of neuroimaging-based predictive models. There 
are multiple confounding factors that are illness-related, but not causative, that might 
result in neurobiological differentiation. Thus in order to advance from a theoretical 
field of research to clinically applicable diagnostic methods, future studies should 
provide detailed information regarding their samples. Only in this way the applicability 
of multivariate methods in the clinic to various patient samples, subsamples or 
disease states can be evaluated. 

It must be noted that in the studies included in the present analysis only compared 
patients with schizophrenia to healthy controls subjects. This of course represents an 
enormous simplification of the every-day clinical diagnostic process. Clinicians not 
only need to differentiate patients from healthy individuals but also different 
psychiatric diagnoses as well as diagnostic subtypes from each other. Only few 
published studies until today have investigated the potential of neuroimaging-based 



predictive models to e.g. separate different patient groups. This research direction is 
critical as there is considerable doubt whether the current nosological constructs are 
subserved by distinct neurobiological signatures, or alternatively whether there exists 
a significant pathophysiological overlap between disease entities. A promising 
strategy to adress this issue might be the delineation of more homogenous patient 
subgroups within and across disease boundaries45 by means of unsupervised and 
semisupervised analysis methods. Apart from diagnosis, a central concern of 
clinicians is the prediction of functional outcome and treatment response. Future 
studies need to adress the question of how well neuroimaging-based predictive 
models generalize. In the studies included in the present analysis data has been 
aquired on one site using the same scanners and scanning sequences. Thus it is not 
clear if similar accuracy can be achieved for data from different sites or if a site-
specific classifier would be needed. However, we believe that the present results are 
encouraging and the potential of neuroimaging data to assist diagnosis and to 
become a part of day-to-day clinical routine should be further investigated.  
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Figure legends 

Figure 1: Forest plot of sensitivities for studies using MRI, fMRI, rsfMRI, rCBF-PET, 
F-DOPA-PET and DTI to diagnose schizophrenia. Summary estimates for sensitivity 
are computed using the approach described by Reitsma et al. (2005). 

Figure 2: Forest plot of specificities for studies using MRI, fMRI, rsfMRI, rCBF-PET, 
F-DOPA-PET and DTI to diagnose schizophrenia. Summary estimates for specificity 
are computed using the approach described by Reitsma et al. (2005). 

Table 1: Results from bivariate meta-analyses applying the approach by Reitsma et 
al. (2005). Positive LR, negative LR and DOR are estimated via MCMC 
(Zwindermann & Bossuyt, 2008). 

Figure 3: SROC curve of the Reitsma model with the summary sensitivity and false 
positive rate indicated in black as well as color-coded the sensitivity and false 
positive rate of the invidivual studies of different imaging modalities.  

Figure 4: Results from the moderator analysis: linear regression models with (A) 
chlorpromazin equivalent predicting specificity, (B) age of patients predicting 
sensitivity, (C) PANSS ratio predicting specificity and differences in sensitivity and 
specificity between (D) stages of illness and (E) imaging modalities. 
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