Search for electroweak production of supersymmetric particles in final states with two τ-leptons in \(\sqrt{s} = 13 \text{ TeV} \) pp collisions with the ATLAS detector

ATLAS Collaboration

DOI:
10.1007/JHEP05(2024)150

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
ATLAS Collaboration 2024, 'Search for electroweak production of supersymmetric particles in final states with two τ-leptons in \(\sqrt{s} = 13 \text{ TeV} \) pp collisions with the ATLAS detector', JHEP, vol. 2024, no. 5, 150. https://doi.org/10.1007/JHEP05(2024)150

Link to publication on Research at Birmingham portal
Search for electroweak production of supersymmetric particles in final states with two τ-leptons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector

The ATLAS collaboration

E-mail: atlas.publications@cern.ch

Abstract: Three searches for the direct production of τ-sleptons or charginos and neutralinos in final states with at least two hadronically decaying τ-leptons are presented. For chargino and neutralino production, decays via intermediate τ-sleptons or W and h bosons are considered. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of 139 fb$^{-1}$, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed and supersymmetric particle mass limits at 95% confidence level are obtained in simplified models. For direct production of $\tilde{\chi}_1^\pm \tilde{\chi}_1^-$, chargino masses are excluded up to 970 GeV, while $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ masses up to 1160 GeV (330 GeV) are excluded for $\tilde{\chi}_1^\pm \tilde{\chi}_2^0/\tilde{\chi}_1^\pm \tilde{\chi}_1^-$ production with subsequent decays via τ-sleptons (W and h bosons). Masses of τ-sleptons up to 500 GeV are excluded for mass degenerate $\tilde{\tau}_{L,R}$ scenarios and up to 425 GeV for $\tilde{\tau}_L$-only scenarios. Sensitivity to $\tilde{\tau}_R$-only scenarios from the ATLAS experiment is presented here for the first time, with $\tilde{\tau}_R$ masses excluded up to 350 GeV.

Keywords: Beyond Standard Model, Electroweak Interaction, Hadron-Hadron Scattering, Supersymmetry

ArXiv ePrint: 2402.00603
Contents

1 Introduction
2 ATLAS detector
3 Data and simulated event samples
4 Event reconstruction
5 General analysis strategy and event variables
6 Direct stau production
 6.1 Event selection
 6.2 Background estimate
7 Intermediate stau channel
 7.1 Event selection
 7.2 Background estimate
8 Intermediate Wh channel
 8.1 Event selection
 8.2 Background estimate
9 Systematic uncertainties
10 Results
 10.1 Direct stau production analysis
 10.2 Intermediate stau analysis
 10.3 Intermediate Wh analysis
11 Summary

The ATLAS collaboration

1 Introduction

Supersymmetry (SUSY) [1–7] postulates the existence of a bosonic (fermionic) partner for each fermionic (bosonic) particle of the Standard Model (SM), whose spin differs by one half unit from each corresponding SM particle. In models that conserve R-parity [8], the lightest supersymmetric particle (LSP) is stable and can be an excellent dark-matter candidate [9, 10].

In the simplified SUSY models considered in this article, the sector of SUSY particles with only electroweak interactions contains charginos ($\tilde{\chi}_i^\pm$, $i = 1, 2$, in order of increasing masses), neutralinos ($\tilde{\chi}_j^0$, $j = 1, 2, 3, 4$, in order of increasing masses), charged sleptons ($\tilde{\ell}$), and sneutrinos ($\tilde{\nu}$). Charginos and neutralinos are the mass eigenstates formed from linear
superpositions of the superpartners of the Higgs bosons and electroweak gauge bosons. The charged sleptons are the superpartners of the charged leptons and are denoted by subscripts reflecting the chirality of the SM partner fields, referred to as $\tilde{\ell}_L$ or $\tilde{\ell}_R$, respectively. The slepton mass eigenstates are a mixture of $\tilde{\ell}_L$ and $\tilde{\ell}_R$, and are labeled as $\tilde{\ell}_k$ ($k = 1, 2$ in order of increasing mass). In this work, the scalar superpartners of the left-handed τ-lepton ($\tilde{\tau}_L$) and right-handed τ-lepton ($\tilde{\tau}_R$) are assumed to be mass degenerate unless explicitly stated, and are referred to as “staus.” All SUSY scenarios considered in this publication conserve R-parity and the LSP is the $\tilde{\chi}_1^0$.

Although they are experimentally challenging, final states with τ-leptons are of particular interest in SUSY searches. Light sleptons could play a role in the co-annihilation of neutralinos in the early universe, and models with light stau decays into light neutralinos can shed light on the nature of dark matter [11]. Furthermore, should SUSY or any other physics beyond the Standard Model (BSM) involving leptons be discovered, independent studies of all three lepton flavors are necessary to investigate the coupling structure of the new physics, especially concerning lepton universality.

The first SUSY scenario considered is the direct production of stau pairs, either with mass degenerate or non-degenerate $\tilde{\tau}_{L,R}$, which decay directly into a τ-lepton and the LSP 100% of the time. The second scenario, referred to as the “Intermediate stau” channel, includes the production of mass-degenerate neutralinos and charginos, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ and $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, which decay into the lightest neutralino only through intermediate staus or τ-sneutrinos with equal branching fraction. The stau and sneutrino masses are assumed to be halfway between the $\tilde{\chi}_2^0/\tilde{\chi}_1^+$ and $\tilde{\chi}_1^0$ masses. The search for $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ production is separated into final states with two same-sign (SS) or opposite-sign (OS) τ-lepton pairs. The third SUSY scenario, referred to as the “Intermediate Wh” channel, is the direct production of mass-degenerate neutralinos and charginos, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, which decay via the lightest neutral Higgs boson (h), consistent with the SM Higgs boson with a mass of 125 GeV, a W boson and two neutralinos. In this case, the final state under consideration contains two hadronically decaying τ-leptons from the Higgs boson decay and one charged light lepton (e, μ) from the W boson decay. The light lepton may be the result of a $W \rightarrow \tau \nu$ decay where the τ-lepton decays leptonically. For all three searches presented in this publication, the final state includes two hadronically decaying τ-leptons, low jet activity and large missing transverse momentum, p_T^{miss}, from the neutralinos and neutrinos. Representative diagrams of the targeted signal processes can be found in figure 1.

Previous results from the ATLAS experiment have set exclusion limits at 95% confidence level on these SUSY models with the Run 1 and partial Run 2 data samples [12–15]. The CMS experiment also sets comparable exclusion limits [16–18]. This search extends the current ATLAS reach to higher chargino masses and smaller mass differences between $\tilde{\chi}_2^0/\tilde{\chi}_1^+/	ilde{\tau}_R$ and $\tilde{\chi}_1^0$ using the increased statistics of the full Run 2 data sample. It also achieves sensitivity to $\tilde{\tau}_R$ pair production scenarios for the first time from ATLAS, by introducing the use of machine learning algorithms.

The publication is structured as follows: the ATLAS detector is briefly introduced in section 2 followed by a description of the data and simulated samples used in section 3 and the reconstruction of events in section 4; the general analysis strategy is outlined in section 5, followed by the details of the Direct stau, Intermediate stau, and Intermediate Wh searches.
in sections 6, 7, and 8, respectively; the systematic uncertainties are discussed in section 9 and the results are presented in section 10, before conclusions are drawn in section 11.

2 ATLAS detector

The ATLAS experiment [19] at the Large Hadron Collider (LHC) is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4π coverage in solid angle. It consists of an inner tracking detector (ID) surrounded by a thin superconducting solenoid providing a 2T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The ID covers the pseudorapidity range $|\eta| < 2.5$. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range ($|\eta| < 1.7$). The endcap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements.

\[\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \]

up to $|\eta| = 4.9$. The muon spectrometer (MS) surrounds the calorimeters and is based on three large superconducting air-core toroidal magnets with eight coils each. The field integral provided by the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for triggering. A two-level trigger system is used to select events [20]. The first-level trigger is implemented in hardware and uses a subset of the detector information to accept events at a rate below 100 kHz. This is followed by a software-based trigger that reduces the accepted event rate to 1 kHz on average depending on the data-taking conditions. An extensive software suite [21] is used in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Data and simulated event samples

The data sample considered in this publication corresponds to 139 fb$^{-1}$ of proton-proton (pp) LHC collision data collected between 2015 and 2018 with the ATLAS detector, at a center-of-mass energy of 13 TeV. Data quality requirements are imposed to ensure that only events in which the entire ATLAS detector was functioning well are used [22].

Simulated events produced with several Monte Carlo (MC) event generators are used to predict yields for background contributions from SM processes and for possible SUSY signals. To account for pileup, all simulated events are overlaid with multiple pp collisions simulated with the soft QCD processes of PYTHIA 8.186 [23] using the A3 set of tuned parameters [24] and the NNPDF2.3lo leading-order (LO) parton distribution functions (PDFs) [25]. For all samples showered with PYTHIA 8, EVTGEN 1.2.0 [26] is used to simulate the decays of bottom and charmed hadrons. The simulated events are weighted such that the pileup conditions match those of the data and are required to satisfy the trigger selections. The response of the detector to particles is modeled with an ATLAS detector simulation [27] based on GEANT4 [28] for almost all SM background simulation. A few minor electroweak Z+jet processes with very small yields for these searches use a fast simulation based on a parameterisation of the performance of the ATLAS EM and hadronic calorimeters [29] and on GEANT4 elsewhere.

Final states with at least two hadronically decaying τ-leptons, low jet activity and a large p_T^{miss} are included in this analysis. As a result, SM background processes containing both real and misidentified τ-lepton final state contributions are considered. These backgrounds are summarised in the following paragraphs.

The production of top-quark pairs ($t\bar{t}$) and single top quarks in the Wt and s-channels is performed with POWHEG BOX v2 [30–33], with the NNPDF2.3LO PDF set at next-to-leading-order (NLO) in the Matrix element (ME) calculations and the ATLAS underlying-event tune A14 [34]. Electroweak t-channel single-top-quark events are simulated using the POWHEG BOX v2 event generator. The parton shower (PS), fragmentation, and the underlying event are simulated using PYTHIA 8.186 with the NNPDF2.3LO PDF set and a corresponding set of A14 tuned parameters. The top-quark mass is set to 172.5 GeV. The $t\bar{t}$ sample is normalized to the cross-section prediction at next-to-next-to-leading-order (NNLO) in QCD including the resummation of next-to-next-to-leading-logarithmic (NNLL) soft-gluon terms calculated using TOP++ 2.0 [35–41]. The cross-section for single-top-quark is computed for the Wt-channel at NLO in QCD with NNLL soft gluon corrections [42, 43], and to NLO
in QCD for the t- and s-channels. Top-quark pair production with an additional W or Z boson is calculated using aMC@NLO 2.2.2 \cite{44} at NLO in the ME calculations, while fragmentation and hadronization are simulated with PYTHIA 8.186. The underlying-event tune A14 is used with the NNPDF2.3lo PDF set, and the cross-sections are normalized using NLO predictions \cite{45,46}.

Events with $Z/\gamma^* \to \ell\ell \ (\ell = e, \mu, \tau)$ and $W \to \ell\nu$ produced in association with jets (including jets initiated by heavy flavor quarks) are simulated with SHERPA 2.2.1 \cite{47,48}. MEs are calculated for up to two additional partons at NLO and four additional partons at LO, using the Comix \cite{49} and OPENLOOPS \cite{50,51} generators and merged with the SHERPA PS \cite{52} using the MENLOPS prescription. The NNPDF3.0nnlo \cite{53} PDF set is used in conjunction with a dedicated PS tuning developed by the SHERPA authors. The W/Z+jets events are normalized using their NNLO cross-sections \cite{54}.

Fully leptonically and semileptonically decaying diboson and triboson samples (VV and VVV, where $V = W, Z$) are simulated with the SHERPA 2.2.1 and SHERPA 2.2.2 generator at NLO. In this setup, multiple matrix elements are matched and merged with the SHERPA parton shower based on Catani-Seymour dipole factorisation using the MENLOPS prescription \cite{55,56}. The virtual QCD corrections for matrix elements at NLO accuracy are provided by the OPENLOOPS library. Samples are simulated using the NNPDF3.0nnlo set, along with the dedicated set of tuned parton-shower parameters developed by the SHERPA authors.

Contributions from Higgs boson events produced by gluon-gluon fusion and vector-boson fusion are modeled using POWHEG BOX v2 with the NNPDF3.0nnlo PDF and showered using PYTHIA 8.186. Associated production of a Higgs boson with a vector boson and a Higgs boson in association with two top quarks are simulated using PYTHIA 8.186 and aMC@NLO, respectively. All Higgs boson samples are normalized to the cross-sections from ref. \cite{57}.

SUSY signal model samples are simulated to allow the interpretation of the search results in terms of SUSY parameters and use the ATLAS fast detector simulation. Signal samples are simulated using aMC@NLO 2.2.3 interfaced to PYTHIA 8.186 with the A14 tune for the PS modeling, hadronization, and underlying event. The ME calculation is performed at tree level and includes the emission of up to two additional partons. The PDF set used for the generation is NNPDF2.3lo. The ME-PS merging uses the CKKW-L \cite{58} prescription, with a matching scale set to one quarter of the mass of the pair of produced particles. Signal cross-sections are calculated with RESUMMINO v2.0.1 to NLO in the strong coupling constant, adding the resummation of soft gluon emission at next-to-leading-logarithm accuracy (NLO+NLL) \cite{59,60}. The nominal cross-section and the uncertainty are taken from an envelope of cross-section predictions using different PDF sets and factorisation and renormalization scales, as described in ref. \cite{61}.

4 Event reconstruction

After data quality requirements are applied, events with at least one reconstructed primary vertex \cite{62} are selected. A primary vertex is defined to have at least two associated charged-particle tracks with transverse momentum $p_T > 500 \text{ MeV}$ and be consistent with the beam spot envelope. If there are multiple primary vertices in an event, the one with the largest $\sum p_T^2$ of the associated tracks is chosen.
Jets are reconstructed from particle-flow objects calibrated at the EM scale [63] using the anti-k_t algorithm [64, 65] with a radius parameter of 0.4. Jet energies are corrected for detector inhomogeneities, the non-compensating response of the calorimeter, and pileup effects [66, 67]. The impact due to pileup is accounted for using a technique based on jet areas that provides an event-by-event and jet-by-jet correction [68]. Jets that are likely to have originated from pileup are not considered in the analysis [69]. Jets are required to have $p_T > 20$ GeV and $|\eta| < 2.8$, and events containing jets that are likely to have arisen from detector noise or cosmic rays are removed [70].

Jets containing b-hadrons (b-jets) are identified using the $DL1r$ algorithm [71, 72], a multivariate discriminant making use of track impact parameters and reconstructed secondary vertices. Candidate b-jets are required to have $|\eta| < 2.5$. A working point is used that has a p_T-independent b-tagging efficiency of 77% and light-jet (c-jet) rejection factor of 140 (4), based on studies using simulated $t\bar{t}$ events.

Electron candidates are reconstructed by matching clusters in the EM calorimeter with charged-particle tracks in the ID. Electrons are required to have $p_T > 25$ GeV, $|\eta| < 2.47$, and to satisfy the “loose” working point according to a likelihood-based identification algorithm detailed in ref. [73]. Muon candidates are reconstructed from MS tracks matching ID tracks; they are required to have $p_T > 25$ GeV and $|\eta| < 2.7$ and satisfy the “medium” quality criteria described in ref. [74]. Events containing a muon candidate with a poorly measured charge-to-momentum ratio of $q/p > 0.2$ are rejected. Events are required not to contain any candidate muon with large transverse (d_0) and longitudinal (z_0) impact parameter, $|z_0| > 1$ mm or $|d_0| > 0.2$ mm, to reduce contributions from those originating from cosmic rays. The efficiencies for electrons and muons to satisfy the reconstruction, identification, and isolation criteria are measured using samples of leptonic Z and J/ψ decays, and corrections are applied to the simulated samples to reproduce the efficiencies observed in data [73, 74].

The reconstruction of hadronically decaying τ-leptons is based on information from tracks in the ID and three-dimensional clusters in the EM and hadronic calorimeters. The τ-lepton reconstruction algorithm is seeded by jets reconstructed from topological clusters of energy deposits in the calorimeter and uses a looser requirement of $p_T > 10$ GeV and $|\eta| < 2.5$. The reconstructed energies of the hadronically decaying τ-lepton candidates are corrected from the local hadron topocluster scale to the τ-lepton energy scale, which is calibrated based on simulation and in situ measurements using $Z \rightarrow \tau\tau$ decays [75]. Hadronically decaying τ-lepton candidates are required to have one or three associated charged-particle tracks (prongs) and the total electric charge of those tracks must be ± 1 times the electron charge. To improve the discrimination between hadronically decaying τ-leptons and jets, electrons, or muons, multivariate algorithms are used [76]. A recurrent neural network discriminant is used to reject jets that do not originate from a hadronically decaying τ-lepton, with a “medium” or “tight” working point as described in ref. [77]. The medium (tight) working point has an efficiency of 75% (60%) for 1-prong τ-leptons and 60% (45%) for 3-prong τ-leptons, based on $\gamma^* \rightarrow \tau\tau$ MC simulation. The background rejection factor for the medium (tight) working point is 35 (70) for 1-prong τ-leptons and 240 (700) for 3-prong τ-leptons, based on dijet MC simulation. A boosted decision tree is used to discriminate 1-prong τ-leptons against electrons. This discriminant is built using information from the EM calorimeter and...
the tracking detector. This requirement has about 95% efficiency, and a rejection factor from 10 to 50 depending on the η range. The τ-leptons are required to have $p_T > 20\,\text{GeV}$ and $|\eta| < 2.47$, and must lie outside the transition region between the barrel and endcap calorimeters ($1.37 < |\eta| < 1.52$).

The MC simulation is corrected for differences in the efficiencies of the τ-lepton identification at both trigger and reconstruction level between data and simulation. For hadronically decaying τ-leptons originating from prompt gauge boson decays, the corrections are calculated with a tag-and-probe method in a sample of $Z \to \tau\tau$ events where one τ-lepton decays hadronically and the other leptonically into a muon and two neutrinos [78].

The measured p_T^{miss}, and its magnitude E_T^{miss}, is defined as the negative vectorial sum of the p_T of all identified jets, τ-leptons, electrons, photons, muons, and an additional soft term. The soft term is constructed from all tracks that are associated with the primary vertex but not with any identified particle or jet [79, 80].

To avoid the possible double counting of reconstructed objects, an overlap removal procedure is used, following these steps. The τ-leptons that are close to electron or muon candidates ($\Delta R < 0.2$, where $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}$) are removed, as are electrons that share a track with a muon. For electrons close to a jet ($\Delta R < 0.4$), the electron is removed, except when $\Delta R < 0.2$ and the jet is not b-tagged, in which case the jet is removed. Any remaining jet close to a muon or τ-lepton ($\Delta R < 0.4$) is removed.

5 General analysis strategy and event variables

Events for all scenarios are required to have at least two hadronically decaying τ-leptons. Different signal regions (SRs) are defined to target the specific SUSY scenario, using kinematic variables that provide a good signal-to-background separation, described in this section. For τ-leptons, kinematic variables are calculated from the visible decay products. The event selections and background estimates are described for Direct stau production SRs in section 6, for the Intermediate stau channel SRs in section 7, and for the Intermediate Wh channel SRs in section 8.

The main SM backgrounds are estimated by normalizing MC simulation samples to data in dedicated control regions (CRs): backgrounds resulting from non-prompt and misidentified leptons are derived from data, while sub-dominant backgrounds are estimated by using MC simulation only. To validate the modelling of the SM backgrounds, the yields and shapes of key kinematic variables are compared with data in dedicated validation regions (VRs). SRs are designed for the best expected sensitivity to the simplified SUSY signal models studied. Where appropriate, looser, or merged SRs are used to enhance discovery prospects or to set model-independent limits.

The observed number of events in the CRs and SRs are used in a combined profile likelihood fit to determine the expected SM background yields. The statistical interpretation of the results is performed using the profile likelihood method implemented in the HistFitter framework [81]. Systematic uncertainties are included as nuisance parameters in the likelihood fits and are assumed to follow a Gaussian distribution with a width determined from the size of the uncertainty. Correlations of systematic uncertainties between control and signal regions, and between background processes are taken into account with common nuisance
parameters. The fit parameters are determined by maximising the product of the Poisson probability functions and the constraints for the nuisance parameters.

To constrain the SM backgrounds normalized to data in CRs, a background-only fit is used. This uses the observed yields in the CRs with the expected SM contributions (other than multi-jet) in the CRs and SRs, and the corresponding background transfer factors described in section 6.2.1. The free parameters in the fit are the normalizations of the SM processes. To estimate the SM background in the SRs (or VRs), a combined fit is performed that includes the observed data in the CRs and SRs (or VRs) with the SM background estimates, and accounts for correlations between CRs and SRs (or VRs), as well as between background processes. The presence of BSM signal in any CR, SR, or VR is assumed to be zero in the combined and background-only fits.

To assess the possibility of the presence of any BSM events in each SR, a model-independent fit is used. This uses the observed yields in both the CRs and SRs with the SM background estimates to test whether any BSM events could be present in the SR. The presence of BSM signal in any CR is assumed to be zero in the model-independent fit. The significance of a possible excess of observed events over the SM prediction is quantified by the one-sided probability, \(p(\text{signal} = 0) \) denoted by \(p_0 \), of the background alone to fluctuate to the observed number of events or higher using the asymptotic formula described in ref. [82]. The upper limit on the visible cross-section of BSM events in an SR, \(\sigma_{\text{95 vis}} \), is also calculated, which includes the acceptance and efficiency effect of any BSM signal possibly present.

Finally, to assess the compatibility of the signal scenarios with the data observation, a model-dependent fit is used, which accounts for the SUSY signal in all CRs and SRs scaled by a floating signal normalization factor. The background normalization factors are also determined simultaneously in the fit. A SUSY scenario is rejected if the upper limit at 95% confidence level (CL) of the signal normalization factor obtained in this fit is smaller than the predicted cross-section of the scenario [83].

The following variables are used to discriminate SUSY signals from the SM background:

- \(m_T \), the transverse mass values obtained from a reconstructed lepton with the \(p_T^{\text{miss}} \), defined by

\[
m_T(p_T, p_T^{\text{miss}}) = \sqrt{2(||p_T||p_T^{\text{miss}}| - p_T \cdot p_T^{\text{miss}})},
\]

where \(p_T \) is the transverse momenta of the lepton. The transverse mass calculated using light leptons only (\(e \) or \(\mu \)) is denoted by \(m_{T,\ell} \).

- \(m_{T,\text{sum}} \), the sum of the transverse mass values of the two highest-\(p_T \) \(\tau \)-lepton candidates with the \(p_T^{\text{miss}} \). For Intermediate \(Wh \) scenarios, \(m_{T,\ell} \) is also added to \(m_{T,\text{sum}} \).

- \(m_{T,2} \), the “transverse mass,” which has a kinematic endpoint for events where two massive particles are pair produced, then each particle decays into a detected object (the lepton) and an undetected object (the neutralino) [84, 85]. It is defined as:

\[
m_{T,2} = \min_{q_T} \left[\max \left(m_T(p_{T1}, q_T), m_T(p_{T2}, p_T^{\text{miss}} - q_T) \right) \right],
\]

where \(p_{T1} \) and \(p_{T2} \) are the transverse momenta of the two leptons and \(q_T \) is the transverse vector chosen to minimise the larger of the two transverse masses. In this
case, q_T or $p_T^{\text{miss}} - q_T$ replaces p_T^{miss} in the calculation of m_T. In events with more than two τ-lepton candidates, the pair that maximises m_{T2} is used. Similarly, in the Intermediate Wh analysis, the pairing of $e\tau$, $\mu\tau$, or $\tau\tau$ that maximises m_{T2} is used. For $t\bar{t}$ and WW events, the m_{T2} distribution has a kinematic endpoint at the W boson mass, but the distribution for SUSY scenarios extends significantly beyond this endpoint if the mass difference between the produced SUSY particle and the $\tilde{\chi}_1^0$ is large. The $\tilde{\chi}_1^0$ is assumed to be massless in the calculation of m_{T2}.

- m_{eff}, the effective mass, is defined as the scalar sum of the E_T^{miss} and the p_T of the two highest-p_T τ-leptons. The effective mass for SUSY processes is typically higher than for SM processes.

- $\Delta R(\tau_1, \tau_2) = \sqrt{(\Delta \eta(\tau_1, \tau_2))^2 + \Delta \phi(\tau_1, \tau_2)^2}$, the angular distance between the two highest-p_T τ-leptons. An upper requirement on this variable is used to discriminate against back-to-back objects in SM events.

- $m(\tau_1, \tau_2)$: the invariant mass of the two highest-p_T τ-leptons. A similar variable is also used for the invariant mass of a τ-lepton and a muon, $m(\tau, \mu)$.

- $|\Delta \phi(\tau_1, \tau_2)|$: the absolute value of the difference of azimuthal angle around the z-axis between the two highest-p_T τ-lepton candidates. A similar variable is also used for the p_T^{miss} and τ-leptons, e.g., $|\Delta \phi(\tau, p_T^{\text{miss}})|$.

- $|\Delta \eta(\tau_1, \tau_2)|$: the absolute value of the difference of pseudorapidity between the two highest-p_T τ-leptons.

6 Direct stau production

The Direct stau analysis targets the production of $\tilde{\tau}_L \tilde{\tau}_L$ and $\tilde{\tau}_R \tilde{\tau}_R$, with the stau decaying into a τ-lepton and a $\tilde{\chi}_1^0$, as shown in figure 1(a). This analysis aims to improve upon previous results, particularly for moderate mass splittings between the stau and $\tilde{\chi}_1^0$, and for $\tilde{\tau}_R \tilde{\tau}_R$ production. Multiple Boosted Decision Trees (BDTs) are trained for sensitivity to different areas of the $\tilde{\tau} - \tilde{\chi}_1^0$ phase space. The event selection and BDT training are described in section 6.1, followed by the background estimate in section 6.2.

6.1 Event selection

Events are selected using an asymmetric di-τ trigger, where the first τ-lepton must satisfy $p_T > 95$ GeV and the second τ-lepton must satisfy $p_T > 60$ (75) GeV for 2015–2017 (2018) data-taking. The τ-lepton p_T thresholds applied are to ensure the trigger efficiencies are in the plateau region.

Four BDTs are trained using the LightGBM [86] package on four groupings of signal scenarios chosen for their different $\tilde{\tau}$ masses and $\Delta m(\tilde{\tau}, \tilde{\chi}_1^0)$. Events used in training have at least two OS medium τ-leptons, no electron, muon, or b-tagged jet candidates and satisfy loose selections on kinematic variables, as shown in table 1. Three BDT SRs (SR-BDT1, SR-BDT2, SR-BDT3) have two bins in their BDT score, while the fourth BDT has only one bin (SR-BDT4) due to the low statistics available. The binned regions are used for setting
Table 1. Summary of the selection requirements for the stau pair production SRs.

<table>
<thead>
<tr>
<th>Target scenario</th>
<th>(N) medium (\tau)</th>
<th>SR-BDT1</th>
<th>SR-BDT2</th>
<th>SR-BDT3</th>
<th>SR-BDT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (m(\tilde{\tau}))</td>
<td>(\geq 2)</td>
<td>(\geq 2)</td>
<td>(\geq 2)</td>
<td>(\geq 2)</td>
<td></td>
</tr>
<tr>
<td>Small (\Delta m(\tilde{\tau}, \tilde{\chi}_1^0))</td>
<td>(\in (0.73, 0.78))</td>
<td>(> 0.78)</td>
<td>(\in (0.78, 0.82))</td>
<td>(> 0.82)</td>
<td></td>
</tr>
<tr>
<td>Mid (m(\tilde{\tau}))</td>
<td>(\in (0.78, 0.82))</td>
<td>(> 0.82)</td>
<td>(\in (0.79, 0.86))</td>
<td>(> 0.86)</td>
<td></td>
</tr>
<tr>
<td>Large (\Delta m(\tilde{\tau}, \tilde{\chi}_1^0))</td>
<td>(\geq 120)</td>
<td>(\geq 120)</td>
<td>(\geq 120)</td>
<td>(\geq 120)</td>
<td></td>
</tr>
<tr>
<td>(\Delta \eta(\tau_1, \tau_2))</td>
<td>(< 4)</td>
<td>(< 4)</td>
<td>(< 4)</td>
<td>(< 4)</td>
<td></td>
</tr>
<tr>
<td>(\Delta R(\tau_1, \tau_2))</td>
<td>(= 2)</td>
<td>(= 2)</td>
<td>(= 2)</td>
<td>(= 2)</td>
<td></td>
</tr>
</tbody>
</table>

exclusion limits in simplified models, while inclusive regions that merge each of the two bins in the binned regions are used to enhance discovery prospects and set model-independent limits. The single-bin region, SR-BDT4, is unchanged when used for setting exclusion limits and model-independent limits. The events selected by the four BDT SRs significantly overlap, thus the SR with the best expected sensitivity is chosen for interpretations.

The BDT training uses inputs including \(E_T^{\text{miss}} \), the \(p_T \), and \(m_T \) of the two \(\tau \)-leptons, \(\Delta \phi(\tau_1, p_T^{\text{miss}}) \), \(\Delta \phi(\tau_2, p_T^{\text{miss}}) \), \(\Delta \eta(\tau_1, \tau_2) \), \(m(\tau_1, \tau_2) \), \(m_{\text{eff}} \), and \(m_{\text{Tsum}} \). Cross-validation is used with three equal folds for a training, validation, and test set. To improve the reliability of the background modelling during training, input variables are binned such that the statistical error on the MC simulated background is less than 30% per bin. Furthermore, the maximum depth of the individual decision trees is restricted to one so that each tree makes only one selection on a variable. To avoid over-fitting, early-stopping is used, where trees cease to be added during training if performance on the relevant validation set does not improve after ten trees. The fitting procedure is further constrained to avoid over-fitting by using regularisation techniques, where BDT2 and BDT4 use a higher amount of regularisation than BDT1 and BDT3, and consequently, BDT2 and BDT4 occupy a smaller fraction of the total BDT score range compared with the others.

6.2 Background estimate

The main backgrounds contributing to the Direct stau SRs are from multi-jet production with misidentified \(\tau \)-leptons, \(W \) and \(Z \) boson production in association with jets, multi-boson production, and events containing at least one top quark, referred to as \(\text{Top} \) background. Top
quark background events originate mostly from $t\bar{t}$ production in association with additional jets or an additional W or Z boson. The dominant SM backgrounds, W+jets, Z+jets, and top quark processes, are estimated by using MC simulation normalized to data in dedicated control regions. The multi-jet background yield is estimated from data using the so-called ABCD method, described below, and MC simulation is used for all other minor SM backgrounds. The normalization factors obtained from control regions are applied for backgrounds in the BDT training, as is the data-driven multi-jet estimate.

6.2.1 Multi-jet background estimate

Background events contain a combination of ‘real’ τ-leptons, defined as correctly identified τ-leptons, or ‘misidentified’ τ-leptons, which can originate from a misidentified light-flavor quark or gluon jet, an electron, or a muon. Selected events from multi-jet production contain mostly misidentified τ-leptons originating from misidentified jets.

The multi-jet contribution is estimated by using a data-driven ABCD method, which is common to both the Direct stau channel and the Intermediate stau channel described in section 7. Orthogonal regions are defined using two approximately uncorrelated discriminating variables, as shown schematically in figure 2. The number of multi-jet events in region D, N_D, can be calculated from that in region A, N_A, multiplied by the transfer factor $T = N_C/N_B$, where region D corresponds to one of the SRs and regions A–C are CRs. Intermediate VRs are defined to verify the reliability of the transfer factor obtained from the ABCD estimate and to estimate the systematic uncertainty from the residual correlation between the discriminating variables. Non-multi-jet SM contributions are subtracted from data in each region using MC simulation, and in the case of the Direct stau channel, the W+jets, Z+jets, and top quark backgrounds are subtracted after their normalization to data in their dedicated CRs.

The discriminating variables used here are the τ-lepton identification (“very loose” τ-leptons as described in ref. [77], that fail to meet either the medium criterion or OS requirement) and m_{T2} ($10 < m_{T2} < 20 \text{ GeV}$ for regions B and C, $20 < m_{T2} < 30 \text{ GeV}$ for regions E and F, $m_{T2} > 30 \text{ GeV}$ for A and D). The τ-lepton p_T thresholds to ensure high triggering efficiency are not applied, effectively lowering the τ-lepton p_T thresholds to the online thresholds of 80 GeV and 50 GeV (60 GeV) for 2015–2017 (2018) data-taking. This increases the statistics available and reduces the statistical uncertainty without affecting the transfer factor within statistical uncertainties.

Agreement between data and the estimated SM background is found in VR-F, within statistical uncertainties. A validation region (MJVR), with higher multi-jet purity and with the τ-lepton p_T thresholds applied (see table 2), is also checked. Good agreement is seen, as shown in figure 3, and a discussion of the systematic uncertainties of the total SM background can be seen in section 9. The correlation between the τ-lepton identification and the kinematic variables is verified by studying the variation of the transfer factor as a function of the kinematic variables used and is found to be negligible.

The signal contamination in a certain region is defined as the ratio of the number of signal events to the sum of the number of signal events and SM background processes. A significant signal contamination in SM CRs can affect the model-dependent fit and reduce the sensitivity to SUSY scenarios. Thus the CRs (and VRs) are designed to have negligible
signal contamination for the SUSY scenarios considered in this paper, particularly for the SUSY particle mass ranges not excluded by previous searches.

6.2.2 \(W+\)jets background estimate

The production of \(W+\)jets events with at least one misidentified \(\tau\)-lepton is an important background, composing up to 50\% of the expected SM background in the Direct stau SRs. To correct the misidentified \(\tau\)-lepton MC modelling and reduce the theoretical uncertainty from the \(W+\)jets background, dedicated control regions pure in \(W\) bosons decaying into \(\mu\nu\) (\(W\)CR) are used to normalize the \(W+\)jets MC estimate to data. Events are required to satisfy a single-muon trigger with increasing \(p_T\) thresholds of 21 – 27 GeV throughout data-taking to ensure the trigger efficiencies are in the plateau region [87]. Events must contain exactly one isolated \(\mu\) matching the trigger signature and one \(\tau\)-lepton with the same charge selection as the signal regions. The \(\tau\)-lepton is required to satisfy the medium ID criterion, but fail to meet the tight criterion, to allow future searches targeting direct stau production using one leptonically decaying \(\tau\)-lepton and one hadronically decaying \(\tau\)-lepton. The contribution from events with top quarks is suppressed by rejecting events containing \(b\)-tagged jets. The contributions from \(Z+\)jets, top-quark and multi-boson production are reduced with \(m_T\) requirements.

Thresholds on \(E_T^{\text{miss}}\) and lepton \(p_T\) are applied to select events with kinematics similar to the SR definition. Events in the WCR are selected by requiring all four BDT scores to be low, while the modelling is checked using a WVR with any one of the four BDT scores being high. The definitions of the WCR and WVR are given in table 2. The purity of the selection in \(W+\)jets events is around 83\% in the control and validation regions. The
Figure 3. The BDT score distributions for the Direct stau multi-jet background in MJVR after the background-only fit, showing the scores for (a) BDT1, (b) BDT2, (c) BDT3, and (d) BDT4. A reduced range of BDT2 in (b) and BDT4 score in (d) are shown as they populate only a narrow range of the full score allowed. Representative SUSY scenarios are overlaid for illustration. The hatched bands represent the combined statistical and systematic uncertainties of the total SM background. The lower panels show the ratio of data to the total SM background estimate.
Table 2.
The definition of the control and validation regions for the Direct stau channel.

<table>
<thead>
<tr>
<th>Process</th>
<th>W+jets</th>
<th>Multi-boson</th>
<th>Multi-jet</th>
<th>Inclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>WCR</td>
<td>WVR</td>
<td>TCR</td>
<td>TVR</td>
</tr>
<tr>
<td>Charge combination</td>
<td>OS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N medium τ</td>
<td>= 1</td>
<td>= 1</td>
<td>= 2</td>
<td></td>
</tr>
<tr>
<td>N tight τ</td>
<td>= 0</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>N e/μ</td>
<td>= 1 μ</td>
<td>= 1 μ</td>
<td>= 0</td>
<td></td>
</tr>
<tr>
<td>N b-jets</td>
<td>= 0</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td>single μ</td>
<td>single μ</td>
<td>asym. di-τ</td>
<td></td>
</tr>
<tr>
<td>$p_T(\tau_1)$ [GeV]</td>
<td>-</td>
<td>—</td>
<td>> 95</td>
<td></td>
</tr>
<tr>
<td>$p_T(\tau_2)$ [GeV]</td>
<td>-</td>
<td>—</td>
<td>> 65</td>
<td></td>
</tr>
<tr>
<td>$\max[p_T(\tau),p_T(\mu)]$ [GeV]</td>
<td>> 95</td>
<td>> 95</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>$\min[p_T(\tau),p_T(\mu)]$ [GeV]</td>
<td>> 60</td>
<td>> 60</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td>> 20</td>
<td>> 20</td>
<td>> 20</td>
<td></td>
</tr>
<tr>
<td>$m_{\tau,\mu}$ [GeV]</td>
<td>$\in (50,150)$</td>
<td>$\in (50,150)$</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>m_{τ_2} [GeV]</td>
<td>> 30</td>
<td>> 30</td>
<td>> 30</td>
<td></td>
</tr>
<tr>
<td>$m(\tau,\mu)$ [GeV]</td>
<td>> 120</td>
<td>> 120</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>$m(\tau_1,\tau_2)$ [GeV]</td>
<td>—</td>
<td>—</td>
<td>> 120</td>
<td></td>
</tr>
<tr>
<td>BDT score</td>
<td>All < 0.5</td>
<td>Any > 0.5</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

6.2.3 Z+jets background estimate

The production of Z+jets where the Z boson decays into two τ-leptons is an irreducible background in the Direct stau SRs, composing 7 – 50% of the total SM background. The Z+jets background is estimated by using MC simulation normalized to data in a control region, ZCR, which is similar to the SRs, but reverses the selection on $m(\tau_1,\tau_2)$. Events with signal contamination in the WCR and WVR is negligible due to the requirement of an isolated muon in these regions.
a low BDT4 score are selected to avoid overlap with the validation region for multi-bosons (section 6.2.5). A selection on the score for BDT1 is used to create an orthogonal validation region ZVR to check the modelling of the normalized Z+jets background. The purity of the selection in Z+jets events is around 85 – 90% in the control and validation regions. The definitions of the ZCR and ZVR are shown in table 2.

6.2.4 Top quark background estimate

Events containing one or more top quarks also contribute significantly to the total background in the Direct stau SRs at 7 – 30%. The top quark background is estimated by using MC simulation normalized to data in a control region, TCR, which, like the WCR, contains one isolated muon and one medium τ-lepton, but additionally requires a b-tagged jet. A validation region, TVR, is used to check the modelling of the top quark background in events closer to the signal regions with two medium τ-leptons and a b-tagged jet. The purity of the selection in top quark events is around 80 – 92% in the control and validation regions. The definitions of the TCR and TVR are shown in table 2.

6.2.5 Multiboson background estimate

Events with more than one SM W/Z boson are the dominant background in SR-BDT2 and SR-BDT4, with very small contributions from processes involving Higgs bosons in all SRs. These processes produce two real τ-leptons and E_T^{miss}, and this irreducible background is taken from MC simulation. The modelling is checked using two validation regions. The first targets multi-boson production (MBVR) using a similar selection to SR-BDT4 but with the selection on $m(\tau_1, \tau_2)$ reversed. The second is a more inclusive validation region (InclVR) that checks the overall background estimate strategy and the modelling of the BDT score distributions. The definitions of these regions are shown in table 2. The background estimate is seen to model the data well in these two regions and the agreement in the BDT score distributions in InclVR is shown in figure 4.

Overall, the background estimate strategy is seen to model the data well in all validation regions used for the Direct stau channel. The yields for the estimated SM background and data are shown in figure 5 after the background-only fit to data is applied, as described in section 10.

7 Intermediate stau channel

The Intermediate stau channel targets two different production mechanisms, mass-degenerate $\tilde{\chi}_1^+ \tilde{\chi}_2^0$ (C1N2) and $\tilde{\chi}_1^+ \tilde{\chi}_1^-$(C1C1), with decays into the lightest neutralino only through intermediate stau and τ-sneutrinos, as shown in figure 1(b) and figure 1(c). The C1N2 analysis is then sub-divided into final states where the two highest-\p_T \τ-lepton candidates have opposite sign (OS) charge (C1N2OS) or have same-sign (SS) charge (C1N2SS). The SRs are separated into low-mass (LM) and high-mass (HM) regions to target respectively low or high $\tilde{\chi}_1^+/\tilde{\chi}_2^0$ mass regions. The high-mass regions target SUSY scenarios with masses above that probed by the partial Run 2 result from the ATLAS Collaboration [14], and the low-mass regions target SUSY scenarios with smaller mass splittings. The event selections of C1C1, C1N2OS and C1N2SS analyses are described in section 7.1, and the background estimates are described in section 7.2.
Figure 4. The BDT score distributions for the Direct stau channel in InclVR after the background-only fit, showing the scores for (a) BDT1, (b) BDT2, (c) BDT3, and (d) BDT4. Representative SUSY scenarios are overlaid for illustration. The hatched bands represent the combined statistical and systematic uncertainties of the total SM background. Large uncertainties are seen in some bins due to a few highly weighted Z+jets MC simulation events migrating across bins when considering systematic variations. The lower panels show the ratio of data to the total SM background estimate.
Figure 5. Comparison of the observed and expected event yields in all VRs and SRs after the background-only fit for the Direct stau channel. Representative SUSY scenarios are overlaid for illustration. The hatched band represents the combined statistical and systematic uncertainties of the total SM background. The lower panel shows the significance of any difference between the data and total SM background estimate yields.

7.1 Event selection

The SRs are optimised by varying the kinematic selection criteria resulting in six SRs defined to cover LM and HM regions for C1C1, C1N2OS and C1N2SS channels. Events used in this channel must satisfy the same di-τ trigger described in section 6.1, or a combined di-$\tau+E_{T}^{\text{miss}}$ trigger. To ensure the trigger efficiencies are in the plateau region, events that satisfy the di-$\tau+E_{T}^{\text{miss}}$ trigger for 2015–2017 (2018) data sample must have a τ-lepton with $p_T > 50 (75)\,\text{GeV}$, a second τ-lepton with $p_T > 40\,\text{GeV}$ (both matching the trigger signature), and the reconstructed $E_{T}^{\text{miss}} > 150\,\text{GeV}$.

For the C1N2OS (C1N2SS) channels, events are required to have at least two medium τ-leptons with OS (SS), while for the C1C1 channel, events are required to have exactly two medium τ-leptons with OS. In the LM signal regions, SR-C1C1-LM and SR-C1N2OS-LM, at least one of the τ-leptons must satisfy a tighter identification criteria, referred to as a tight τ-lepton [77], to suppress quark or gluon jets misidentified as τ-leptons in the lower E_{T}^{miss} region. Additionally, $E_{T}^{\text{miss}} > 60\,\text{GeV}$ is required in these two SRs to further suppress background from misidentified τ-leptons.

To discriminate the SUSY signal events from SM background processes, additional requirements are applied, as outlined in table 3. Background processes producing τ-lepton pairs from low-mass resonances, or from Z or Higgs bosons, are suppressed using high $m(\tau_1, \tau_2)$ selections, while top quark processes are suppressed with a b-jet veto. Contributions from $t\bar{t}$ and WW events are reduced using lower bounds on m_{T2} and $m_{T\text{sum}}$.
Table 3. Summary of the selection requirements for the $\tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_1^0 \tilde{\chi}_2^0$ pair production SRs for the Intermediate stau channel.

<table>
<thead>
<tr>
<th>Trigger</th>
<th>C1C1-LM</th>
<th>C1N2OS-LM</th>
<th>C1N2SS-LM</th>
<th>C1C1-HM</th>
<th>C1N2OS-HM</th>
<th>C1N2SS-HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T^{miss} [GeV]</td>
<td>asymm. di-τ</td>
<td>di-τ + E_T^{miss}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N medium τ</td>
<td>$= 2$</td>
<td>≥ 2</td>
<td>≥ 2</td>
<td>$= 2$</td>
<td>≥ 2</td>
<td>≥ 2</td>
</tr>
<tr>
<td>N tight τ</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>Charge combination</td>
<td>OS</td>
<td>OS</td>
<td>SS</td>
<td>OS</td>
<td>OS</td>
<td>SS</td>
</tr>
<tr>
<td>N b-jets</td>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
</tr>
<tr>
<td>N jets</td>
<td>$-$</td>
<td>< 3</td>
<td>$= 3$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(\tau_1, \tau_2)</td>
<td>$</td>
<td>> 1.6</td>
<td>$-$</td>
<td>> 1.5</td>
<td>$-$</td>
</tr>
<tr>
<td>$m(\tau_1, \tau_2)$ [GeV]</td>
<td>> 120</td>
<td>> 120</td>
<td>$-$</td>
<td>> 120</td>
<td>> 120</td>
<td>$-$</td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td>> 60</td>
<td>> 60</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$m_{T_{\text{sum}}}$ [GeV]</td>
<td>$-$</td>
<td>$-$</td>
<td>> 200</td>
<td>> 400</td>
<td>> 400</td>
<td>> 450</td>
</tr>
<tr>
<td>m_{T_2} [GeV]</td>
<td>> 80</td>
<td>> 70</td>
<td>> 80</td>
<td>> 85</td>
<td>> 85</td>
<td>> 80</td>
</tr>
</tbody>
</table>

7.2 Background estimate

The dominant backgrounds in the Intermediate stau SRs are multi-jet production with misidentified τ-leptons, W+jets and Z+jets, multi-boson production, and top quark backgrounds. The multi-jet background accounts for 28–48% (<17%) of the total SM yield in high-mass SRs (low-mass SRs) for all three scenarios, while W+jets accounts for 4–16% of the total background. The multi-jet and W+jets background estimates are presented in section 7.2.1 and section 7.2.2, respectively, and use the same methods described in sections 6.2.1 and 6.2.2. A dedicated CR is used to estimate the top quark backgrounds for the SS final state, where misidentified τ-lepton contributions are a dominant source, as described in section 7.2.3.

Multi-boson production contributes mainly through events containing real τ-leptons resulting from WW and ZZ decaying into a $\tau\tau\nu\nu$ final state in C1C1 and C1N2OS scenarios, while in the C1N2SS scenario, the main process is WZ decaying into a $\tau\tau\nu\nu$ final state. The contribution from real τ-leptons exceeds 85–90% in Z+jets and diboson production. Additionally, the real τ-lepton contribution exceeds 80% in backgrounds containing top quarks in OS final states. The estimation of the Top, multiboson, and Z+jets backgrounds is described in section 7.2.4.

7.2.1 Multi-jet background estimate

The same approach for the multi-jet background estimate described in section 6.2.1 is used for the Intermediate stau channels, with the following changes. The sign of the electric charge of the two τ-leptons (OS or SS), and m_{T_2} and $m_{T_{\text{sum}}}$ are used to define the control regions and validation regions, as shown in table 4. In the C1C1 and C1N2OS scenarios, the m_{T_2} variable is used to distinguish the regions of the ABCD method, while $m_{T_{\text{sum}}}$ is used for the C1N2SS channel. In all validation regions and both sets of CR-B and CR-C, the events are required to satisfy a di-τ trigger, instead of the di-τ + E_T^{miss} trigger in the Intermediate stau channel.
|-------------------------|---------------|---------------|---------------|-------------
| C1C1-LM | m_{T2} [GeV]| ∈ (15,35) | ∈ (35,80) | > 80 \\
| | E_T^{miss} [GeV]| ∈ (10,150) | ∈ (10,150) | ∈ (60,150) \\
| C1C1-HM | m_{T2} [GeV]| ∈ (35,60) | ∈ (60,85) | > 85 \\
| | m_{Tsum} [GeV]| ∈ (100,300) | ∈ (200,400) | > 400 \\
| | E_T^{miss} [GeV]| > 50 | > 50 | > 150 \\
| C1N2OS-LM | m_{T2} [GeV]| ∈ (15,35) | ∈ (35,70) | > 70 \\
| | E_T^{miss} [GeV]| ∈ (10,150) | ∈ (10,150) | ∈ (60,150) \\
| C1N2OS-HM | m_{T2} [GeV]| ∈ (35,60) | ∈ (60,85) | > 85 \\
| | m_{Tsum} [GeV]| ∈ (150,300) | ∈ (200,400) | > 400 \\
| | E_T^{miss} [GeV]| > 50 | > 50 | > 150 \\
| C1N2SS-LM | m_{Tsum} [GeV]| < 100 | ∈ (100,200) | > 200 \\
| | $|\Delta \phi_{(\tau_1, \tau_2)}|$| < 1.5 | < 1.5 | > 1.5 \\
| C1N2SS-HM | m_{Tsum} [GeV]| ∈ (100,200) | ∈ (200,450) | > 450 \\
| | E_T^{miss} [GeV]| > 50 | > 50 | > 150 \\

Table 4. The definition of the ABCD regions for all channels in the Intermediate stau scenarios. Only those requirements that differ between the CRs/VRs and the SRs are listed.

to increase the statistics from the lower E_T^{miss} requirements. The offline $E_T^{miss} > 150$ GeV requirement is also removed. The di-τ trigger requires the identification of two hadronically decaying τ-leptons with transverse momenta exceeding the same set of thresholds for the di-$\tau + E_T^{miss}$ trigger, such that no bias on the τ-leptons is introduced.

The estimated SM background is found to agree with the data for the m_{T2} and m_{Tsum} distributions in the validation regions, as shown in figure 6. Several signal reference points targeting sensitivity to LM and HM SRs are also shown to highlight the small signal contamination in the VRs.

7.2.2 W+jets background estimate

The W+jets background is an important background for the Intermediate stau channel. A similar approach as in section 6.2.2 is used and definitions for the W+jet CRs and VRs (WCR and WVR) for OS/SS selections are shown in table 5. Top quark background events in the OS final state are labeled as “top-tagged” if they satisfy a dedicated selection; these events are vetoed in the WCR to suppress top quark background processes. Events are top-tagged using the contransverse mass variable m_{CT}, to identify events that are kinematically compatible with $t\bar{t}$ pair production. Furthermore, top-tagged events must have at least two jets and the scalar sum of the p_T of at least one combination of two jets and the two leptons in the event must exceed 100 GeV. The orthogonality of the WCRs and WVRs is ensured using $m_{T2}(\tau, \mu)$ selections. The purity of the selection in W+jets events is 73-85% in all W control and validation regions. The signal contamination in the WCR and WVR is negligible due to the requirement of a muon in the event.

The multi-jet contribution in the WCRs and WVRs is small and is estimated using the lack of correlation of the charge of the faked muon and τ-lepton in multi-jet production,
resulting in equal SS and OS lepton contributions. This is not the case for other processes like W+jets production, which is dominated by gu/gd-initiated processes that often give rise to a jet originating from a quark, the charge of which is anti-correlated with the W-boson charge. The contribution from multi-jet production in the WCRs and WVRs is estimated using data in regions selected with the same requirements as the CR/VR but requiring the electric charge of the two leptons to be different, i.e. SS for OS CR/VR, and OS for SS CR/VR. Event yields from SM processes other than multi-jet production are subtracted from the data in these regions using MC simulation, leaving only the multi-jet estimate, which is assumed to be equal to that in the CR/VR. Based on studies with simulated samples, a conservative systematic uncertainty of 100% is assigned to the estimate of the multi-jet event yield in the W+jets CRs and VRs.

Figure 6. The kinematic distributions of m_{T2} and $m_{T_{sum}}$ in the multi-jet background VR-F after the background-only fit for (a) SR-C1C1-HM (MJVR-C1C1-HM), (b) SR-C1N2OS-HM (MJVR-C1N2OS-HM) and (c) SR-C1N2SS-LM (MJVR-C1N2SS-LM), respectively. Representative SUSY scenarios are overlaid for illustration and scaled appropriately for improved visibility. The hatched bands represent the combined statistical and systematic uncertainties of the total SM background. The lower panels show the ratio of data to the total SM background estimate.
7.2.3 Top quark background estimate for C1N2SS

The top quark background in SR-C1N2SS-LM is very small (<1%) and mostly composed of two real \(\tau\)-leptons, and hence is estimated from MC simulation. However, the top quark background is a dominant contribution in SR-C1N2SS-HM and mostly consists of one or two misidentified \(\tau\)-leptons from \(tt\) and \(Wt\) production. To estimate this background in SR-C1N2SS-HM, a data-driven approach is used to normalize the top quark background MC simulation to data using a dedicated top-enriched CR (TCR-SS-HM) and validated in a top-enriched VR (TVR-SS-HM), described in table 5. The \(\tau\)-lepton identification working point was loosened to increase the statistics in these regions, while high \(E_T^{miss}\) is required to suppress the contribution from multi-jet processes. The top quark background purity in the top quark CR and VR for SR-C1N2SS-HM (TCR-SS-HM and TVR-SS-HM) is high and exceeds 83% in both regions.

<table>
<thead>
<tr>
<th>Process</th>
<th>Z + jets</th>
<th>Multi-bosons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>ZVR-OS-LM</td>
<td>ZVR-OS-HM</td>
</tr>
<tr>
<td>Charge combination</td>
<td>OS</td>
<td>OS</td>
</tr>
<tr>
<td>Trigger</td>
<td>asymm. di-(\tau)</td>
<td>di-(\tau) + (E_T^{miss})</td>
</tr>
<tr>
<td>(N) medium (\tau)</td>
<td>(\geq 2)</td>
<td>(\geq 2)</td>
</tr>
<tr>
<td>(N) tight (\tau)</td>
<td>(\geq 1)</td>
<td>(\geq 1)</td>
</tr>
<tr>
<td>(N) loose (\tau)</td>
<td>(\geq 2)</td>
<td>(\geq 2)</td>
</tr>
<tr>
<td>(N) (\ell/\mu)</td>
<td>(\geq 1)</td>
<td>(\geq 1)</td>
</tr>
<tr>
<td>(N) b-jets</td>
<td>(\geq 1)</td>
<td>(\geq 1)</td>
</tr>
<tr>
<td>(p_T(\tau)) [GeV]</td>
<td>(\geq 40)</td>
<td>(\geq 40)</td>
</tr>
<tr>
<td>(E_T^{miss}) [GeV]</td>
<td>(\geq 60)</td>
<td>(\geq 60)</td>
</tr>
<tr>
<td>(m_T(\tau_1, \tau_2)) [GeV]</td>
<td>(\geq 70)</td>
<td>(\geq 70)</td>
</tr>
<tr>
<td>(m_T) [GeV]</td>
<td>(\geq 70)</td>
<td>(\geq 70)</td>
</tr>
<tr>
<td>(m_T^{\text{miss}}) [GeV]</td>
<td>(\geq 180)</td>
<td>(\geq 180)</td>
</tr>
<tr>
<td>(m_T^{\text{miss}}) [GeV]</td>
<td>(\geq 60)</td>
<td>(\geq 60)</td>
</tr>
</tbody>
</table>

Table 5. The definition of the control and validation regions for the Intermediate stau channel.
7.2.4 Top, multiboson, and Z+jets background estimates

Additional irreducible SM backgrounds are estimated from MC simulation and checked in dedicated VRs. The top quark background contributions in OS final states are small and amount to about 7–14% of the total background in all SRs. Two regions enriched in top-quark events are defined to validate the top quark modelling in OS events, TVR-OS-LM and TVR-OS-HM for the low and high-mass SR kinematics, respectively, and are defined in table 5.

The Z+jets contribution is 16–21% of the total background in all OS SRs and mainly arises from $WW \to \tau\nu\tau\nu$ and $ZZ \to \tau\tau\nu\nu$ events. Over 96% of τ-leptons from Z+jets and multi-bosons events in the SRs are real. To validate the MC modelling and normalization of the Z+jets and multi-boson processes, four dedicated VRs are defined: ZVR-OS-LM ($MBVR$-OS-LM) is defined to validate Z+jets (multi-boson) MC modelling in the low-mass SRs, while ZVR-OS-HM ($MBVR$-OS-HM) is defined to validate the MC modelling in the high-mass SRs, as shown in table 5.

The purity of the selection in $t\bar{t}$ and Z+jets events is in the range of 81–99% in the respective validation regions, and the purity of the selection in multi-boson events is 41–68% in the OS $MBVR$s. The signal contamination in the VRs is small due to the b-jet requirement in the top-quark VRs and the $m(\tau_1,\tau_2)$ upper thresholds in the Z+jets and multi-boson VRs.

In the SS final state, the multi-boson background is estimated from MC simulation and validated in a dedicated VR, $MBVR$-SS, also defined in table 5. The selection is enriched in multi-boson production, resulting in a multi-boson purity of 73%.

The agreement between data and the SM prediction is shown in all validation and signal regions for the Intermediate stau channels in figure 7 after the background-only fit to data is applied, as described in section 10.

8 Intermediate Wh channel

The search for the production of mass-degenerate $\tilde{\chi}_1^\pm\tilde{\chi}_2^0$ decaying via an intermediate W and h boson, as shown in figure 1(d), is described in this section. The analysis targets the leptonic decay of the W boson to an electron or muon, and the decay of the Higgs boson to two OS τ-leptons. The event selection of the Intermediate Wh channel is described in section 8.1 and the background estimates are described in section 8.2.

8.1 Event selection

Events for the Intermediate Wh channel must have at least two hadronically decaying τ-leptons with OS and exactly one light lepton (e or μ). The selected light lepton must satisfy the signal electron or muon requirements described in section 4 and also satisfy the single electron or single muon trigger with a threshold of $p_T > 27$ GeV to ensure the triggering efficiency is in the plateau region. Two SRs are defined to cover low-mass (SR-Wh-LM) and high-mass (SR-Wh-HM) $\tilde{\chi}_1^\pm\tilde{\chi}_2^0$ production, with an overlapping selection, as shown in table 6. To set limits in a SUSY scenario, the SR with the best expected sensitivity is used. The invariant mass of the two τ-leptons, $m(\tau_1,\tau_2)$, is required to be compatible with the Higgs boson mass, while the b-jet veto and $|\Delta R(\tau_1,\tau_2)|$ requirements suppress the top quark and
Number of events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Data</th>
<th>SM Total</th>
<th>Multi-boson</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+jets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top quark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z+jets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higgs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-jet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\chi^0_1 \pm \chi^0_2 \rightarrow \ell \nu$ for low-mass and high-mass regions. The two SRs are not orthogonal.

Table 6. Summary of selection requirements for the SRs of $\tilde{\chi}^\pm_1 \tilde{\chi}^0_2$ pair production decaying into an intermediate Wh for low-mass and high-mass regions. The two SRs are not orthogonal.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>SR-Wh-LM</th>
<th>SR-Wh-HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>Single e or μ</td>
<td></td>
</tr>
<tr>
<td>N medium τ</td>
<td>≥ 2</td>
<td></td>
</tr>
<tr>
<td>N e/μ</td>
<td>$= 1$</td>
<td></td>
</tr>
<tr>
<td>Charge combination</td>
<td>OS</td>
<td></td>
</tr>
<tr>
<td>N b-jets</td>
<td>$= 0$</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(\tau_1, \tau_2)</td>
<td>$</td>
</tr>
<tr>
<td>$\Delta R(\tau_1, \tau_2)$</td>
<td>—</td>
<td>< 2.2</td>
</tr>
<tr>
<td>$m(\tau_1, \tau_2)$ [GeV]</td>
<td>$\in [90, 130]$</td>
<td>$\in [80, 160]$</td>
</tr>
<tr>
<td>m_{T2} [GeV]</td>
<td>> 100</td>
<td>> 80</td>
</tr>
<tr>
<td>$m_{T,\ell}$ [GeV]</td>
<td>—</td>
<td>> 80</td>
</tr>
<tr>
<td>m_{Tsum} [GeV]</td>
<td>—</td>
<td>> 450</td>
</tr>
</tbody>
</table>

8.2 Background estimate

The SM backgrounds for a final state with two hadronically decaying τ-leptons from a Higgs boson decay and one light lepton from a W-boson decay can be separated into two groups. The first group is composed of events with a real light lepton and two real τ-leptons,
and is dominated by multi-boson processes that are estimated by using MC simulation, as described in section 8.2.3. The second group includes processes with one or two τ-leptons from misidentified jets. Events with a single misidentified τ-lepton are dominated by events with a top quark, which is estimated by using MC normalized to data in a dedicated CR and described in section 8.2.2. Events with two misidentified τ-leptons are mostly from W+jets events and are estimated by using a data-driven technique — the fake factor method — as described in section 8.2.1. All other SM backgrounds are estimated directly from MC simulation. Overall, the dominant background contributions in both SRs are from top quark and multi-boson processes, and account for 89%–90% of the total background.

8.2.1 Misidentified τ-lepton background estimate

The W+jets process dominates the background with two misidentified τ-leptons, with less than 7% contribution from other processes. The fake factor method estimates all processes with two misidentified τ-leptons using a control data sample (FFCR) with τ-leptons that fail to meet the nominal τ-lepton identification requirement. This estimate is obtained as the product of the number of FFCR events and the fake factor (FF), which relates the number of events with looser τ-lepton candidates to the number where τ-leptons meet the nominal identification criteria.

To compute the FF, an anti-τ-lepton (\bar{T}) is defined that satisfies a looser set of identification criteria, but fails to meet the medium identification criteria of τ-leptons (T). The FF value is the ratio of T events to \bar{T} events. To estimate the two misidentified τ-lepton contributions, three control regions are defined using the identification criteria applied to the two highest-p_T τ-leptons: $T\bar{T}$, $T\bar{T}$, and $T\bar{T}$. The estimate of the contribution from processes with two misidentified τ-leptons (N_{fakes}) can be written as the product of the two fake factors (FF$^{\text{CR}}_{\tau_i}$) and the number of events from the $T\bar{T}$ region ($N_{T\bar{T}, \text{fake bkg}}$):

$$N_{\text{fakes}} = N_{T\bar{T}, \text{fakes}} \times \text{FF}^{\text{CR}}_{\tau_1} \times \text{FF}^{\text{CR}}_{\tau_2}, \quad (8.1)$$

where the individual fake factors for the two τ-leptons are written as:

$$\text{FF}^{\text{CR}}_{\tau_1} = \frac{N_{\text{data,TT}} - N_{\text{MC,TT}}^{\geq 1 \text{ truth } \tau}}{N_{\text{data,TT}} - N_{\text{MC,TT}}^{\geq 1 \text{ truth } \tau}} \quad \text{and}$$

$$\text{FF}^{\text{CR}}_{\tau_2} = \frac{N_{\text{data,TT}} - N_{\text{MC,TT}}^{\geq 1 \text{ truth } \tau}}{N_{\text{data,TT}} - N_{\text{MC,TT}}^{\geq 1 \text{ truth } \tau}}. \quad (8.3)$$

The contamination from events with at least one real τ-lepton ($N_{\text{MC}}^{\geq 1 \text{ truth } \tau}$) is estimated from MC simulation and subtracted when calculating the ratio.

The fake factors are calculated in a W-enriched control region (FFCR-Wh), which maximises available statistics by loosening kinematic selection requirements and remains orthogonal to the SRs by inverting the OS requirement, as summarised in table 7.

The fake factor dependencies on the parameters of the τ-leptons, such as the number of tracks, p_T and $|\eta|$, are studied and are found to be minimal except for the number of tracks (1-prong or 3-prong τ-leptons). The fake factors are measured in bins of p_T and $|\eta|$, separately for 1-prong and 3-prong τ-leptons, with the binning optimised based on the
Table 7. The definition of the fake factor control and validation regions, FFCR-Wh and FFVR-Wh, respectively.

<table>
<thead>
<tr>
<th></th>
<th>FFCR-Wh</th>
<th>FFVR-Wh</th>
</tr>
</thead>
<tbody>
<tr>
<td>N medium τ</td>
<td>—</td>
<td>≥ 2</td>
</tr>
<tr>
<td>N “very loose” τ</td>
<td>≥ 2</td>
<td>—</td>
</tr>
<tr>
<td>Charge combination</td>
<td>SS</td>
<td>OS</td>
</tr>
<tr>
<td>$N e/\mu$</td>
<td>= 1</td>
<td></td>
</tr>
<tr>
<td>N b-jets</td>
<td>= 0</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(\tau_1, \tau_2)</td>
<td>$</td>
</tr>
<tr>
<td>$m(\tau_1, \tau_2)$ [GeV]</td>
<td>> 20</td>
<td>$\in [40, 160]$</td>
</tr>
<tr>
<td>m_{T2} [GeV]</td>
<td>> 20</td>
<td>> 30</td>
</tr>
</tbody>
</table>

Figure 8. The distributions of (a) the highest-$p_T\tau$-lepton transverse momentum p_T^{τ} and (b) m_{T2} variables in FFVR-Wh after the background-only fit. The misidentified contribution with at least two misidentified τ-leptons (Mis-ID τ) is estimated from data using the fake factor method. Representative SUSY scenarios are overlaid for illustration. The hatched bands represent the combined statistical and systematic uncertainties of the total SM background. The lower panels show the ratio of data to the total SM background estimate.

available statistics. The fake factor for the two highest-$p_T\tau$-leptons is similar at around 0.4 (0.1) for the 1-prong (3-prong) τ-leptons. The fake factor estimate is validated in a misidentified τ-lepton dominated VR (FFVR-Wh) with a selection similar to the SR-Wh-LM with loosened selections on $m(\tau_1, \tau_2)$ and m_{T2}, as shown in table 7. The kinematic distributions in FFVR-Wh are shown in figure 8 and good agreement between data and SM prediction is observed.

8.2.2 Top quark background estimate

The top quark background is small in SR-Wh-HM and is accounted for in the estimate with the FF method since it is dominated by two misidentified τ-leptons. However, in SR-Wh-LM the top quark background is more important and is comprised mainly of $t\bar{t}$ events with one
Table 8. The definition of the top quark and multi-boson control and validation regions for the Intermediate Wh channel.

Multi-boson production is the dominant SM contribution in both the Intermediate Wh SRs. The main contribution is WZ production with both the bosons decaying leptonically, giving one light lepton and two real τ-leptons in the SRs. The selection on the invariant mass of the τ-leptons is lowered compared with the SRs, and an upper threshold m_{T2} of 80 GeV is required. The multi-boson purity is found to be 61% in $MBVR$-Wh. The good agreement between data and the SM prediction is shown in the validation and signal regions for the Intermediate Wh channels in figure 9.
Figure 9. Comparison of the observed and expected event yields in the TVRs and MBVRs and two SRs after the background-only fit. Representative SUSY scenarios are overlaid for illustration. The hatched band represents the combined statistical and systematic uncertainties of the total SM background. The lower panel shows the significance of any difference between the data and total SM background estimate yields.

9 Systematic uncertainties

Systematic uncertainties have an impact on the background and signal estimates in the control and signal regions. Uncertainties arising from experimental effects and theoretical sources are considered. The main sources of experimental systematic uncertainty in the SM background estimates include τ-lepton and jet energy calibrations and resolution, τ-lepton identification, systematic effects due to the presence of pileup events, and uncertainties related to the modelling of E_T^{miss} in the simulation. The uncertainties in the energy and momentum scale of each of the objects entering the E_T^{miss} calculation are estimated, as well as the uncertainties in the soft-term resolution and scale [89]. A variation in the pileup reweighting of the MC simulated event samples is included to cover the uncertainty in the ratio of the predicted and measured inelastic cross-section [90]. The uncertainty in the combined 2015–2018 integrated luminosity was measured to be 1.7% [91], obtained using the LUCID-2 detector [92] for the primary luminosity measurements.

Theoretical uncertainties affecting the main irreducible backgrounds W+jets, Z+jets, top quark processes, and dibosons, are estimated by varying the generator parameters: renormalization and factorisation scales, as well as PDFs, following the PDF4LHC recommendations [93]. Uncertainties due to the choice of renormalization and factorisation scales are included by varying the scales from their nominal values by a factor of two or one half — the two scale variations are taken as uncorrelated and the additional coherent up/down variation of the two scales is also considered. Additionally, cross-section uncertainties are assigned to be included in the normalization of the signal and the background processes taken directly from MC simulation.
Several sources of uncertainty are considered for the ABCD method used to determine the multi-jet background estimate for Direct stau channel and the Intermediate stau channel, they include: the correlation between the τ-lepton identification and the kinematic variables m_{T2}, the limited number of events in the CRs, and the subtraction of other SM backgrounds. The systematic uncertainty in the correlation is estimated by using the transfer factor from VR-E to VR-F instead of that from CR-B to CR-C. The systematic uncertainty in the non-multi-jet background subtraction in the control regions is estimated by considering the total uncertainties of the MC estimates of the non-multi-jet background in the CRs. The systematic uncertainty due to the limited number of events in the control regions is estimated by taking the statistical uncertainty of the event yields in these control regions. The statistical uncertainty from the data yields in every CR is propagated to the uncertainty on the background estimation in the SRs.

The different sources of uncertainty considered for the fake factor method used to determine the misidentified background with at least two misidentified τ-leptons in the Intermediate Wh channel are as follows. The fake factor values are varied up and down by their statistical uncertainties and the difference is used as a source of uncertainty. A further 30% systematic uncertainty in the subtracted MC processes is used as a conservative estimate on the systematic uncertainty from MC subtractions in the FFCR-Wh. The difference between the quark/gluon contributions in the fake factor control regions and signal regions was studied and found to be negligible compared with the uncertainties placed on the overall normalization and statistical contributions. The systematic uncertainties and their sizes in each SR are summarized in figure 10.

The dominant contributions of systematic uncertainties in all scenarios are mainly from the statistics of the MC samples, the normalization uncertainties of the multi-jet background, the τ-lepton identification and the energy scale, jet energy scale and resolution. In the Intermediate stau channel, uncertainties in the multi-jet estimate are also important. In the Direct stau and Intermediate Wh channels, multi-boson theory uncertainties represent a major contribution to the systematics.

10 Results

The results of the Direct stau, Intermediate stau, and Intermediate Wh channels are presented in this section as background-only combined fits to the control and signal regions, along with model-dependent and model-independent fits for BSM signal exclusion.

10.1 Direct stau production analysis

The expected and observed numbers of events in the Direct stau signal regions are shown in table 9, where the observations are consistent with the SM expectations. The distributions of the four BDT scores are shown in figure 11. All the SR-BDT strongly overlap and show a common deficit of significance $0.7 - 1.3\sigma$. For example, the single event in data selected by SR-BDT4 is also selected by the other three SR-BDT, while the four events in SR-BDT2 are also selected by SR-BDT3. The $W+$jets, $Z+$jets, and top quark backgrounds are normalized to data in their respective control regions, obtaining normalization factors of 0.93 ± 0.11, 0.91 ± 0.07, and 0.85 ± 0.05, respectively, as shown in table 10.
Figure 10. Summary of the total uncertainty in the predictions of the background event yields of each SR in the three search channels. The dominant systematic contributions are indicated by individual dashed/dot-dashed/dotted lines. The total uncertainty in each SR is denoted by the solid black line. For simplicity, the individual uncertainties are added in quadrature for each category, without accounting for correlations. Theoretical uncertainties in the multiboson MC simulation-based estimates are grouped under the “Multi-boson theory uncertainty” category, while the “Normalisation” category includes the statistical uncertainties of the data counts in the CRs and the uncertainty from the fitted normalization factors.

The model-dependent fits using the results from the signal and control regions are used to place exclusion limits at 95% CL on Direct stau production. SR-BDT4 has a low predicted yield, so 10,000 pseudoexperiments are used to calculate the exclusion limits. Since the four main SR-BDT overlap, the SR with the lowest expected CLs value for each signal scenario is used to set the limit, statistically combining the two bins each within SR-BDT1, SR-BDT2, and SR-BDT3 as two distinct regions. The exclusion limits for mass-degenerate \(\tilde{\tau}_{L,R} \) production are shown in figure 12(a), where stau masses up to 500 GeV are excluded for massless \(\tilde{\chi}_0^1 \). The limits are improved relative to previous results, particularly towards smaller \(\tilde{\tau}-\tilde{\chi}_0^1 \) mass splittings, as well as at higher \(\tilde{\tau} \) masses. The observed limits are stronger than the expected limit due to the small observed deficit. The feature in the observed limit around stau masses of 250 \(-\) 300 GeV is due to a transition from one SR-BDT to another being used to set the limit (a similar effect is also seen for figures 12(b)\(\sim\)12(c)).

The exclusion limits for \(\tilde{\tau}_L \) and \(\tilde{\tau}_R \) production separately are shown in figure 12(b) and figure 12(c), respectively. Similar improvements are seen in the sensitivity to \(\tilde{\tau}_L \) production as in the mass-degenerate case, with stau masses excluded up to 425 GeV. Sensitivity to \(\tilde{\tau}_R \) production is obtained for the first time at ATLAS, with masses excluded up to 350 GeV.

10.2 Intermediate stau analysis

The observed number of events in each SR and the expected contributions from SM processes are given in table 11. The contributions of multi-jet, W+jets and top quark events are
Figure 11. The BDT score distributions for the Direct stau channel after the background-only fit, showing the scores for (a) BDT1, (b) BDT2, (c) BDT3, and (d) BDT4, before the selections on the BDT scores are made. The black arrow depicts the BDT score selection for the SR-BDT. A few example SUSY scenarios targeted by each BDT are overlaid for illustration. The hashed bands represent the combined statistical and systematic uncertainties of the total SM background. The lower panels show the ratio of data to the total SM background estimate.
Table 9. Observed and expected numbers of events after the background-only fit in the signal regions targeting direct stau production. The uncertainties correspond to the sum of statistical and systematic uncertainties. The correlation of systematic uncertainties among control regions and among background processes is taken into account. The one-sided p_0-value, and the observed and expected 95% CL upper limits on the visible non-SM cross-section (σ_{vis}^{95}) from the model-independent fit are given for the unbinned SRs. Values of $p_0 > 0.5$ are truncated to $p_0 = 0.5$.

<table>
<thead>
<tr>
<th>SM process</th>
<th>SR-BDT1</th>
<th>SR-BDT1_bin0</th>
<th>SR-BDT1_bin1</th>
<th>SR-BDT2</th>
<th>SR-BDT2_bin0</th>
<th>SR-BDT2_bin1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-boson</td>
<td>6.6 ± 3.1</td>
<td>3.3 ± 1.9</td>
<td>3.3 ± 1.7</td>
<td>4.1 ± 2.0</td>
<td>1.7 ± 0.9</td>
<td>2.3 ± 1.2</td>
</tr>
<tr>
<td>W+jets</td>
<td>23 ± 10</td>
<td>12 ± 7</td>
<td>11 ± 4</td>
<td>1.6 ± 1.7</td>
<td>1.6 ± 1.6</td>
<td>0.09 ± 0.09</td>
</tr>
<tr>
<td>Top</td>
<td>7.8 ± 2.6</td>
<td>3.3 ± 1.7</td>
<td>4.5 ± 1.9</td>
<td>2.1 ± 1.2</td>
<td>1.0 ± 0.9</td>
<td>1.0 ± 0.7</td>
</tr>
<tr>
<td>Z+jets</td>
<td>7 ± 7</td>
<td>4 ± 4</td>
<td>2.8 ± 2.6</td>
<td>2.0 ± 0.9</td>
<td>1.6 ± 0.8</td>
<td>0.40 ± 0.20</td>
</tr>
<tr>
<td>Higgs</td>
<td>—</td>
<td>0.004 ± 0.006</td>
<td>—</td>
<td>0.02 ± 0.10</td>
<td>0.02 ± 0.13</td>
<td>0.004 ± 0.018</td>
</tr>
<tr>
<td>Multi-jet</td>
<td>4.6 ± 2.8</td>
<td>2.2 ± 1.6</td>
<td>2.4 ± 2.3</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 0.16</td>
</tr>
<tr>
<td>Observed</td>
<td>49 ± 15</td>
<td>25 ± 10</td>
<td>24 ± 8</td>
<td>10 ± 4</td>
<td>5.9 ± 2.8</td>
<td>3.9 ± 1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SM process</th>
<th>SR-BDT3</th>
<th>SR-BDT3_bin0</th>
<th>SR-BDT3_bin1</th>
<th>SR-BDT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-boson</td>
<td>4.6 ± 2.2</td>
<td>2.0 ± 1.2</td>
<td>2.5 ± 1.3</td>
<td>1.8 ± 1.0</td>
</tr>
<tr>
<td>W+jets</td>
<td>2 ± 2</td>
<td>2 ± 2</td>
<td>0.5 ± 0.5</td>
<td>< 0.7</td>
</tr>
<tr>
<td>Top</td>
<td>3.7 ± 1.3</td>
<td>2.7 ± 1.1</td>
<td>1.0 ± 0.9</td>
<td>0.16 ± 0.10</td>
</tr>
<tr>
<td>Z+jets</td>
<td>6 ± 4</td>
<td>1.9 ± 2.7</td>
<td>4.1 ± 2.6</td>
<td>0.2 ± 0.9</td>
</tr>
<tr>
<td>Higgs</td>
<td>0.13 ± 0.15</td>
<td>0.13 ± 0.19</td>
<td>0.001 ± 0.012</td>
<td>< 0.015</td>
</tr>
<tr>
<td>Multi-jet</td>
<td>< 1.1</td>
<td>< 1.0</td>
<td>< 0.26</td>
<td>0.20 ± 0.28</td>
</tr>
<tr>
<td>Observed</td>
<td>17 ± 7</td>
<td>9 ± 6</td>
<td>8.2 ± 3.3</td>
<td>2.4 ± 1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SM process</th>
<th>$m(\tilde{\tau}, \tilde{\chi}_1^0) = (80, 1)$ GeV</th>
<th>$m(\tilde{\tau}, \tilde{\chi}_1^0) = (400, 1)$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>11 ± 4</td>
<td>9.4 ± 1.4</td>
</tr>
<tr>
<td>Expected σ_{vis}^{95} [fb]</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Observed σ_{vis}^{95} [fb]</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 9. Observed and expected numbers of events after the background-only fit in the signal regions targeting direct stau production. The uncertainties correspond to the sum of statistical and systematic uncertainties. The correlation of systematic uncertainties among control regions and among background processes is taken into account. The one-sided p_0-value, and the observed and expected 95% CL upper limits on the visible non-SM cross-section (σ_{vis}^{95}) from the model-independent fit are given for the unbinned SRs. Values of $p_0 > 0.5$ are truncated to $p_0 = 0.5$.

scaled with the normalization factors obtained from the background-only fit. The multi-jet normalization with respect to the prediction from the ABCD method in all SRs is compatible with unity and has an uncertainty of 29–40% (4%), due to the small number of observed events in the multi-jet CR-A in C1C1 and C1N2OS (C1N2SS) scenarios. The W+jets normalization factor is measured to be 0.98 ± 0.12 (1.04 ± 0.09) in C1C1 and C1N2OS (C1N2SS) scenarios and the top quark background normalization factor is found to be 0.71 ± 0.11 in the C1N2SS scenario. The normalization factors are summarised in table 10.
Table 10. Normalization factors from the background-only fit in each scenario for the Direct stau, Intermediate stau, and Intermediate Wh channels. The normalization factors include corrections to the misidentified \(\tau \)-lepton efficiency in addition to the cross-section and acceptance effects.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Direct stau</th>
<th>Intermediate stau</th>
<th>Intermediate Wh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalization factor</td>
<td>(\tilde{\tau})</td>
<td>C1C1</td>
<td>C1N2OS</td>
</tr>
<tr>
<td>(\mu_{W+jets})</td>
<td>0.93 ± 0.11</td>
<td>0.98 ± 0.12</td>
<td>0.98 ± 0.12</td>
</tr>
<tr>
<td>(\mu_{Z+jets})</td>
<td>0.91 ± 0.07</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\mu_{Top})</td>
<td>0.85 ± 0.05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\mu_{Multi-jet})</td>
<td>—</td>
<td>1.0 ± 0.4</td>
<td>1.00 ± 0.29</td>
</tr>
</tbody>
</table>

Figure 12. The 95% CL exclusion contours for simplified models of (a) \(\tilde{\tau}_{L,R} \tilde{\tau}_{L,R} \) production, (b) \(\tilde{\tau}_L \tilde{\tau}_L \) production, and (c) \(\tilde{\tau}_R \tilde{\tau}_R \) production. The solid (dashed) lines show the observed (expected) exclusion contours. The band around the expected limit shows the ±1σ variations, including all uncertainties except theoretical uncertainties in the signal cross-section. The expected exclusion contour from the previous ATLAS result in ref. [15] is shown as a gray-filled contour in (a) and (b). The observed contour from LEP in refs. [94, 95] is shown as a brown-filled contour in (a).
Table 11. Observed and expected numbers of events for the background-only fit in the signal regions targeting chargino/neutralino production and decay via intermediate staus. The one-sided p_{0}-values, and the observed and expected 95% CL upper limits on the visible non-SM cross-section (\sigma_{vis}^{95}) from the model-independent fit are given.

The m_{T2} distributions of events in the signal regions are shown in figure 13. In all SRs, observations and background predictions are found to be compatible within uncertainties. The one-sided p_{0}-values, and the observed and expected 95% CL upper limits on the visible non-SM cross-section (\sigma_{vis}^{95}) are shown in table 11.
Figure 13. The kinematic distributions for the Intermediate stau channel after the background-only fit, showing the m_{T2} distribution in (a) SR-C1C1-LM, (b) SR-C1N2OS-LM, and (c) SR-C1N2SS-LM before the selection on m_{T2} is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration. The hashed bands represent the combined statistical and systematic uncertainties of the total SM background. The lower panels show the ratio of data to the total SM background estimate.

In the absence of a significant excess over the expected SM background, the observed and expected numbers of events in the signal regions are used to place exclusion limits at 95% CL using the model-dependent fit. SR-C1C1-LM and SR-C1C1-HM are statistically combined to derive limits on $\tilde{\chi}^+_1 \tilde{\chi}_1^-$ production, and SR-C1N2OS-LM, SR-C1N2OS-HM, SR-C1N2SS-LM and SR-C1N2SS-HM are combined to derive limits for the production of $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ and $\tilde{\chi}_1^+ \tilde{\chi}_2^0$. The exclusion limits for simplified models are shown in figure 14. Only $\tilde{\chi}^+_1 \tilde{\chi}_1^-$ production is assumed for figure 14 (a), whereas both production processes are considered simultaneously for the figure 14 (b) and (c). The C1N2SS channel contributes significantly to the combination in the lower mass regions where this channel does not contain significant SM backgrounds.

Chargino masses up to 970 GeV are excluded for decays into a massless neutralino in the direct production of chargino pairs. For production of chargino pairs of mass-degenerate charginos and next-to-lightest neutralinos, chargino masses up to 1160 GeV are excluded for
The observed number of events in the two SRs and the expected contributions from SM processes are given in table 12. The contribution of top quark background events is scaled with the normalization factor obtained from the background-only fit. The top quark background normalization factor is fitted to be 1.00 ± 0.14. Kinematic distributions of events in the signal regions are shown in figure 15. In all SRs, the observed number of events from

Figure 14. The 95% CL exclusion contours for simplified models of (a) \(\tilde{\chi}_1^+ \tilde{\chi}_1^- \) production, and of (b-c) \(\tilde{\chi}_1^\pm \tilde{\chi}_1 \) and \(\tilde{\chi}_2^0 \) production. The solid (dashed) lines show the observed (expected) exclusion contours. The band around the expected limit shows the ±1σ variations, including all uncertainties except theoretical uncertainties in the signal cross-section. The green curves are from the contribution of C1N2SS scenario, while the blue curves are from the contribution of C1C1 and C1N2OS scenarios, and the red curves are the combination of the channels. The gray solid area in (c) shows the forbidden area where \(m(\tilde{\chi}_1^0) > m(\tilde{\chi}_2^0) \).

... a massless neutralino. Both the limits apply to scenarios where the neutralinos and charginos decay solely via intermediate staus and \(\tau \)-sneutrinos. These limits significantly extend previous results [14, 18] in the high \(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \) mass region. The improvement at compressed and low \(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \) masses is mainly driven by the C1N2SS analysis.

10.3 Intermediate \(Wh \) analysis

The observed number of events in the two SRs and the expected contributions from SM processes are given in table 12. The contribution of top quark background events is scaled with the normalization factor obtained from the background-only fit. The top quark background normalization factor is fitted to be 1.00 ± 0.14. Kinematic distributions of events in the signal regions are shown in figure 15. In all SRs, the observed number of events from
Table 12. Observed and expected numbers of events for the background-only fit in the signal regions targeting chargino-neutralino production and decay via Wh. Expected event yields for a few SUSY reference points are also shown. The uncertainties correspond to the sum in quadrature of statistical and systematic uncertainties. The correlation of systematic uncertainties among control regions and among background processes is fully taken into account. The one-sided p_0-values, and the observed and expected 95% CL upper limits on the visible non-SM cross-section (σ_{vis}^{95}) from the model-independent fit are given.

<table>
<thead>
<tr>
<th>SM process</th>
<th>SR-Wh-LM</th>
<th>SR-Wh-HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-boson</td>
<td>1.85 ± 0.5</td>
<td>1.1 ± 0.4</td>
</tr>
<tr>
<td>Misidentified processes</td>
<td>1.4 ± 0.6</td>
<td>0.06 ± 0.03</td>
</tr>
<tr>
<td>Top quark</td>
<td>1.9 ± 0.6</td>
<td>0.04^{+0.06}_{-0.04}</td>
</tr>
<tr>
<td>Z+jets</td>
<td>0.05 ± 0.02</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>Higgs</td>
<td>0.13^{+0.99}_{-0.13}</td>
<td>0.06 ± 0.02</td>
</tr>
<tr>
<td>SM total</td>
<td>5.3 ± 1.4</td>
<td>1.3 ± 0.4</td>
</tr>
<tr>
<td>Observed</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

$m(\tilde{\chi}_1^\pm/\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (225, 75) \text{ GeV}$

σ_{vis}^{95} [fb]

Expected 0.05 [fb]
Observed 0.04 [fb]

Since no significant excess over the expected SM background is observed, the observed and expected number of events in the SRs are used to place exclusion limits at 95% CL using the model-dependent fit. The SR with the best expected limit from SR-Wh-LM and SR-Wh-HM is used to derive limits on $\tilde{\chi}_1^\pm/\tilde{\chi}_2^0$ production decaying via an intermediate Wh, and are shown in figure 16. The slightly weaker observed limits than expected for $\tilde{\chi}_1^\pm/\tilde{\chi}_2^0$ masses above 250 GeV are driven by the results in SR-Wh-HM, as seen in table 12. Chargino and next-to-lightest neutralino masses up to 330 GeV are excluded for a massless lightest neutralino.
Figure 15. The kinematic distributions for the Intermediate Wh channel after the background-only fit, showing (a) m_{T2} in SR-Wh-LM and (b) m_{sum} in SR-Wh-HM, before the selection on that kinematic is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration. The hashed bands represent the combined statistical and systematic uncertainties of the total SM background. The lower panels show the ratio of data to the total SM background estimate.

Figure 16. The 95% CL exclusion contours for simplified models of $\tilde{\chi}^\pm_1 \tilde{\chi}^0_2$ production decaying via an intermediate Wh. The solid (dashed) lines show the observed (expected) exclusion contours. The band around the expected limit shows the $\pm 1\sigma$ variations, including all uncertainties except theoretical uncertainties in the signal cross-section. The best expected limits for SR-Wh-LM and SR-Wh-HM are used.
11 Summary

Searches for direct τ-slepton (stau) production and direct wino pair production decaying via an intermediate stau or Wh with at least two hadronically decaying τ-leptons in the final state are presented. The searches use $139\,fb^{-1}$ of integrated luminosity of pp collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS detector from 2015 to 2018. Agreement between data and SM expectation is observed in all signal regions and the results are used to set limits on the visible cross-section for processes beyond the Standard Model. Exclusion limits at 95% CL are also placed on simplified models of direct stau production, excluding mass-degenerate $\tilde{\tau}_{L,R}$ up to 500 GeV, $\tilde{\tau}_L$ up to 425 GeV, and $\tilde{\tau}_R$ up to 350 GeV. The sensitivity to $\tilde{\tau}_R \tilde{\tau}_R$ production obtained here is the first time for this process reported by ATLAS, achieved with a Boosted Decision Tree for improved signal-background separation.

In the scenario of direct production of wino-like chargino pairs decaying into the lightest neutralino via an intermediate on-shell stau, exclusion limits are placed for chargino masses up to 970 GeV for a massless lightest neutralino. In the case of the associated production of pairs of charginos and of mass-degenerate charginos and next-to-lightest neutralinos, masses up to 1160 GeV are excluded for a massless lightest neutralino. These limits improve upon previous results by $340–400$ GeV, mainly due to an increased amount of integrated luminosity and improvements in the recurrent neural network τ-lepton identification. The sensitivity for more compressed mass scenarios is also improved by the addition of the same-sign τ-lepton channel. For pairs of degenerate charginos and next-to-lightest neutralinos decaying via intermediate W and h bosons, chargino and next-to-lightest neutralino masses up to 330 GeV are excluded for a massless lightest neutralino.

Acknowledgments

We thank CERN for the very successful operation of the LHC and its injectors, as well as the support staff at CERN and at our institutions worldwide without whom ATLAS could not be operated efficiently.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF/SFU (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [96].

We gratefully acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRSST, Morocco; NWO, Netherlands; RCN, Norway; MEIN, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; AARRS and MIZS, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation,
Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taipei; TENMAK, Türkiye; STFC, United Kingdom; DOE and NSF, United States of America.

Individual groups and members have received support from BCKDF, CANARIE, CRC and DRAC, Canada; COST, ERC, ERDF, Horizon 2020, ICSC-NextGenerationEU and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References

[37] P. Bärnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to $q\bar{q} \to t\bar{t} + X$, Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [inSPIRE].

- 44 -

Institute of Physics, Academia Sinica, Taipei; Taiwan

(a) E. Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi; (c) University of Georgia, Tbilisi; Georgia

Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece

International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan

Department of Physics, Tokyo Institute of Technology, Tokyo; Japan

Department of Physics, University of Toronto, Toronto ON; Canada

(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON; Canada

Division of Physics and Tonomaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan

Department of Physics and Astronomy, Tufts University, Medford MA; United States of America

United Arab Emirates University, Al Ain; United Arab Emirates

Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America

Department of Physics, University of Toronto, Toronto ON; Canada

Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan

Department of Physics and Astronomy, Tufts University, Medford MA; United States of America

Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany

Department of Physics, University of Warwick, Coventry; United Kingdom

Waseda University, Tokyo; Japan

Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel

Department of Physics, University of Wisconsin, Madison WI; United States of America

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany

Department of Physics, Yale University, New Haven CT; United States of America

Also Affiliated with an institute covered by a cooperation agreement with CERN

Also at An-Najah National University, Nablus; Palestine

Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America

Also at Center for High Energy Physics, Peking University; China

Also at Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki; Greece

Also at Centro Studi e Ricerche Enrico Fermi; Italy

Also at Centro Studi e Ricerche Enrico Fermi; Italy

Also at CERN, Geneva; Switzerland

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland

Also at Departament de Física de la Universitat Autònoma de Barcelona, Barcelona; Spain

Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece

Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel

Also at Department of Physics, California State University, Sacramento; United States of America

Also at Department of Physics, King's College London, London; United Kingdom

Also at Department of Physics, Stanford University, Stanford CA; United States of America

Also at Department of Physics, University of Fribourg, Fribourg; Switzerland

Also at Department of Physics, University of Thessaly; Greece

Also at Department of Physics, Westminster College, Santa Barbara; United States of America

Also at Hellenic Open University, Patras; Greece

Also at Institut Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany
Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria
* Also at Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir; Morocco
Also at Institute of Particle Physics (IPP); Canada
Also at Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar; Mongolia
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia
Also at L2IT, Université de Toulouse, CNRS/IN2P3, UPS, Toulouse; France
Also at Lawrence Livermore National Laboratory, Livermore; United States of America
Also at National Institute of Physics, University of the Philippines Diliman (Philippines); Philippines
Also at Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan
Also at Technical University of Munich, Munich; Germany
Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China
Also at TRIUMF, Vancouver BC; Canada
Also at Università di Napoli Parthenope, Napoli; Italy
Also at University of Colorado Boulder, Department of Physics, Colorado; United States of America
Also at Washington College, Chestertown, MD; United States of America
Also at Yeditepe University, Physics Department, Istanbul; Türkiye
Deceased