Objective Assessment of Cognitive Workload in Surgery
Almukhtar, Aws; Caddick, Virginia; Naik, Ravi; Goble, Mary; Mylonas, George; Darzi, Ara; Orihuela-Espina, Felipe; Leff, Daniel R

DOI: 10.1097/SLA.000000000006370

License: Creative Commons: Attribution (CC BY)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Objective Assessment of Cognitive Workload in Surgery: A Systematic Review

AUTHORS:

Aws Almukhtar MSc MRCSEd 1,2*, Virginia Caddick MRCS MA (Cantab) 2*, Ravi Naik MSc MRCS 2, Mary Goble MBChB BSc 2, George Mylonas PhD 2, Ara Darzi MD FRCS FACS FMedSci HonFREng FRS 2, Felipe Orihuela-Espina PhD 3**, Daniel R Leff FRCS PhD MS (Hons) 2,4**

AFFILIATIONS:

1Department of General Surgery, Imperial College Healthcare NHS Trust, St Mary’s Hospital, London, UK
2Department of Surgery and Cancer, Imperial College London, UK.
3 Department of Computer Science, University of Birmingham, Birmingham, UK.
4Department of Breast Surgery, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK

* Joint first author; **Joint senior author

Corresponding Author:

Mr Daniel R Leff
Reader in Surgery
Neuroergonomics & Perception Laboratory
Hamlyn Centre
Imperial College, London
Telephone: 07340102203
Email: d.leff@imperial.ac.uk
This work was supported by a National Institute for Health and Care Research (NIHR) fellowship

STRUCTURED ABSTRACT

Objective: To systematically review technologies that objectively measure CWL in surgery, assessing their psychometric and methodological characteristics.

Summary Background Data: Surgical tasks involving concurrent clinical decision-making and the safe application of technical and non-technical skills require a substantial cognitive demand and resource utilization. Cognitive overload leads to impaired clinical decision-making and performance decline. Assessing cognitive workload (CWL) could enable interventions to alleviate burden and improve patient safety.

Methods: Ovid MEDLINE, OVID Embase, the Cochrane Library and IEEE Xplore databases were searched from inception to August 2023. Full-text, peer-reviewed original studies in a population of surgeons, anesthesiologists or interventional radiologists were considered, with no publication date constraints. Study population, task paradigm, stressor, Cognitive Load Theory (CLT) domain, objective and subjective parameters, statistical analysis and results were extracted. Studies were assessed for a) definition of CWL, b) details of the clinical task paradigm, and c) objective CWL assessment tool. Assessment tools were evaluated using psychometric and methodological characteristics.

Results: 10790 studies were identified; 9004 were screened; 269 full studies were assessed for eligibility, of which 67 met inclusion criteria. The most widely used assessment modalities were autonomic (32 eye studies and 24 cardiac). Intrinsic workload (e.g. task complexity) and germane workload (effect of training or expertise) were the most prevalent designs investigated. CWL was not defined in 30 of 67 studies (44.8%). Sensitivity was greatest for neurophysiological instruments (100% EEG, 80% fNIRS); and across modalities accuracy increased with multi-sensor recordings. Specificity was limited to cardiac and ocular metrics, and was found to be sub-optimal (50% and 66.67%). Cardiac sensors were the least intrusive, with 54.2% of studies conducted in naturalistic clinical environments (higher ecological validity).

Conclusion: Physiological metrics provide an accessible, objective assessment of CWL, but dependence on autonomic function negates selectivity and diagnosticity. Neurophysiological measures demonstrate favorable sensitivity, directly measuring brain activation as a correlate of cognitive state. Lacking an objective gold standard at present, we recommend the concurrent use of multimodal objective sensors and subjective tools for cross-validation. A theoretical and technical framework for objective assessment of CWL is required to overcome the heterogeneity of methodological reporting, data processing, and analysis.
INTRODUCTION

Estimators of Cognitive Workload Load (CWL) have been found to be good predictors of psychomotor skill acquisition and task performance. As illustrated in Figure 1, multiple factors related to the task, the operator, and the operating environment affect CWL, and, by extension, surgical performance. At the operator level, increased CWL, brought on by short-term mental, emotional, or physical factors, or by long-term fatigue and burnout, which have increased significantly following the COVID-19 pandemic, may have a detrimental effect on performance, patient safety, the healthcare system, and the broader economy. Up to one-third of surgical errors can be attributed to fatigue and excessive workload; burnout is significantly associated with surgical errors. In a cognitively demanding environment, such as operating rooms, both high CWL states (cognitive overload), and inattention and environmental distraction of low CWL states (cognitive underload), can lead to errors and performance decline.

Historically, CWL assessment was limited to subjective methods. These retrospective self-report measures may introduce granularity, domain-specific constraints, and recall bias. By contrast, physiological (autonomic or neuroimaging) assessment of CWL offers the potential for objective assessment of workload in near-real-time and to detect changes in CWL as it occurs during an operation. As illustrated in Figure 2, these systems may improve surgical performance and patient outcomes by minimizing human error and ameliorating high workload. Prior systematic reviews in this area have failed to distinguish between ‘physiological stress’ and CWL in their design and have limited scope. Furthermore, no study has attempted to formally evaluate the diagnostic accuracy of each modality by comparing sensitivity and specificity. Supplemental Table 1, Supplemental
Digital Content 1, http://links.lww.com/SLA/F133, outlines key definitions and explanations of the main CWL objective assessment modalities as well as the Eggemier criteria.

METHODS

Study Design

We conducted a systematic review of randomized and non-randomized CWL assessment modalities in surgery, anesthesiology, and interventional radiology. Registered with ‘International Prospective Register of Systematic Reviews’ (PROSPERO; CRD42023358935), the review was undertaken in accordance with the Cochrane Collaboration Recommendations and reported in line with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines 27.

Data Sources

A search of Ovid MEDLINE, Ovid Embase, the Cochrane Library, and IEEE Xplore databases was undertaken from inception until August 2023.

Search Strategy

Medical Subject Heading (MeSH) and non-MeSH search terms encompassing ‘cognitive workload’, ‘objective measurement’, and ‘surgeons’ were combined using Boolean string logic. All studies relating to tasks within surgery, interventional radiology, and anesthesiology were considered for completeness. Supplemental Table 2, Supplemental Digital Content 1, http://links.lww.com/SLA/F133, outlines the full search terms.

Selection Process
Articles were uploaded onto Covidence (Veritas Health Innovation, Melbourne, Australia. Available at www.covidence.org) and subjected to title and abstract screening by two of three reviewers (A.A., R.N., and V.C.) independently. Inclusion criteria included any study published in English, investigating the appropriate specialty population, all study designs reporting an objective measure of CWL detection, and ensuring alteration of mental demand within the task paradigm. Conversely, if the study did not investigate surgeons, anesthesiologists, and interventionalists, or did not test and report objective CWL measurement, it was excluded. Full inclusion and exclusion criteria are outlined in Table 3 of the Supplemental Digital Content 1, http://links.lww.com/SLA/F133.

Data Collection Process and Quality Assessment

Data were extracted using an agreed data extraction template outlined in Table 4 of the Supplemental Digital Content 1, http://links.lww.com/SLA/F133. A Newcastle Ottawa scale (NOS) 28, was used to assess the methodological quality of studies (see supplemental content for both, Supplemental Digital Content 1, http://links.lww.com/SLA/F133). The NOS assesses the quality of non-randomized studies and has non-randomized and content validation for use in meta-analysis. Full-text review, data extraction, and quality assessment were undertaken by two of four reviewers (A.A., R.N., M.G., and V.C.) independently; disagreements were resolved by consensus and in discussion with senior authors (F.O.E and D.R.L) where required.

Primary Outcome

The primary outcome was to evaluate the diagnostic accuracy of different methods for CWL assessment in surgery. Diagnostic accuracy of each modality was inferred by calculating the sensitivity (calculated by dividing the number of true positives by the sum of true positives
and false negatives) and specificity (true negative/true negative + false positive). True and false negatives were categorised based on the following assumptions: (a) the task paradigm is designed to result in change in CWL (one of our inclusion criteria); (b) the reported subjective measure is gold standard.

Secondary Outcomes

The secondary outcomes were to identify an agreed definition for CWL, to identify the modalities used to objectively assess CWL in surgical tasks, and to compare the modalities according to the Eggemeier criteria – i.e., sensitivity, selectivity, diagnosticity, reliability, intrusiveness, implementation requirements, and operator acceptance 29.

RESULTS

Study Selection

A PRISMA flow diagram illustrating the systematic review process is provided in Figure 3. The initial searches yielded 10780 studies. 1776 articles were excluded as duplicates; a further 8784 were excluded following screening of abstracts. Of the 285 remaining, 16 were unable to be retrieved, leaving 269 studies which were subjected to full text screening, of which 58 studies met the inclusion criteria. A further 10 studies were identified upon bibliographic cross-referencing, resulting in 68 studies for final systematic review. One study, Dalveren et al 2018 (ii)30 was a retrospective analysis of a previously published experiment Dalveren et al 2018 (i)31 and included more parameters; thus, was counted as one study in the analysis. Heterogeneity in task paradigms, objective metrics, and reporting of results precluded a quantitative meta-analysis. 56 studies (13.4%) were deemed good quality 31-85, nine fair 86-94 and two poor 95, 96 (Table 5 of the Supplemental Digital Content 1,
http://links.lww.com/SLA/F133. Tables 6-8 in the Supplementary Digital Content 1, http://links.lww.com/SLA/F133 summarize a description of each paper including year of publication, setting, sample number, study design.

Primary and Secondary Outcomes

Of the 67 studies, 14 (20.9%) clearly defined CWL 35, 42, 54, 60, 61, 66, 69, 71, 73, 76, 80, 82, 90, 92; 23 (32.3%) referred to “workload principles” 31, 37, 39, 40, 50, 51, 59, 62-65, 68, 72, 75, 77, 81, 84, 85, 87, 93, 94, 96, 97; and 30 studies (44.8%) made no attempt to define CWL 32-34, 36, 38, 41, 43-49, 52, 53, 55-58, 67, 70, 74, 78, 79, 86, 88, 89, 91, 95, 98. Nine studies (13.4%) used CWL interchangeably with ‘stress’ 32-34, 36, 38, 41, 43-49, 52, 53, 55-58, 67, 70, 74, 78, 79, 86, 88, 89, 91, 95, 98.

39 studies (58.2%) 32-35, 37, 38, 41, 43-46, 49, 55, 57, 61-65, 67, 69, 73, 74, 76-82, 85-88, 90, 92-94, 96 used one or more subjective CWL assessment tools. NASA-TLX was the most widely reported (26 studies) 32, 34, 38, 41, 43, 44, 46, 49, 61, 65, 69, 74, 77-82, 85-88, 90, 92, 93, 96; 11 used SURG-TLX 33, 35, 45, 55, 57, 62-64, 67, 73, 94; three used the Borg Scale 44, 61, 76; and one Likert Scale of perceived workload 37.

Table 9, Supplemental Digital Content 1, http://links.lww.com/SLA/F133, summarizes the main study characteristics by modality.

Objective measurement of CWL

For each modality (e.g. ocular), we identified multiple parameters (e.g. gaze, pupillometry, saccade) and numerous metrics within each respective parameter (e.g. saccade number, duration, velocity, amplitude, and length). Seven parameters were identified within 33 ocular studies. These included pupillometrics 31, 35, 38, 39, 42, 47-51, 54, 57, 68, 70, 71, 74, 77, 78, 82, 84, 91, fixations 31, 34, 36, 38, 47-51, 57, 70, 71, 78, 79, 82, 83, gaze 36, 43, 44, 46, 77, 78, saccades 36, 38, 47, 50, 51, 70, 82, 98, blinks 34, 35,
area of interest (AOI) and indices. Table 10, Supplemental Digital Content 1, http://links.lww.com/SLA/F133, illustrates the diversity of individual metrics reported. The 24 cardiac studies were similarly diverse. Two studies employed hormonal assays, with conflicting findings on the detection of changes in CWL, while three studies utilized respiratory parameters, but only one illustrated an association between changes in respiratory rate and CWL. Consequently, respiratory and hormonal metrics were excluded from further analysis.

For neurophysiological metrics, a variety of hardware, configuration (channel, electrode numbers, and montage setups), and areas of interest were studied; 1-4, 93 electrodes were used for EEG and 16-40 optodes for fNIRS. All fNIRS studies reported change in oxygenated haemoglobin (ΔHbO2), six studies also reported changes in deoxygenated haemoglobin (ΔHHb) and one calculated ‘OXY’ (ΔHbO2 – ΔHHb). Analysis methods were the sole source of study heterogeneity for fNIRS. Certain investigators chose to pool data across the entire prefrontal cortex (PFC); others reported on individual channels, or by anatomical region of interest (ROI).

Formal methodological and psychometric evaluation: Comparison of metrics as CWL assessment tools

Deductive analysis was carried out against a methodological framework for evaluating CWL tools: the sensitivity, selectivity (i.e. specificity), diagnosticity, and reliability in reference to instrument validity; while intrusiveness, implementation, and acceptability were used to assess pragmatic utility. Table 11, Supplemental Digital Content 1, http://links.lww.com/SLA/F133, illustrates the Inductive analysis of task paradigm to
determine (a) which CLT domain (i.e., extraneous, intrinsic, germane, or uncontrolled) is responsible for the change in CWL and, (b) to determine whether the modality had detected the change in CWL.

I. Sensitivity

Table 12, Supplemental Digital Content 1, http://links.lww.com/SLA/F133 summarises the sensitivity of each modality (with and without the inclusion of multimodal studies), comparing against a “gold standard” subjective measure (NASA-TLX, SURG-TLX, and Borg Scale). Neurophysiological metrics were observed to have superior sensitivity compared to peripheral autonomic measurements. EEG and fNIRS demonstrated 100% and 80% sensitivity, respectively, in detecting the change in CWL compared to 90% and 76.2% in ocular and cardiac sensors, respectively.

When more than one objective modality was used (multimodal studies), sensitivity increased. Four fNIRS studies also reported cardiac metrics 41, 62, 64, 73 and one reported EEG metrics 75. When taking into account HF, LF and Mean HR, the sensitivity of fNIRS for detection increased to 87.5% 41. Similarly, the sensitivity of cardiac metrics increased to 85.1% when taking into account fNIRS data 64, 73 and EEG data 80. The sensitivity of ocular metrics increased to 92.86% when factoring in mean HR and HF/(HF+LF) 81.

Although EEG sensitivity was 100%, in the majority of studies only a single metric was found to be significant. Of the 14 studies, one found a single band frequency (beta) to be significant 65; three multiple band frequencies (theta, beta, and alpha) 72, 79, 93; seven composite scores 52, 59, 77, 80, 88, 90, 96; and three machine learning algorithms 60, 75, 92. All nine fNIRS
studies reported significant changes in ΔHbO2 with increased task CWL; eight of the nine fNIRS studies 53, 62-64, 73, 75, 97 were significant on post hoc analysis, with the exception of Crewther et al 41. More specifically, analysis by anatomical sub-region identified workload-related activations across the bilateral DLPFC and VLPFC 53, 62, 63, 73, 75.

With regards to peripheral autonomic sensors, time domain HRV was most sensitive to changes in workload. PNN50 61, 67, 87 and SDNN 61, 67, 87, 95 are sensitive to changes in CWL across all experiments, demonstrating 100% sensitivity. Conversely, the frequency domain metric, LF/HF ratio, used in seven experiments, had a sensitivity of only 50% 32, 41, 61, 67, 87, 89, 95. Mean heart rate was most widely employed (69.23% sensitivity); however, methods of computation varied significantly 32, 38, 40, 41, 55, 56, 61, 70, 71, 73, 76, 80, 81, 87, 89, 94. Ocular sensors revealed excellent sensitivity and were the most widely used metrics. Dwell time, saccade number, gaze velocity, and gaze entropy all showed 100% sensitivity.

II. Selectivity (i.e. Specificity)

The ability to detect changes in cognitive demand, as opposed to other variables (e.g. stress or physical workload) is paramount. The scarcity of false negatives meant that it was only possible to calculate the specificity for peripheral autonomic studies. For cardiac metrics, the specificity was only 50%; for ocular metrics, it was 66.7%.

III. Diagnosticity

Figure 4 and Table 11, Supplemental Digital Content 1, http://links.lww.com/SLA/F133, illustrate the distribution of the CLT domain and task paradigm. The majority investigated
only a single domain: 21 intrinsic, 33, 43, 46, 52, 54, 55, 61, 65, 67, 70, 72, 79, 82-84, 88-92, 95, 96, four extraneous, 56, 62, 63, 94, and 27 germane, 32, 35, 36, 38-42, 47, 48, 50, 51, 57, 58, 60, 66, 68, 71, 74, 75, 77, 78, 80, 85, 87. Three real-life studies, 45, 69, 86 were classified as ‘uncontrolled’ CLT domain: perfusionists performing cardiopulmonary bypass, 45, thoracic surgeries comparing open vs robotic-assisted, 86, and continuous recording throughout an operating list, 69. Studies investigating multiple CLT domains concurrently illustrated an ability to differentiate task load source or ‘diagnosticity’: intrinsic and extraneous, 73, intrinsic and germane, 31, 34, 37, 44, 52, 53, 59, 76, and extraneous and germane, 49, 64. Only one studied all three domains, 81. Five of 12 studies, 44, 52, 64, 73, 76 analyzed the separate domains individually. Of these, only three, 52, 73, 76 reported statistically significant objective findings for both domains studied: one multimodal study, 73 utilizing fNIRS and ∆HR; one EEG study, 52; and one cardiac (HR), 76.

IV. Reliability

Inferences regarding repeatability can be made by examining studies investigating the same CLT domain and task paradigm with the same metric (and ideally a similar device). For extraneous load, the effect of temporal demand on laparoscopic suturing was the only example. For cardiac data, mean HR results were conflicting, 64, 73, whereas three of four fNIRS studies (75%), 62, 63, 73 demonstrated similar time pressure effects upon ∆HbO2 (in line with subjective workload). Regarding intrinsic domain, although eight studied operating modality or equipment, 33, 44, 55, 65, 72, 73, 89, 98, no studies used comparable task paradigms or sensors. Task complexity was more widely studied. Two studies, 88, 90 used EEG during urological robotic procedures (i.e. lymph node dissection vs UVA), with both using ABM X1 devices and correlated composite EEG scores with NASA-TLX domains. Results were contradictory: the former found no significant correlation for extended lymph node dissection, whereas the latter did (r=-0.74, p=0.05). Conversely, for UVA, Guru et al, 88 reported a
correlation between EEG ‘workload’ and NASA-TLX (mental demand (-0.53; p=0.02),
temporal demand (-0.56; p=0.01), performance (-0.46; p=0.05), and frustration (-0.48;
p=0.04)); whereas Hussein et al 90 did not. Five studies 43, 54, 82, 84, 91 utilized ocular metrics to
compare increasing complexity of easy versus complex FLS tasks. Four studies 54, 82, 84, 91
used pupillometrics: two average rate of pupil diameter change 82, 91; one pupil diameter
change over a seven-second window 54; and one mean pupil diameter 84. All demonstrated
significant changes in ocular metrics in line with increasing workload. No repeatability data
was available for gaze entropy and velocity 43. For cardiac metrics, two studies evaluated the
stage of anesthesia 61, 76. Both studies found an increase in mean HR during the induction
phase compared to the maintenance phase (P<0.05).

Of the 26 studies examining the germane effect of expertise, no truly comparable repeatability
data could be obtained, primarily owing to differing sub-metrics and analytic approaches
used. Two studies 64, 75 examined the effect of expertise upon intracorporal knot-tying with
fNIRS; however, data analysis techniques varied. Modi et al 64 found significantly greater
(p<0.05) ΔHbO2 in the right DMPFC in self-paced suturing (channel 23) and B/LPFC when
suturing under a time-pressurized condition (channels 1, 11 and 19) in experts compared to
juniors or intermediate residents. Walia75 utilized a GLM analysis to identify error-related
processes. Experts demonstrated left DLPFC/frontal ΔHbO2 in keeping with activation,
together with global suppression of sensorimotor areas. Conversely, novices displayed
widespread frontoparietal and sensorimotor error-driven activation.
V. Intrusiveness

No definitive intrusiveness data were identified. Inferences regarding interference with the primary task can be made by examining the task paradigm setting: 46 were simulated \(^{31, 32, 34-39, 41-44, 46, 47, 49, 52-54, 57-60, 62-66, 68, 70, 71, 73, 75, 77-85, 87, 88, 91, 93, 96, 97}\) and 21 studies \(^{33, 40, 45, 48, 50-52, 55, 56, 61, 67, 69, 72, 74, 76, 86, 88-90, 92, 94, 95}\) were conducted in real-life clinical environments. Assessment of changes in cardiac physiology was most commonly employed in real-life studies and used in just over half of all reports (13/24 (54.2%)) \(^{33, 40, 45, 55, 56, 61, 67, 69, 76, 86, 89, 94, 95}\). The only neurophysiological modality used in the operating room was EEG (four of 14 studies (28.6%)) \(^{72, 88, 90, 92}\). Despite the ease of wearability of eye trackers, only four of 32 (12.5%) were trialed in real-life studies \(^{48, 50, 51, 74}\).

VI. Implementation requirements

Device setup, pre-test calibrations, and sampling frequency were poorly reported, and analytic techniques varied substantially. For the most used cardiac metric (Mean HR), Kennedy-Mets et al \(^{56}\) divided the continuous procedure recording into 18 five-minute segments, whilst Martin et al \(^{61}\) analyzed the data according to the stage of the procedure. Three of 14 (21.4%) EEG studies did not report any information regarding the band frequencies used or data units reported within results tables, or cite the processing algorithms applied. By comparison, the nine fNIRS studies provided detailed information regarding montage set-up, correction/filtering techniques employed, and algorithms used.

VII. Operator Acceptance

Operator perception of the validity and overall usefulness can be inferred from utility. Across the 32 studies identified, eye metrics were the most studied, followed by cardiac (24), EEG (14), and finally fNIRS (9).
DISCUSSION

This systematic review sought to assess the diagnostic accuracy of various modalities for measuring CWL objectively, and to establish a consensus on CWL definition to mitigate confusion with terms such as ‘stress’ - a broader physiological and psychological response to perceived challenges. Analyzing the literature through a robust theoretical framework and employing a meticulous methodological approach for quantitative modality comparison revealed superior sensitivity of neurophysiological metrics compared to autonomic metrics in detecting changes in CWL.

In the literature, CWL has been defined as “the level of overall mental effort exerted whilst undertaking a specific task”99. While this definition is unclear and subjective, it avoids using ambiguous terminology related to ‘stress’ (which should not be used interchangeably).

Although psychological stress can play a role in the overall CWL, evidently workload may increase in the absence of stress100. In light of this, CWL can be defined as the amount of cerebral resources, characterized by neuronal activation and energy utilisation, consumed in relation to engagement in a cognitive activity. Adopting this definition would set the foundation for quantifying CWL objectively, allowing the identification of overload or underload states, which might have detrimental implications on patients’ safety and surgeons’ performance4, 7-10.

Our analysis demonstrated the higher sensitivity of neurophysiologic modalities in detecting CWL. This is likely due to the intrinsic qualities of EEG and fNIRS, such as the capacity for direct measurement of neuronal activation and reduced susceptibility to external influences.
compared to autonomic measures. The temporal resolution and sampling rate directly measuring cerebral activity, permits real-time cognitive demand detection, and the use of Artificial Intelligence (AI) could further facilitate this process. Furthermore, whilst multimodal data analysis is more intricate, evidence from this review and other studies suggests it enhances the sensitivity for detection of changes in operator workload. Walia et al. integrated EEG and fNIRS to synergistically capture both high-temporal-resolution neuronal activity and cortical correlates of microstates, thereby providing a comprehensive assessment of CWL dynamics. This multimodal approach enhances the robustness and depth of insights into cognitive processes during various tasks, and contributes to a more nuanced understanding of workload-related neural phenomena. It is noteworthy that while EEG sensitivity was 100%, the heterogeneity of the reported metrics and the lack of unifying frequency band means this should be interpreted with caution.

Of the seven Eggemeier criteria, we argue that specificity (selectivity) is most salient: is the sensor actually measuring changes in surgeons’ workload? Physiological objective measures are closely interlinked with autonomic response and thereby heavily confounded by external and internal factors other than CWL (e.g. ambient light levels, drugs, and emotional states such as stress, anxiety, and tiredness). In this review, we demonstrated the high sensitivity for HRV metrics, such as SDNN for workload assessment; however, a recent review concluded that these metrics also correlate with anxiety and perceived stress differences based on STAI and PSS scores (rather than task-related CWL). Indeed, our analysis revealed that the specificity for cardiac and ocular systems was poor. In our view, neurophysiological systems offer a more direct and nuanced understanding of the workload imposed by a task compared to physiological measures linked to autonomic responses, which
can be confounded by internal (e.g. stress) and external (e.g. ambient light levels for pupillometrics) factors \(^{43, 48, 91}\).

Diagnosticity, i.e. distinguishing between sources of workload, is invaluable in understanding the specific cognitive demands imposed by different tasks, which would allow targeted optimizations to improve safety by mitigating cognitive challenges in specific domains. An excellent cross-section of task paradigms and CLT domains were identified. Both intrinsic \(^{33, 43, 46, 52, 54, 55, 61, 65, 67, 70, 72, 79, 82-84, 88-92, 95, 96}\) and germane load studies \(^{32, 35, 36, 38-42, 47, 48, 50, 51, 57, 58, 60, 66, 68, 71, 74, 75, 77, 78, 80, 85, 87, 93, 97}\) were prolific and investigated using a range of sensors. As illustrated in Figure 4, a substantial number of studies \(^{44, 52, 64, 73, 76}\) simultaneously investigated the effects of multiple CLT domains. Despite this, only five studies analyzed the effects of individual domains, giving limited diagnostic clarity. fNIRS, HR, and EEG all successfully distinguished source load \(^{52, 73, 76}\).

While the literature and modalities' evolution indicate operator acceptance, the absence of objective data in clinical settings underscores the need for such data to guide operators in choosing the most effective modality. Assessment of intrusiveness – an essential consideration in real-life clinical studies – suggests that peripheral autonomic sensors may be less intrusive than neurophysiology sensors, although this review lacks objective data to support this inference. The practical constraints of implementation involve numerous considerations, including instrumentation, software, and training. Despite technological developments, real-time data analysis is limited by clinical applications (e.g. ambient light, environmental distractions, and calibration) and the extensive processing requirements to enable interpretation. AI may play a pivotal role in overcoming these limitations \(^{60, 101}\). Advanced AI
algorithms can rapidly process complex data streams, and machine learning models can adapt to individual variations optimizing the accuracy of CWL assessments.

The studies identified in this review illustrate how CWL can be measured objectively, both in the simulated, and live operating room environments. The applications of these findings in surgery are numerous, including skill acquisition during surgical training, reducing surgical errors, and improving patient safety. By using objective workload data, surgeons can focus their training on specific areas where cognitive demand is high, leading to more targeted and effective training. Feedback on CWL in simulated environments can give novice surgeons insights into their workload in comparison to experts identifying opportunities to improve skill acquisition as well as developing a neural benchmark of competence. Furthermore, assessing and understanding the surgical team’s CWL can improve workflow and communication in the operating room, contributing to a more cohesive operating environment and increasing the efficiency of surgical procedures. Finally, the ambitious goal of acquiring real-time feedback on cognitive workload in live operating room environment may have substantial impact on patient safety. Feedback on overload may enable surgeons to make timely adjustments during surgery to maintain optimal performance and reduce the risk of errors. Additionally it may be used to assist senior trainers in gauging the level of cognitive burden of newly graduated operators in their transition to becoming independent operators.

This review advances the literature on the objective assessment of CWL in surgery by comprehensively analyzing diverse modalities – both autonomic and neurophysiologic. Unlike prior reviews of this field, the unique contribution of this review is the rigorous examination of psychometric and methodological aspects in the included studies, providing
quantitative nuanced insights into sensitivity, selectivity, diagnosticity, and reliability.

Furthermore, by addressing the ambiguity in the definition of CW, the review proposes a refined definition grounded in cerebral energy and resource consumption during tasks. The absence of a validated and standardized objective measure for CWL has been thus far ameliorated by the concurrent use of subjective tools such as SURG-TLX. While the goal is to move progressively away from subjective measures, using SURG-TLX enables cross-validation of objective metrics and exploration of relationships between perceived workload and objective data. Finally, adopting a framework for designing studies that assess CWL objectively (including collecting, processing, analyzing, and reporting data) is vital to reach real-time quantification of CWL.

CONCLUSIONS

Presently, there is no agreed definition of CWL and no validated objective measure of CWL. Our quantitative analysis demonstrates the superior sensitivity of neurophysiologic modalities, particularly EEG and fNIRS, in detecting CWL attributed to their direct measurement of neuronal activation and reduced susceptibility to external influences. A fundamental necessity within this developing field is the establishment of a framework that optimizes study design, allowing for robust comparisons by addressing the heterogeneity in methodological reporting, data processing, and analysis across modalities.

ACKNOWLEDGEMENTS

This work was supported by a National Institute of Health Research (NIHR) Fellowship.

CONFLICT OF INTEREST

The authors of this work declare no conflict of interest.
References

28 Stang. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology 2010; 25 (9).

Figure 1 Sources of CWL during surgical task performance:

Abbreviations: CWL, Cognitive Workload.

Establishing CLT domain of a clinical procedure and study task paradigms: a) INTRINSIC LOAD: the complexity of the task itself; b) EXTRANEOUS LOAD: distractions for the operator; c) GERMANE LOAD: the schema developed from previous processing to assist in task completion. CWL characterises the relationship between task demands and the operator’s finite information-processing resources; with increasing task difficulty, cognitive resources are depleted, and CWL increases.
Figure 2 Objective and subjective methods used for CWL assessment

Abbreviations: NASA-TLX, The National Aeronautics and Space Administration Task Load Index; SURG-TLX, The Surgery Task Load Index; ECG, Electrocardiography; EEG, Electroencephalography; fNIRS, Functional Near-Infrared Spectroscopy.

Different modalities are utilized in the attempts to assess CWL objectively. These can be categorized into autonomic metrics and neurophysiological metrics. In the surgical literature, the autonomic response to discernible changes in CWL can be detected by various cardiac (captured with ECG) and ocular metrics (captured with eye trackers), while the neurophysiological changes can be detected using EEG and fNIRS – modalities which detect neurological activity within a brain region. Please see eTable 1 for an outline of key definitions.
Figure 3 PRISMA flow chart outlining study identification means, screening process, and included and excluded studies.

Identification of studies via databases and registers:
- Records identified from Databases (n = 10780)
- Records screened (n = 9004)
 - Reports sought for retrieval (n = 285)
 - Reports assessed for eligibility (n = 269)
 - Reports excluded: Does not measure CWL (n = 115)
 - Abstracts (n = 58)
 - Wrong population (n = 9)
 - Not in English (n = 3)
 - Reviews (n = 3)
 - Case report (n = 2)
 - Letter (n = 1)
- Studies included in review (n = 68)

Identification of studies via other methods:
- Records removed before screening: Duplicate records removed (n = 1776)
- Records excluded (n = 8734)
 - Reports not retrieved (n = 16)
- Records identified from:
 - Citation searching (n = 10)

Identification of studies via other methods:
- Records identified from:
 - Citation searching (n = 10)
Figure 4 Venn diagram illustrating the distribution of studies by CLT domain, task paradigm and modality

For each CLT domain, the pie chart demonstrates the proportion of sensor modality use (orange for cardiac, yellow for eye, green for EEG, blue for fNIRS, and pink for multimodal). Such breadth of study designs prevented meaningful quantitative repeatability analysis due to the paucity of studies investigating the same CLT domain, task paradigm and sensor, and employing comparable data analysis techniques.