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Abstract: Inosine Acedoben Dimepranol (IAD), licensed for the treatment 

of cell-mediated immune deficiencies associated with viral infections, 

has been reported to impact a variety of immune parameters both in vitro 

and in vivo. Here we report the results from a clinical trial where 

multiple lymphocyte subsets - CD19+ B cells, CD3+ T cells, CD4+ T-helper 

cells, FoxP3hi/CD25hi/CD127lo regulatory T cells (Tregs), CD3-/CD56+ NK 

cells, and CD3+/CD56+ NKT cells - were, together with serum 

immunoglobulins and IgG subclasses, followed during 14 days of IAD 

administration to ten healthy volunteers; these selected from 27 

individuals pre-screened in vitro for their capacity to respond to IAD as 

gauged by increases in the percentage of Treg and / or NKT cells arising 

in PHA-stimulated cultures. While a transient spike and dip in Treg and 

T-helper fractions, respectively, was noted, the outstanding consequence 

of IAD administration (1 g po, qds) was an early and durable rise in NK 

cells. For half the cohort, NK cells increased as a percentage of total 

peripheral blood lymphocytes within 1.5 h of receiving drug. By Day 5, 

all but one of the volunteers displayed higher NK cell percentages, such 

elevation - effectively a doubling or greater - being maintained at 

termination of study. The IAD-induced populations were as replete in 

Granzyme A and Perforin as basal NK cells. The novel finding of IAD 

boosting phenotypically competent NK numbers in healthy individuals 

supports the drug's indicated benefit in conditions associated with viral 

infection and reinforces the potential for uplift where immune 

performance may be compromised. 

 

 

 

 



Highlights 
 
 Inosine Acedoben Dimepranol (IAD) is a licensed immuno-modulatory drug 

 IAD increases the proportion of Treg and NKT cells in vitro 

 A clinical trial was established to assess IAD impact in vivo 

 IAD in vivo promoted a rapid and durable rise in NK cells 

 The trial supports IAD’s indicated benefit in immuno-compromised individuals    
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Abstract 

Inosine Acedoben Dimepranol (IAD), licensed for the treatment of cell-mediated 

immune deficiencies associated with viral infections, has been reported to impact a 

variety of immune parameters both in vitro and in vivo. Here we report the results 

from a clinical trial where multiple lymphocyte subsets – CD19+ B cells, CD3+ T 

cells, CD4+ T-helper cells, FoxP3hi/CD25hi/CD127lo regulatory T cells (Tregs), CD3-

/CD56+ NK cells, and CD3+/CD56+ NKT cells – were, together with serum 

immunoglobulins and IgG subclasses, followed during 14 days of IAD administration 

to ten healthy volunteers; these selected from 27 individuals pre-screened in vitro for 

their capacity to respond to IAD as gauged by increases in the percentage of Treg 

and / or NKT cells arising in PHA-stimulated cultures. While a transient spike and dip 

in Treg and T-helper fractions, respectively, was noted, the outstanding consequence 

of IAD administration (1 g po, qds) was an early and durable rise in NK cells. For half 

the cohort, NK cells increased as a percentage of total peripheral blood lymphocytes 

within 1.5 h of receiving drug. By Day 5, all but one of the volunteers displayed 

higher NK cell percentages, such elevation – effectively a doubling or greater – being 

maintained at termination of study. The IAD-induced populations were as replete in 

Granzyme A and Perforin as basal NK cells. The novel finding of IAD boosting 

phenotypically competent NK numbers in healthy individuals supports the drug’s 

indicated benefit in conditions associated with viral infection and reinforces the 

potential for uplift where immune performance may be compromised.  
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1. Introduction 

Inosine Acedoben Dimepranol (IAD) is a synthetic purine derivative comprising the p-

acetamidobenzoic acid salt of N, N-dimethyl-amino-2-propanol (DiP.PAcBA) and the 

β polymorph of the β anomer of inosine in a 3:1 molar ratio. Also known by its 

tradenames Immunovir, Isoprinosine, Viruxan, Inosiplex, Methisoprinol and Inosine 

Pranobex, IAD, currently registered in 43 countries worldwide, has been licensed 

since 1971 for the treatment of cell-mediated immune deficiencies associated with 

various viral infections including human papillomavirus (HPV), herpes simplex virus 

(HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV), and Epstein-Barr virus 

(EBV) [1]. IAD is also indicated for the treatment of measles virus-induced subacute 

sclerosing panencephalitis (SSPE) and post-viral chronic fatigue syndrome (CFS) [2; 

3].  

Over the four decades since its introduction, numerous in vitro and in vivo studies 

have been undertaken on IAD’s mode of action in both animals and humans. 

Depending on the models used, effects from IAD potentially compatible with its 

clinical indications have been assigned to a range of immune cell subtypes, 

functions, and effectors (e.g. cytokines, antibodies) [4-15]. Amongst these are 

studies demonstrating an ability of IAD to restore otherwise defective NK activity in 

various scenarios of immune compromise, including that associated with: HIV 

infection [16], uremia [17], chronic fatigue syndrome [3], and aging [18].     

The present study was designed to appraise the outcome of IAD administration to a 

cohort of healthy subjects, focusing on several of the major immune players with 

respect to the control of viral infections including, for the first time, an assessment of 

drug action on Treg and NKT subsets. Any modulation of immune parameters 

resulting from administering IAD to the healthy population should likely extend to 

similar outcomes in individuals with those chronic viral conditions for which IAD is 
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currently indicated. At the same time, studying IAD actions in normal healthy 

volunteers offers a steady (uniform) background on which to gauge any consensual 

change – irrespective of pathogenic state – that may result from its application while 

also having the potential to disclose benefits outside of and additional to current 

indications.    

 
 
2. Materials and Methods 

2.1. Pre-screen of healthy volunteers for competence to respond to IAD in vitro 

Venous blood from 27 healthy individuals was collected into K2 EDTA vacutainers® 

(BD, Oxford, U.K). Peripheral blood mononuclear cells (PBMC) were isolated by 

centrifugation on a layer of Ficoll Paque (GE Healthcare, Chalfont St Giles 

  Buckinghamshire, U.K). Cells were washed in RPMI media supplemented with 

antibiotics (Life technologies, Paisley, U.K) (penicillin 100 U/ml, streptomycin 100 

µg/ml) and resuspended at 1x 106 cells/ml in complete media supplemented with 

10% heat-inactivated FCS (Life Technologies, Paisley,  U.K), L-glutamine (Life 

Technologies, Paisley,  U.K) and antibiotics before stimulation with PHA–L 

(phytohemagglutinin-L; 5 µg/ml (Sigma-Aldrich, Gillingham,   Dorset, U.K)) in either 

the absence or presence of IAD (600 µg/ml) and incubated for 4 days at 37°C and 

5% CO2. The percentage Treg and NKT cells present in the recovered population 

was determined by immunophenotyping as below. 

2.2. Clinical trial  

The ten best responding donors from the pre-screen in vitro were entered into a 

Phase 1 Trial, receiving their first dose of IAD within 21 days of pre-screen. On Days 

1 to 13 of the trial, each of the ten volunteers received a 1 g IAD (po, qds). On the 

morning of Day 14, subjects received a single 1 g oral dose. Samples for serum 
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immunoglobulins and cellular immunophenotyping were taken prior to first dosing 

with IAD on Day 1 and following morning dosing on Days 1, 3, 5, 7, 10, and 14.  

2.3. PBMC isolation and lymphocyte subset phenotyping  

PBMC were isolated from whole blood by centrifugation on a layer of Ficoll Paque 

(GE Healthcare, Chalfont St Giles,   Buckinghamshire, U.K). The plasma layer was 

removed and stored for immunoglobulin assessment (below). Cells were washed in 

RPMI media supplemented with antibiotics (Life Technologies, Paisley, U.K) 

(penicillin 100 U/ml, streptomycin 100 μg/ml) before addition (1x106 cells/well) to a 96 

well plate and washed twice in stain buffer (PBS supplemented with 2% FCS). For 

lymphocyte subset identification, cells were stained with the fluorochrome-conjugated 

antibodies indicated for 30 mins on ice then washed and fixed using BD 

Cytofix/Cytoperm™ Cell Fixation/Permeabilisation kit (according to manufacturers 

instructions) ((BD, Oxford, U.K) and washed again before analysis on a flow 

cytometer. B cells: anti-CD19-PE (BD, Oxford, U.K). T-cells: CD3-V500 (BD, Oxford, 

U.K). T-helper cells: anti-CD3-V500 (BD, Oxford, U.K), anti-CD4-PE/CY7 (Biolegend, 

London, U.K). Tregs: anti-CD4-PE/CY7 (Biolegend, London, U.K), anti-CD127-FITC 

(eBioscience, Hatfield, U.K), anti-CD25-APC (Biolegend, London, U.K), and anti-

CD3-V500 (BD, Oxford, U.K) as above followed by anti-FoxP3-PE (BD, Oxford, U.K) 

for a further 30 mins on ice. CD4+ cells, that were CD25hi, CD127lo and FoxP3+ were 

deemed Tregs. NK and NKT cells: anti-CD3-FITC (BD, Oxford, U.K)  and anti-CD56-

APC (BD, Oxford, U.K). Cells that were CD56+ were deemed NK cells and cells that 

were both CD3+ and CD56+ deemed NKT cells.  

2.4. Granzyme A and Perforin staining 

Frozen PBMC samples from all 10 trial subjects isolated prior to first administration of 

IAD and on day 14 of trial were thawed and stained with anti-CD3-V500 (BD, Oxford 

U.K) and anti-CD56-APC (BD, Oxford U.K) for 30 mins on ice before 
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fixing/permeabilising (as above) and then staining with anti-Granzyme A-PE 

(Biolegend, London, U.K). and anti-Perforin-FITC (Biolegend, London, U.K) for a 

further 30 mins on ice prior to analysis by flow cytometry.   

2.5. Multiparameter Flow Cytometry  

Flow cytometery was performed using a CyAn™ ADP Analyzer (Beckman Coulter 

Ltd, High Wycombe, U.K). Insturument setup and calibration were performed using 

BD  Calibrite Beads™ (BD, Oxford, U.K). Data analysis was done with FlowJo 

software.  

2.6. Assessment of plasma immunoglobulin levels 

Plasma was centrifuged (1000 x g) and the supernatant collected and stored (-80°C) 

until analysis for IgG (IgG SPAplus® kit), IgA (IgA SPAplus® kit), IgM (IgM 

SPAplus® kit),(Binding Site, Birmingham, U.K) and subclasses of IgG (IgG1 (IgG1 

SPAplus kit), 2 (IgG2 SPAplus kit), 3 (IgG3 SPAplus kit), and 4 (IgG4 SPAplus kit) 

(Binding Site, Birmingham, U.K). Methods were followed to manufacturer’s 

instructions. Immunoglobulins were analysed using a Cobas® 6000 analyzer (Roche, 

Burgees Hill, U.K.)  

 
2.7. Statistical Analysis 

Data were tested for normality by the Shapiro-Wilk test. To test whether granzyme or 

perforin levels were different from baseline values, the data were analysed using a 

two-tailed unpaired t test and significance was taken to be p<0.05. For the analysis of 

subset percentages, data were analysed by one way analysis of variance followed by 

a Dunnett’s multiple comparison test comparing levels following treatment to baseline 

levels. Significance was taken to be p<0.05. 
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3. Results 

3.1. In vitro pre-screen of healthy volunteers for competence to respond to IAD 

Table 1. Pre-screen of healthy volunteers by virtue of PBMC response to IAD in vitro 
 

Samplea  Treg NKT Subjectc 

IAD % changeb IAD % change 

1 133 210   

2 27 107   

3 177 66 1 

4 46 122   

6 61 1   

8 95 90 5 

9 31 81   

12 53 -37   

15 48 33   

17 63 3   

18 22 -27   

19 104 -9   

21 45 157   

22 80 0 6 

24 35 2   

25 142 -37 3 

27 65 63 9 

32 65 41 10 

34 53 -40   

36 60 54 8 

37 155 69 2 

38 83 354 7 

40 106 29 4 

42 64 128   

43 81 17   

44 133 33   

45 11 58   

 

a
Blood samples from 27 of 45 volunteers (18 of which were subsequently excluded on basis 

of selection criteria unrelated to data presented herein)
 

b
Percentage change in the Treg or NKT subset (as total of all lymphocytes) due to the 

presence of IAD (600 g/ml) during 4 day stimulation of PBMC with PHA in vitro  

c
Subjects 1-10 selected for inclusion into trial 
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A preliminary study on the capacity of IAD to impact the number and performance of 

specific lymphocyte subsets in vitro disclosed an ability of the drug to increase the 

percentage of Treg and / or NKT cells (including the minority iNKT cell subset as 

defined by reactivity with the monoclonal antibody 6B11) within stimulated cultures of 

PBMC from a majority of the healthy donors investigated: other subsets including 

total T and B cells, CD4+ and CD8+ T cells, and NK cells were neither substantively 

nor reproducibly impacted under these conditions (data not detailed). 

Correspondingly, the degree of change in these parameters on an in vitro pre-screen 

of healthy subjects’ PBMC formed the criterion for volunteer inclusion into a clinical 

trial designed to capture the in vivo influence of IAD on defined lymphocyte subsets, 

together with serum immunoglobulins, over 14 days of continuous administration. 

Table 1 details the influence of IAD (600 g/ml) on the percentage of phenotypically 

defined CD4+ regulatory T cells (Treg) and NK-T cells (CD3+CD56+) arising in 4 day 

cultures of PHA-stimulated PBMC from 27 healthy volunteers. All showed an 

increased percentage of Treg cells in response to IAD with 18 of the 27 also 

increasing the proportion of NKT cells present.   

The universal increase in Treg percentages, noted both in the present and our 

previous pre-clinical studies, established this parameter as the initial guiding factor to 

volunteer selection. An accompanying increase in the percentage of NKT cells 

appearing in culture was chosen as a secondary inclusion factor. Occasional 

samples needed to be discounted and volunteers excluded due to wbc counts laying 

outside of the normal range while others failed to progress due to self-withdrawal of 

volunteers from continuation to trial. Of the ten remaining best responding volunteers 

based on Treg increases all but one had an accompanying increase in NKT cells and 

these ten were selected to enter into the Phase I Trial, receiving their first dose of 

IAD within 21 days of pre-screen. 
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3.2. Consequence of IAD administration on serum immunoglobulins 

Figure 1. Influence of IAD administration on plasma immunoglobulins in healthy volunteers 

 

 

 

 

 

 

 

 

 

Plasma immunoglobulins of ten subjects (S1-10) receiving a 1 g oral dose of IAD 4 times 

daily (with a single 1 g oral dose on the morning of Day 14) were assessed prior to first 

dosing Day 1 and following morning dosing on Days 1, 3, 5, 7, 10, and 14: (a) IgG; (b); IgM; 

(c) IgA. 

On Days 1 to 13 of the trial, each of the ten volunteers received a 1 g oral dose of 

IAD 4 times daily. On the morning of Day 14, subjects received a single 1 g oral 

dose. Samples for serum immunoglobulins and immunophenotyping were taken prior 

to first dosing with IAD on Day 1 and following morning dosing on Days 1, 3, 5, 7, 10, 

and 14.  

Over the 14 days of the trial, serum levels of the three major immunoglobulins – IgG, 

IgA, and IgM – essentially remained constant across the subjects (Fig.1). Pre-dosing 

and Day 14 serum samples were additionally measured for the four IgG isotypes, 
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again showing IAD without impact on either IgG1, IgG2, IgG3, or IgG4 

concentrations (Fig.2).   

Figure 2. Plasma IgG subclasses before and after IAD administration 

 

 

 

 

 

 

 

 

 

From the 10 subjects (S1-10) entered into the clinical trial, stored plasma was thawed from 

the Day 1 pre-drug administration and Day 14 post-administration time points and IgG isotype 

levels measured by subclass-specific ELISA: (a) IgG1; (b) IgG2; (c) IgG3; (d) IgG4. 

3.3. Consequence of IAD administration on peripheral lymphocyte subsets  

As can be seen from Fig. 3a-b, no substantive, durable pattern of change over 

baseline was observed during the 14 days of drug adminstration in either overall B- 

or T-cell compartments; neither in the CD4+ T-helper subset, apart from a brief dip at 

Day 5 (Fig. 3c). The same held true for phenotypically-defined Treg cells: with the 

exception of a transient spike at Day 3 (Fig. 3d).  
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Figure 3. Influence of IAD administration on lymphocyte subset distribution in healthy 

volunteers  

Lymphocyte subset distribution among PBMC of ten subjects (S1-10) receiving IAD (as for 

Fig.1) was assessed prior to first dosing Day 1 and following morning dosing on Days 1, 3, 5, 

7, 10, and 14: (a) CD19+ B cells; (b) CD3+ T cells; (c) CD4+ T-helper cells; (d) 

FoxP3+CD25
hi
CD127

lo
 Treg cells (as %CD4+ T cells); (e) CD3-CD56+ NK cells; (f) 

CD3+CD56+ NK cells. 

The consistent, and by far the most compelling change, was an increase in the 

percentage of NK cells among the total lymphocyte population (Fig. 3e). The 

increase commenced early among the cohort: the majority between 1 - 3 days of IAD 

administration; with five subjects evidencing augmented NK cell percentages 1.5 h 

after first dosing. By Day 5, all but one volunteer had a higher proportion (over 

baseline) of their lymphocytes represented by NK cells: this effectively greater than 

doubling of the NK contribution being maintained at Day 14 (trial termination).  

Among the rarer NKT subset, there was a suggestion of change – primarily an 

increase. However, no clear or consistent pattern reaching statistical significance 

was discerned across the ten subjects (Fig. 3f).  
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Statistically significant increased NK cell percentages arising from IAD administration 

as judged by mean change across the ten subjects were registered at Day 5 (mean 

fold increase = 2.1, p<0.05), Day 10 (2.6, p<0.01), and Day 14 (2.1, p<0.05). With 

the exceptions of Treg cells on Day 3 (mean fold increase = 1.8, p<0.05) and T-

helper cells on day 5 (mean fold decrease = 0.6, p<0.01) no other signifcant change 

in any of the subsets as a result of administering IAD was observed. 

Figure 4. Influence of IAD administration on NK cells subsets in healthy volunteers 

 

As for Fig. 3 but with CD3-CD56+ NK cells gated by virtue of CD56
dim

 vs. CD56
bright

 

expression and mean values +/- SEM from the ten subjects plotted (one-way ANOVA 

followed by Dunnett’s multiple comparison test). * p<0.05 compared to Day 1 pre-admin; ** 

p<0.01 compared to Day 1 pre-admin 

Next, the NK population was interrogated with respect to CD56bright versus CD56dim 

subsets: the former being abundant cytokine producers but only weakly cytotoxic 

before activation [19]. As expected, the CD56bright susbset was the minor of the two 

populations in each of the subjects and throughout the course of the trial. Changes in 

the majority CD56dim subset mirrored those seen in the total NK population as might 

be anticipated (Fig. 4). Overall, the minority CD56bright subset showed less of a trend 

towards increasing in frequency than the the CD56dim subset. Only at Day 10 was 
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there a siginficantly (p<0.05) increased percentage of CD56bright NK cells compared 

to pre-administration of IAD.  

3.4. IAD-augmented NK cells contain Granzyme A and Perforin 

Figure 5. Percentage of NK cells positive for Granzyme A and Perforin before and after IAD 

administration 

 

 

 

 

 

 

 

 

From the 10 subjects (S1-10) entered into the clinical trial, stored cells were revived from the 

Day 1 pre-drug administration and Day 14 post-administration time points. Each population 

was assessed for the percentage of CD3-CD56+ cells expressing Granzyme A (upper panel) 

or Perforin (lower panel), respectively. 

The CD3-/CD56+ NK cell population was then assessed for the presence of two key 

NK effector molecules: Granzyme A and Perforin. Unlike above where cells were 

studied direct from volunteers, the measure of Granzyme A and Perforin was made 

retrospectively on previously frozen PBMC from the participants of the clinical trial. 

Notably, the augmented contribution from CD3-/CD56+ cells to total PBMC as a 

consequence of IAD administration was as evident in frozen as in fresh cells. Again, 
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all but one of the ten subjects demonstrated such an increase which at Day 14 

averaged (over all subjects) 1.7-fold (p<0.05) compared to baseline. 

Figure 5 shows that among CD3-CD56+ cells, the percentage positive for Granzyme 

A or Perforin remained as high in the Day 14 IAD-impacted population as was 

observed pre-drug administration on Day 1.  

 

4. Discussion 

The impact of IAD on NK cells registered in the present study is compatible with and 

supports its current indication for the management of viral infections and associated 

complications. A beneficial influence on NK cells was shown to begin early, rise 

progressively, and persist throughout the 14 days of IAD administration to the 

participants of the clinical trial. Remarkably, all subjects showing this IAD-promoted 

NK uplift were healthy, without sign or manifestation of immune compromise. IAD 

has been used widely and studied intensely for four decades with no evidence of it 

promoting lymphopenia. The observed increase in percentage NK cells amongst total 

lymphocytes therefore likely results from a boost in absolute cell number. Indeed, on 

enumerating subsets within the PBMC fraction collected from Ficoll gradients during 

the trial, the NK population at Day 14, for example, now averaged 225% greater in 

number than at baseline (i.e. Day 1 pre-drug administration). While caveats must be 

placed around the accuracy of extrapolating these numbers directly to whole blood 

counts, such pattern of increased recovered NK cells was consistent over time while 

no other subset registered such magnitude of change by this measure.  

Evidence for IAD impacting NK cells has been reported previously though never 

before documented as early and consistently, nor among healthy subjects, as here. 

Many of the historical studies focused on IAD restoring NK cell activity and / or 

number in individuals that were otherwise deficient in this aspect. For example, Diaz-
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Motoma and colleagues [3] described how among CFS patients administered IAD 

over 12 weeks, those showing clinical improvement to drug correspondingly 

manifested increased NK number and function where before both were suppressed. 

Bekesi et al [16] reported how 28 days of IAD administration ‘normalized’ otherwise 

depressed NK cell number and function in homosexual males at high risk of AIDS. 

The same group had earlier reported that both halfway through and a year on from a 

28 day administration regime, immunodepressed patients with prolonged generalized 

lymphadenopathy showed improved NK activity [20]. A rare previous study on 

healthy individuals reported IAD administration augmenting NK activity among 

peripheral blood cells following drug cessation but did not interrogate NK numbers 

[21]. With respect to in vitro action, IAD has been reported as restoring otherwise 

depressed NK activity in the elderly [18] and in patients with uremia [17] with one 

study observing a boost in NK activity from the peripheral blood of healthy subjects 

[22].  

The steady longitudinal in vivo action of IAD on NK cells was not matched across 

other immune parameters investigated. This was despite the clinical trial being 

predicated on a pre-clinical study that disclosed an unexpected property of IAD: its 

ability to increase the proportion of Treg and NKT cells contained within PBMC 

populations. Indeed, efficacy in this regard provided the basis of the pre-screen of 

volunteers for recruitment into the trial here. Notwithstanding, within the trial there 

was a suggestion / trend of IAD positively modulating NKT percentages and while 

there was no overt durable increase in the Treg fraction, a statistically significant 

doubling of Tregs as a consequence of IAD administration was observed at Day 3.  

It should be noted that in the pre-clinical study, the action of IAD was followed 

against PBMC undergoing stimulation (PHA): here, individual subsets have the 

potential to expand and / or die selectively. The immune status of the healthy 

subjects within the trial would instead be ‘resting’, basal. These differences could, 
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potentially, account for the greater impact of IAD on Treg and NKT fractions in vitro 

as compared to what was observed in vivo. Conversely, the clear NK increase 

observed during the trial was not predicted from the prior in vitro study of IAD impact 

on PHA-stimulated PBMC (nor indeed against unstimulated PBMC; Gardiner et al, 

School of Biochemistry & Immunology, TCD, unpublished observations). This being 

the case, then a conceivable mechanism behind the observed NK increase in vivo – 

underscored by it starting early – is one of IAD promoting mobilization of cells from 

tissue reservoirs to blood. While NK cells are actively recruited from blood to sites of 

viral infection [23], in order to accumulate in effective numbers in the target organ, 

NK cells must first of all mobilize from spleen and bone marrow stores to peripheral 

blood [24]. Thus agents – seemingly like IAD here – that facilitate the latter would be 

considered beneficial in such a scenario. Within this context, it is of note that the 

minority CD56bright NK subset showed a less impressive increase during the trial than 

the majority CD56dim population. Though the CD56bright subset appears to dominate in 

selected body tissues, the opposite holds true for spleen and bone marrow where 

CD56dim NK cells prevail [25]. 

The present study confirms and extends the rationale for IAD being considered as a 

useful medicament for disease modification in the context of viral infections. 

Moreover, the lack of any major impact on overall B- or T-cell number, or on serum 

immunoglobulins underscores the drug’s established safety profile. That the IAD-

induced blood NK cells were replete in Granzyme A and Perforin supports earlier 

clinical studies describing augmented NK activity among isolated PBMC following 

IAD administration [3; 21; 26]. While the limitation on blood sample size (and 

correspondingly cell numbers available) during the present Phase I trial precluded 

the ability to assess NK cytotoxicity directly, the earlier studies demonstrating IAD 

augmenting NK function [3; 21; 26] together with the observed increase here in the 

percentage of cells carrying the two cytotoxic effectors are each compatible with IAD 
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increasing functionally competent NK cells in healthy individuals. Moreover, a 

separate in vitro study revealed IAD increasing the percentage of Granzyme B (GrB)-

positive NK cells in donors deplete in basal GrB (Gardiner et al, School of 

Biochemistry & Immunology, TCD, unpublished observations). The NK axis has a 

vital role in several key aspects of host defence and immune surveillance: its 

importance in combating and protecting from multiple classes of virus is undisputed. 

As an example, a recent review details the central contribution of NK cells to the 

control of: influenza virus, CMV, HIV-1, and hepatitis C virus [27]. With regards to 

influenza, it has been suggested that NK lymphopenia may correlate with increased 

disease severity [28]. Of note, in this context, is a recent independent Phase 4 trial in 

a large patient cohort with confirmed acute respiratory viral infections where IAD was 

deemed not only safe but also effective in non-obese subjects less than 50 years of 

age with clinically diagnosed influenza-like illnesses in terms of time to resolution of 

associated disease symptoms [29].  

Through a capacity to enrich blood in phenotypically adept NK cells – as shown here 

– IAD gains the potential to offer benefit against viral infection in a variety of settings 

including otherwise healthy individuals and perhaps, importantly, our growing elderly 

population where NK performance is known to be compromised and where its 

underperformance may be a key contributor to the increased rates of viral infection 

associated with immunesenescence [18; 30; 31].  
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