Does tea consumption during early pregnancy have an adverse effect on birth outcomes?

Lu, Jin-Hua; He, Jian-Rong; Shen, Song-Ying; Wei, Xue-Ling; Chen, Nian-Nian; Yuan, Ming-Yang; Qiu, Lan; Lei, Wei-Dong; Chen, Qiao-Zhu; Hu, Cui-Yue; Xia, Hui-Min; Bartington, Suzanne; Cheng, Kar; Lam, King Bong Hubert; Xiu, Qiu

DOI: 10.1111/birt.12285

License: Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
"This is the peer reviewed version of the following article: Lu J-H, He J-R, Shen S-Y, et al. Does tea consumption during early pregnancy have an adverse effect on birth outcomes? Birth. 2017;44:281-289., which has been published in final form at: https://doi.org/10.1111/birt.12285. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988. (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Does tea consumption during early pregnancy have an adverse effect on birth outcomes?

Abstract

Background Tea, a common beverage, has been suggested to exhibit a number of health benefits. However, one of its active ingredients, caffeine, has been associated with preterm birth and low birthweight. We investigated whether tea consumption during early pregnancy is associated with an increased risk of preterm birth and abnormal foetal growth.

Methods A total of 8775 pregnant women were included from the Born in Guangzhou Cohort Study. Tea consumption (type, frequency and strength) during their first trimester and social and demographic factors were obtained via questionnaires administered during pregnancy. Information on birth outcomes and complications during pregnancy was obtained from hospital medical records.

Results Overall habitual tea drinking (≥1 serving/week) prevalence among pregnant women was low, at 16%. After adjustment for potential confounding factors (e.g. maternal age, educational level, monthly income) tea drinking during early pregnancy was not associated with an increased risk of preterm birth, small or large for gestational age (p>0.05).

Conclusions We did not identify a consistent association between frequency of tea consumption or tea strength and adverse birth outcomes among Chinese pregnant women with low tea consumption. Our findings suggest that occasional tea drinking during pregnancy is not associated with increased risk of preterm birth or abnormal foetal growth. Given the high overall number of annual births in China, our findings have important public health significance.

Keywords: Tea: Preterm birth: Abnormal foetal growth: Chinese: Birth cohort
Introduction

Preterm birth and abnormal foetal growth (including small for gestational age [SGA] and large for gestational age [LGA]) are important predictors of neonatal morbidity and mortality as well as adverse health outcomes in childhood and adulthood (1-3). A recent study in seven regions in China suggests a preterm birth rate of 7.1% in 2011 (4), and data from Guangzhou, the largest city in southern China, indicate the prevalence of SGA and LGA being 8.6% and 8.5%, respectively (5). Whilst the rates are not particularly high compared to those of south Asia (13.3%) and sub-Saharan Africa (12.3%) (6), given the large absolute number of live births in China (12% of global total in 2010) (6), identification of risk factors associated with preterm birth and abnormal foetal growth is of particular public health importance.

Tea is a beverage prepared from the leaves of the plant Camellia sinensis, and contains a number of biologically active constituents, including polyphenols (e.g. catechins) and alkaloids (e.g. caffeine). Tea is broadly classified into green, oolong and black tea according to the degree of enzyme-mediated oxidation (known as fermentation) (7).

There has been some conflicting evidence on the health benefits of tea (8-10), but much less is known about the potential effects of tea drinking during pregnancy on foetal growth and development. In vivo studies in rats suggested black tea (11) or green tea catechin (12) had no effect on the weight of pups, but to our knowledge, no human studies have investigated the effects of tea on preterm birth and birthweight. On the other hand, reports have suggested that one of the active ingredients in tea, caffeine, is negatively associated with birthweight (13-17). This relationship was confirmed in a recent meta-analysis (18), although there was no association with preterm birth (18, 19). It should be noted, however, that tea consumption has a lesser contribution than coffee for total caffeine intake in the Western populations studied (13-17), whereas in China tea remains the most popular beverage (20).
The current Chinese dietary guidelines (21) do not comment on the frequency of intake and the type of tea. As a substantial number of tea drinkers in China are of child-bearing age, clarifying the potential association of tea consumption on gestational age and birthweight is of public health importance. Using data from a large prospective birth cohort in China, we investigated the effect of tea drinking during early pregnancy on foetal growth and preterm birth.

Methods

Recruitment

The Born in Guangzhou Cohort Study (BIGCS) is an ongoing prospective study conducted by the Guangzhou Women and Children’s Medical Center (GWCMC), China, which commenced in February 2012. Details of the recruitment can be found elsewhere (22). Briefly, all pregnant women residing within Guangzhou who attended their first routine antenatal examination (usually around week 16) at two campuses of GWCMC, and who intended to remain in Guangzhou with their child for ≥3 years were invited to participate in BIGCS. At baseline recruitment, demographic and socio-economic information were obtained via self-completed questionnaires, as well as data on workplace and home exposures, lifestyle, medical histories, and health status before and during pregnancy. BIGCS has received approval from the Institutional Ethics Committee of GWCMC. All participants gave written informed consent.

For this analysis, data from pregnant women recruited between February 2012 and December 2014 (n = 10277; 73.6% of those eligible) were used. We excluded those who dropped out before delivery (n = 435), or terminated their pregnancies or had stillbirths (n = 111), or had multiple gestation (n = 212), or who had missing delivery data (n = 155), resulting in 9364 singleton births in this report (Figure 1).
Tea consumption

Participants were asked at baseline (around 16 weeks of gestation) whether they regularly consumed tea during pregnancy. Subsequently, participants were asked to specify the type of tea they drank (green, oolong, black [known as “red tea” in China], and dark [a variety of post-fermented tea in China]), how many servings they consumed each type in a typical week (one serving was defined as 150 mL of tea), and the strength of tea (defined subjectively: weak, moderate, strong) they preferred. We grouped the types of teas into green (unfermented), oolong (semi-fermented) and black and dark tea (fermented) teas. Frequency was categorised into <1, 1–3, and >3 servings/week, and tea strength was dichotomised into weak and moderate/strong.

Birth outcomes

Birthweight among other birth outcomes (gestational age, parity, mode of delivery, and foetal sex) were obtained from the Guangzhou Perinatal Health Care and Delivery Surveillance System which records all births within the municipality. Gestational age at birth was determined based on ultrasound examination within the first- or early second-trimester. Preterm birth was defined as delivery before 37 weeks gestation. Those births with gestational age 37 weeks or above were considered as term. SGA and LGA were defined as a gestational age-adjusted birthweight below the 10th and above the 90th percentile, respectively, derived from a local population-based birthweight reference (23). The remaining births were considered as appropriate for gestational age (AGA).

Covariates

From the questionnaire, we derived maternal age (continuous), highest education level and maternal monthly income. Both education level and monthly income category were used as
proxies for socio-economic status. Maternal smoking three months before pregnancy and
during pregnancy (number of cigarettes per day) was assessed. Participants were considered
to have environmental tobacco smoke exposure if they were either exposed to second-hand
smoke at home or at work during early pregnancy. Folic acid supplement use was recorded in
the questionnaire. Pre-pregnancy maternal height (cm) and weight (kg) were self-reported at
recruitment, from which body mass index (BMI; kg/m2) was derived. Information on
complications during the current pregnancy, including pre-eclampsia, pregnancy-induced
hypertension, pre-pregnancy hypertension, gestational diabetes and pre-pregnancy diabetes,
was obtained from medical records after delivery.

Statistical analysis

Differences in characteristics by frequency of tea consumption during early pregnancy were
evaluated using Student’s t-test, χ2 test or Mann-Whitney U test where appropriate. Logistic
regression models were constructed in order to assess the relationship between tea
consumption during early pregnancy (frequency and strength) and birth outcomes, adjusting
for known determinants of foetal growth (maternal age, complications during pregnancy,
parity, and foetal sex), as well as potential confounders relating to tea consumption (socio-
economic status, exposure to tobacco smoke, and folic acid supplement use) based on
evidence from the literature. We also explored the dose-response relationship between tea
consumption and risk of adverse pregnancy outcomes, by including frequency of tea drinking
as continuous variable into the regression models. We examined the effects of individual
types of tea in two ways: (i) we included additional variables indicating other types of tea to
take into account the total tea intake, and (ii) we restricted the analysis to those who only
consumed one type of tea to avoid contamination bias. We compared distributions of Z-score
of birthweight and gestational age at birth (both continuous) using the Kruskal-Wallis test, among women with different levels of tea consumption (<1, 1–3, and >3 servings/week).

We also examined whether any relationships were modified by maternal pre-pregnancy BMI by including interaction terms in the models. Although previous studies have suggested that caffeine intake is associated with adverse birth outcomes (13-16), the prevalence of habitual coffee drinking (≥1 serving/week) was extremely low in this cohort (0.9%), and hence we did not include coffee consumption as a confounding factor. However, we conducted a sensitivity analysis restricting those included in the analyses to non-coffee drinking participants. All analyses were performed using SAS statistical software version 9.2 (SAS Institute Inc., Cary, NC, USA). A two-tailed p-value of less than 0.05 was considered statistically significant in all statistical analyses.

Results

Of the 9364 eligible singleton pregnancies, 8775 (93.7%) had available information on tea consumption during early pregnancy and were included in the analysis. Those who were excluded were more likely to have a higher educational level and income compared to those included in the final analyses (Supplementary Table 1). Table 1 presents the characteristics of pregnant women at enrolment and selected pregnancy outcomes. In this sample, 1420 women (16.2%) reported drinking tea at least once per week (median 3, interquartile range 2-5) during early pregnancy. Most of the tea-drinking participants (71.8%) consumed only one type of tea (median 2 servings/week), 22.7% two types (4 servings/week), and 4.2% three types (6 servings/week). Those who consumed tea habitually (at least 1 serving per week) were more likely to be slightly older, have a higher educational level, be exposed to second hand tobacco smoke (34.8 vs. 29.7%), have a higher mean (±SD) pre-pregnancy BMI (20.6 ± 2.8 vs. 20.3 ± 2.6 kg/m2) and to be multiparous (14.9 vs. 10.8%) compared to those mothers
who did not consume tea regularly. Overall, there were no significant difference in
birthweight and the proportions of SGA and LGA between children whose mothers did or did
not consume tea regularly at baseline.

Results of logistic regression of birth outcomes on tea consumption during early pregnancy
are presented in Table 2. There was no association between tea consumption during early
pregnancy and the birth outcomes we measured (preterm birth, SGA and LGA), after
adjustment for potential confounding factors (maternal age, educational level, monthly
income, exposure to environmental tobacco smoke and folic intake during early pregnancy,
pre-pregnancy BMI, parity, complications during pregnancy and foetal sex). Among the three
types of tea examined, frequent green tea consumption was significantly associated with LGA
(fully adjusted OR = 1.67; 95% CI, 1.01, 2.75; p=0.045), but non-significant risk estimates
were found for preterm birth (0.54; 0.18, 1.63) and SGA (0.57; 0.21, 1.51). We did not
observe any statistically meaningful relationship between oolong tea and dark/black tea
consumption and birth outcomes. When we included frequency of tea drinking as continuous
variable into the regression models, there was also no apparent dose-response relationship
between tea consumption and risk of adverse pregnancy outcomes. When we used Z-score of
birthweight instead of the binary SGA and LGA variables, we did not see a positive
association between green tea consumption and birthweight, although there was a decreasing
trend in gestational age at birth among Oolong tea-drinking women (Supplementary Table 2).

Among the regular tea drinkers at baseline, 22.7% and 4.2% consumed two and three or
more types of tea, respectively. To avoid potential attenuation of observed effect sizes due to
consumption of multiple tea types, we repeated the analysis by restricting to those who
reported to drink only one specific type. Overall, the risk estimates for preterm birth, SGA,
and LGA were very similar to those obtained from the analysis using the full sample although
the confidence intervals were slightly wider (Supplementary Table 3).
We also investigated the possible effects of tea strength (Table 3). Consumption of weak Oolong tea was associated with reduced risk of preterm birth (OR: 0.21; 95% CI: 0.06, 0.76). We did not find significant association between adverse birth outcomes and strength of green or dark/black tea in multivariate analysis.

As tea drinking may be favoured by women who intend to lose weight, we also tested for potential interaction between pre-pregnancy BMI and tea consumption by including an interaction term in the regression model. This, however, did not change the risk estimates (results not shown). Restricting the analysis to non-coffee drinking participants also did not alter the conclusion (results not shown).

Discussion

In a contemporary sample of Chinese pregnant women with low consumption of tea, we did not find evidence suggesting an adverse effect of tea consumption on gestational age or birthweight of offspring after adjusting for potential confounding factors. Although higher consumption of unfermented tea (green tea) was associated with an increased risk of LGA, this finding was of borderline significance, and may be a result of multiple comparisons. As the official Chinese dietary guidelines do not comment on tea intake during gestation (21), pregnant women are likely to consult internet-based information for dietary advice, which often delivers mixed messages without any scientific evidence, and many women might opt to avoid tea drinking altogether. Our findings do not support the need for pregnant women to abstain from tea drinking during early pregnancy, at least when it is consumed at a low to moderate level.

To our knowledge, our study is the first to investigate the effects of tea consumption on birthweight in an Asian setting with a large prospective birth cohort study. Surprisingly, we observed a low prevalence (only 16%) of tea drinking in the study population. In fact, results
from the China Health and Nutrition Survey (CHNS) suggest the prevalence of tea drinking had fallen by 10% between 1993 and 2009 (from 44% to 34%), and that the most prominent decline has occurred in the 18–29 years age group (by about 20%) (20). Another study of 5133 adults from the three largest Chinese cities (Beijing, Shanghai, and Guangzhou) also found a lower prevalence of tea drinking among those 20–29 years (27%) compared to 30-39 years (46%) (24). These figures support our observation that tea drinking is less popular among the younger generation (particularly those of child-bearing age).

Whilst previous studies have attempted to assess the effect of tea consumption in relation to birthweight (13-17), the focus was generally on caffeine intake and not the beverage per se. A small case-control study of 155 women in Beijing, China found an increased risk of SGA associated with tea consumption at least twice a week during pregnancy (25). Potential recall bias and the lack of adjustment for SGA risk factors (e.g., complications during pregnancy, parity) in the analyses may explain the inconsistency with our own findings.

To date there has been no definitive conclusion on whether tea consumption in pregnant women could affect offspring. It is proposed that excessive caffeine intake might be teratogenic (26). However, a recent review by Brent et al. concluded that results from both epidemiological and animal studies suggest caffeine intake is “unlikely to have reproductive and developmental effects” (27). On the other hand, accumulating findings from animal and human studies have pointed to a possible weight reduction effect by tea. Green tea extracts or (-)-epigallocatechin-3-gallate (EGCG), one of the tea catechins, have been shown to reduce weight gain, blood glucose or insulin levels in obese/diabetic animals or those on high-fat diets (28). In humans, a number of small randomised-controlled trials have been conducted, as summarised by two recent meta-analyses (29, 30). Most of the studies included administered green tea or green tea extracts with caffeine in normal weight or overweight individuals and showed weight reduction compared with caffeine-free controls, hence leading to a question of
whether weight loss was an effect of caffeine in tea, or due to a combined effect of caffeine and tea catechins. A meta-analysis demonstrated that while both caffeine alone and the combination of catechins and caffeine increased daily energy expenditure, only the latter could significantly increase fat oxidation (31). A recent Cochrane review further supported this concept, concluding that green tea preparations may induce little loss of weight in obese or overweight adults (9). As maternal glucose and lipid metabolism during pregnancy is highly relevant to the fetal nutrient supply (32, 33), it is entirely plausible that tea (or catechins in combination with caffeine) could have an adverse impact on birthweight. Nevertheless, after adjusting for confounders we did not find compelling evidence that tea consumption was associated with birthweight Z-score, SGA or LGA.

Results from analyses using tea strength as an exposure measure are somewhat inconsistent with those using the frequency of consumption. Firstly it should be noted that the strength of tea is a subjective indicator in this study and could not precisely represent the dose of tea. Additionally, longer steeping time may not only strengthen the flavour, but may also encourage the release of other components as well as contaminants in tea leaves, such as heavy metals (34). This may introduce toxic effects in addition to the potential weight reducing capacity of catechins and caffeine. For example, a recent case-control study in China found an association between drinking strong tea and congenital birth defect (35).

Strengths of this study include the prospective design, which to some extent reduced recall bias. Our population has a low incidence of coffee drinking and this may avoid potential for confounding due to the high caffeine content of coffee. There are also some limitations that should be considered. Tea consumption was investigated only at baseline during early gestation. It is possible that pregnant women could have changed their exposure during later stages of pregnancy, leading to misclassification and regression dilution bias. Despite the relatively large sample size, only 16% of our sample reported drinking tea at least once a
week. The small number of frequent tea drinkers renders the estimates unstable with wide
confidence intervals, and we might not have sufficient statistical power to detect a true
association. Nevertheless, the opposing directions in the risk estimates for SGA and LGA
lend credibility to the findings. Furthermore, tea drinking in China is a social norm and any
misclassification is most likely random (rather than systematic or deliberate under- or over-
reporting), diluting the effect size towards the null. Although we have controlled for a range
of confounders, we acknowledge the possibility of residual and unmeasured confounding due
to other potentially relevant variables such as sleep duration and diet during pregnancy. We
were unable to specify whether the observed effect was due to components unique to tea,
caffeine in tea or caffeine from other sources such as coffee, and to a lesser extent soft drinks
and pain killers. However, the prevalence of regular coffee drinking in our sample was
extremely low, and given the lower caffeine content in tea (36), we hypothesised that tea
drinking should be responsible for the majority of caffeine (and catechin) intake, and
therefore our risk estimates were less likely to be confounded by other dietary factors.

Conclusions

Our results do not suggest an adverse effect of tea consumption at a low to moderate level
during early pregnancy on preterm birth or abnormal foetal growth among Chinese women.
Given the high overall number of annual births (~17 million in 2014) and the relatively low
prevalence of tea drinking among pregnant women in China, our findings have important
public health significance in the context of other potential health benefits of tea. Future
studies are warranted to confirm our findings and to re-examine the dietary guidelines, which
currently do not provide guidance to pregnant women about tea drinking.

Table 1 Characteristics of the mothers and their children by frequency of tea drinking at enrollment in the Born in Guangzhou Cohort Study, 2012-2014 (n=8775)

<table>
<thead>
<tr>
<th>Weekly tea consumption</th>
<th><1 serving</th>
<th>≥1 serving</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD or No. (%)</td>
<td>Mean ± SD or No. (%)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>7355</td>
<td>1420</td>
<td></td>
</tr>
</tbody>
</table>

Demographic and lifestyle

Maternal age at enrollment (years) 28.8 ± 3.3 29.1 ± 3.5 <0.01

Educational level

<table>
<thead>
<tr>
<th></th>
<th>≤1 serving</th>
<th>≥1 serving</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle school or below</td>
<td>824 (11.2)</td>
<td>117 (8.2)</td>
<td></td>
</tr>
<tr>
<td>College</td>
<td>1904 (25.9)</td>
<td>333 (23.5)</td>
<td></td>
</tr>
<tr>
<td>Undergraduate</td>
<td>3803 (51.7)</td>
<td>804 (56.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>Postgraduate</td>
<td>824 (11.2)</td>
<td>166 (11.7)</td>
<td></td>
</tr>
</tbody>
</table>

Monthly income (Yuan Y)

<table>
<thead>
<tr>
<th></th>
<th>≤1500</th>
<th>1501-4500</th>
<th>4501-9000</th>
<th>≥9001</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>733 (10.2)</td>
<td>2365 (33.0)</td>
<td>2967 (41.3)</td>
<td>1111 (15.5)</td>
<td>179</td>
</tr>
</tbody>
</table>

Pre-pregnancy BMI (kg/m²) 20.3 ± 2.6 20.6 ± 2.8 <0.01

Environmental tobacco smoke exposure in early pregnancy

<table>
<thead>
<tr>
<th></th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>121</td>
</tr>
</tbody>
</table>

Folic acid intake in early pregnancy 6721 (91.5) 1300 (91.7) 0.79
Missing 7 2

Pregnancy-related

<table>
<thead>
<tr>
<th>Parity</th>
<th>Primiparous 6562 (89.2)</th>
<th>Multiparous 791 (10.8)</th>
<th><0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode of delivery</th>
<th>Vaginal delivery 4805 (65.5)</th>
<th>Caesarean section 2535 (34.5)</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
<td>15</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gestational age at birth (weeks)</th>
<th>Median [25th, 75th percentile]</th>
<th>39 [38, 40]</th>
<th>39 [38, 40]</th>
<th>0.47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preterm birth</td>
<td>364 (5.0)</td>
<td>65 (4.6)</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>41</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Birthweight (g) | 3188 ± 432 | 3187 ± 422 | 0.95 | |
| Missing | 27 | 5 | | |

<table>
<thead>
<tr>
<th>Birthweight for gestational age</th>
<th>SGA 528 (7.2)</th>
<th>96 (6.8)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA</td>
<td>5995 (81.8)</td>
<td>1170 (82.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGA</td>
<td>791 (10.8)</td>
<td>148 (10.5)</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>41</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data presented as mean ± SD or n (%) unless otherwise specified.

AGA: appropriate for gestational age; BMI: body mass index; LGA: large for gestational age; SGA: small for gestational age.

*: 1 Yuan ≈ US $0.16 (May 2014).
<table>
<thead>
<tr>
<th>Weekly tea consumption (serving/week)</th>
<th>Preterm birth</th>
<th></th>
<th>SGA</th>
<th></th>
<th>LGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>OR (95% CI)</td>
<td>n</td>
<td>OR (95% CI)</td>
<td>n</td>
</tr>
<tr>
<td>(Preterm /term)</td>
<td>Crude</td>
<td>Adjusted*</td>
<td>Crude</td>
<td>Adjusted*</td>
<td>Crude</td>
</tr>
<tr>
<td>Any tea</td>
<td>364/6965</td>
<td>1.00 (Ref.)</td>
<td>541/5995</td>
<td>1.00 (Ref.)</td>
<td>791/5995</td>
</tr>
<tr>
<td><1</td>
<td>36/799</td>
<td>0.86 (0.61, 1.22)</td>
<td>53/697</td>
<td>0.86 (0.64, 1.16)</td>
<td>84/697</td>
</tr>
<tr>
<td>1-3</td>
<td>36/799</td>
<td>0.86 (0.59, 1.25)</td>
<td>0.84 (0.37, 2.01)</td>
<td>0.80 (0.33, 1.93)</td>
<td>0.87 (0.36, 2.15)</td>
</tr>
<tr>
<td>>3</td>
<td>27/526</td>
<td>0.98 (0.66, 1.47)</td>
<td>0.96 (0.61, 1.48)</td>
<td>0.97 (0.61, 1.56)</td>
<td>1.00 (0.95, 1.05)</td>
</tr>
<tr>
<td>p for trend</td>
<td>0.65</td>
<td>0.41</td>
<td>0.67</td>
<td>0.90</td>
<td>0.92</td>
</tr>
<tr>
<td>Green tea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>18/363</td>
<td>0.95 (0.58, 1.54)</td>
<td>0.80 (0.44, 1.45)</td>
<td>0.72 (0.39, 1.32)</td>
<td>0.63 (0.35, 1.14)</td>
</tr>
<tr>
<td>>3</td>
<td>5/132</td>
<td>0.73 (0.30, 1.78)</td>
<td>0.54 (0.18, 1.63)</td>
<td>0.55 (0.19, 1.54)</td>
<td>0.57 (0.21, 1.49)</td>
</tr>
<tr>
<td>p for trend</td>
<td>0.50</td>
<td>0.23</td>
<td>0.03</td>
<td>0.07</td>
<td>0.34</td>
</tr>
<tr>
<td>Oolong tea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>13/410</td>
<td>0.61 (0.35, 1.06)</td>
<td>0.61 (0.33, 1.14)</td>
<td>0.92 (0.62, 1.36)</td>
<td>0.92 (0.58, 1.47)</td>
</tr>
<tr>
<td>p for trend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>3</td>
<td>12/136</td>
<td>1.69 (0.93, 3.08)</td>
<td>1.30 (0.58, 2.89)</td>
<td>14/122</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>--------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>p for trend</td>
<td></td>
<td>0.81</td>
<td>0.73</td>
<td></td>
<td>0.66</td>
</tr>
</tbody>
</table>

Dark/black tea

<table>
<thead>
<tr>
<th></th>
<th>1-3</th>
<th>28/505</th>
<th>1.06 (0.72, 1.58)</th>
<th>0.98 (0.62, 1.55)</th>
<th>41/448</th>
<th>1.04 (0.75, 1.45)</th>
<th>1.20 (0.82, 1.76)</th>
<th>44/448</th>
<th>0.75 (0.54, 1.02)</th>
<th>0.82 (0.58, 1.16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p for trend</td>
<td></td>
<td>0.95</td>
<td>0.99</td>
<td></td>
<td>0.57</td>
<td>0.07</td>
<td></td>
<td>0.17</td>
<td>0.18</td>
<td></td>
</tr>
</tbody>
</table>

AGA: appropriate for gestational age; CI: confidence interval; SGA: small for gestational age; LGA: large for gestational age; OR: odds ratio.

*: Model adjusted for maternal age, educational level, monthly income, exposure to environmental tobacco smoke and folic intake during early pregnancy, pre-pregnancy BMI, previous history of complications during pregnancy, parity, sex of offspring, and where appropriate, frequency of other types of tea consumed.
Table 3 Relationship between strength of tea and birth outcomes in the Born in Guangzhou Cohort Study, 2012-2014 (n=8775)

<table>
<thead>
<tr>
<th>Strength of tea</th>
<th>Preterm birth</th>
<th></th>
<th>SGA</th>
<th></th>
<th>LGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>OR (95% CI)</td>
<td>n</td>
<td>OR (95% CI)</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>(Preterm</td>
<td>Crude</td>
<td>Adjusted ^</td>
<td>(SGA</td>
<td>Crude</td>
</tr>
<tr>
<td></td>
<td>/term)</td>
<td></td>
<td></td>
<td>/AGA)</td>
<td></td>
</tr>
<tr>
<td>Non-habitual drinkers</td>
<td>364/6965</td>
<td>1.00 (Ref.)</td>
<td>1.00 (Ref.)</td>
<td>511/5659</td>
<td>1.00 (Ref.)</td>
</tr>
<tr>
<td>(<1 serving/week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green tea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td>6/156</td>
<td>0.74 (0.32, 1.68)</td>
<td>0.89 (0.32, 2.50)</td>
<td>9/137</td>
<td>0.75 (0.38, 1.47)</td>
</tr>
<tr>
<td>Moderate/strong</td>
<td>16/336</td>
<td>0.91 (0.55, 1.52)</td>
<td>0.89 (0.42, 1.90)</td>
<td>14/295</td>
<td>0.54 (0.31, 0.93)</td>
</tr>
<tr>
<td>p for trend</td>
<td>0.58</td>
<td>0.77</td>
<td>0.02</td>
<td>0.10</td>
<td>0.67</td>
</tr>
<tr>
<td>Oolong tea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td>5/204</td>
<td>0.47 (0.19, 1.15)</td>
<td>0.21 (0.06, 0.76)</td>
<td>17/170</td>
<td>1.14 (0.68, 1.88)</td>
</tr>
<tr>
<td>Moderate/strong</td>
<td>19/340</td>
<td>1.07 (0.67, 1.72)</td>
<td>0.79 (0.40, 1.58)</td>
<td>25/296</td>
<td>0.96 (0.63, 1.46)</td>
</tr>
<tr>
<td>p for trend</td>
<td>0.76</td>
<td>0.64</td>
<td>0.98</td>
<td>0.66</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>Weak</td>
<td></td>
<td>Moderate/strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Dark/black tea</td>
<td></td>
<td>14/313 0.86 (0.50, 1.48) 0.87 (0.43, 1.76)</td>
<td>22/372 1.13 (0.73, 1.76) 1.04 (0.57, 1.89)</td>
<td>23/272 0.96 (0.62, 1.48) 1.02 (0.58, 1.81)</td>
<td>32/272 0.89 (0.61, 1.30) 1.05 (0.61, 1.80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22/372 1.13 (0.73, 1.76) 1.04 (0.57, 1.89)</td>
<td>34/329 1.17 (0.82, 1.69) 1.12 (0.69, 1.84)</td>
<td>31/329 0.72 (0.49, 1.04) 0.84 (0.51, 1.38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.78 0.92</td>
<td></td>
<td>0.48 0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.07 0.49</td>
<td></td>
</tr>
</tbody>
</table>

*: Model adjusted for maternal age, educational level, monthly income, exposure to environmental tobacco smoke and folic intake during early pregnancy, pre-pregnancy BMI, previous history of complications during pregnancy, parity, sex of offspring, and total tea consumption frequency.

AGA: appropriate for gestational age; CI: confidence interval; SGA: small for gestational age; LGA: large for gestational age; OR: odds ratio.
13,963 eligible pregnant women approached between February 2012 and December 2014

10,277 recruited

- 435 dropped out before delivery
- 111 terminations of pregnancy or stillbirths
- 212 multiple gestations
- 155 missing delivery date

9,364 singleton live births

- 589 missing information on tea consumption

8,775 were included in the analysis
Figure 1 Flowchart of participant recruitment in the Born in Guangzhou Cohort Study, 2012-2014 (n=8775).