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Abstract: Recent advances in metasurfaces, i.e., two dimensional arrays of engineered 

nanoscale inclusions that are assembled onto a surface, have revolutionized the way to control 

electromagnetic waves with ultrathin, compact components. The generation of optical vortex 

beams, which carry orbital angular momentum, has emerged as a vital approach to 

applications ranging from high-capacity optical communication to parallel laser fabrication. 

However, the typically bulky elements used for the generation of optical vortices impose a 

fundamental limit toward on-chip integration with subwavelength footprints. Here, we 

investigate and experimentally demonstrate a three-dimensional vortex array generation based 

on the light-matter-interaction with a high-efficiency dielectric metasurface. By employing 

the concepts of Dammann vortex gratings and spiral Dammann zone plates, 3D optical vortex 

arrays with micrometer spatial separation are achieved from visible to near-infrared 
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wavelengths. Importantly, we show that the topological charge distribution can be spatially 

variant and be fully controlled by the design. 

  

Main Text: 

Flat optics have attracted great interest for being a promising alternative to control light 

waves by implementing ultrathin planar elements, namely metasurfaces, with spatially 

varying phase response instead of relying on phase accumulation along optical paths [1-3]. 

The main advantage of such tailored metasurfaces is that large phase shifts can be realized by 

nanostructures with thicknesses much less than the wavelength of light, and thus metasurface 

can be easily integrated into multifunctional on-chip optoelectronic systems [4-6]. Particularly, 

one type of such metasurfaces, referred to as geometric metasurfaces (GMs) that are based on 

a Pancharatnam-Berry phase change principle, provide fascinating dispersion-less and 

helicity-dependent phase properties [7-9]. The desired phase profile of the wave is directly 

encoded in the azimuthal orientation of the locally imprinted meta-atom [9-10]. The recent 

advances in flat optics with metasurfaces have shown the ability to overcome the limitations 

of conventional optics with a wide range of applications in wave front engineering [11-17], 

information processing [18], and spin controlled photonics [19-21]. In principle, the phase 

profiles of nearly any optical components including lenses [11-13], wave plates [14], 

holograms [15-16], as well as elements capable of bending light in unconventional ways [17] 

could be designed on the basis of plasmonic or dielectric metasurfaces [22-23].  

An important application for metasurfaces is the control and modification of optical 

beam profiles, and in particular the generation of orbital angular momentum (OAM) for light, 

which is important in terms of both fundmental physics and practical applications. The optical 

vortex beam that possesses a helical phase front and a doughnut-shaped intensity in the focus 

spot [24-25] has received increasing attention for its various applications, ranging from 

optical manipulation of microscopic particles and biological cells [26] to free-space optical 
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communication system [27]. Such a beam is characterized by an azimuthal phase dependence 

exp(il!), i.e., the OAM in the propagation direction has the discrete value of l  per photon, 

where l is the topological charge of the beam [24]. Various techniques have been reported for 

the generation of optical vortices, such as spiral phase plates, spatial light modulators, 

cylindrical mode converter and computer-generated holograms [25]. However, bulky macro-

scale interference-based generation methods through hologram-coding or phase-shifting have 

imposed a fundamental physical limit for realizing the vortex beam at a chip-scale footprint. 

In recent studies, metasurfaces with phase-modification capability were used for optical 

vortex generation, which showed potential for significant size reduction of the optical 

elements [4,9,28-30]. However, those vortex plates were so far restricted to create only 

limited number of vortices with specific topological charges [4,9,28-30], whereas spatial 

multiplexing would be required to attain additional topological charges [28]. 

As the various values of OAM of optical vortex beams result in different orthogonal 

eigenmodes they have gained great attention for optical multiplexing to facilitate a dramatic 

increase in transmission capacity by exploring the spatial freedom of light waves [27,31-33]. 

Especially, it has been shown that the use of vortex beams with an OAM basis can increase 

the tolerance of quantum key distribution systems to eavesdropping [34]. A number of 

schemes have been proposed for the parallel processing of vortex beams, including free space 

multiplexing and demultiplexing of OAM eigenstates [35], chip-scale generation and 

transmission of OAM-carrying beams on silicon-integrated circuits through whispering 

gallery mode resonators [31-32] and waveguide-based interconnected resonant microring 

fibers [33]. However, these approaches are resonant and therefore highly dispersive in nature, 

leading to a narrow bandwidth down to several nanometers. In addition, these techniques are 

not suitable for achieving a truly three-dimensional (3D) parallel processing of vortex beams 

with a more compact footprint. 
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In this letter, we propose and experimentally demonstrate the generation of a three-

dimensional vortex array with independently controllable topological charges that is based on 

a single ultrathin dielectric metasurface. We employ the concepts of Dammann vortex grating 

[36-37] and spiral Dammann zone plate [38] together with a lens factor to generate the 

metasurface phase profile with subwavelength pixel size. Figure 1 illustrates the generation 

and reconstruction procedure of such a 3D vortex array. The metasurface consists of Silicon 

nanofins patterned on top of a glass substrate. Each nanofin acts as a pixel of the entire 

diffractive metasurface element that generates the required continuous local phase 

discontinuity for circularly polarized (CP) light at normal incidence. The generated 3D vortex 

array with spatially variant topological charges is designed to appear within the Fresnel range 

of the metasurface. Specifically, the topological charge in each node of the generated 3D 

lattice can be determined by a simple formula mLx+nLy+qLz, where m, n and q represent the 

diffraction orders in x, y, and z directions, and Lx, Ly and Lz are the intrinsic base topological 

charges in transverse and longitudinal directions, respectively (Supplementary Materials). The 

design technique allows for a well-defined, quantized, and fully controllable spatially variant 

topological charge distribution. Importantly, such metasurface based vortex generators can 

achieve truely 3D vortex arrays over a large volume with high uniformity. Furthermore, the 

geometric nature of the phase profile (based on a Pancharatnam-Berry-Phase) enables the 

reconstruction of the vortices over a broad spectral bandwidth in the near-infrared and visible 

wavelength range. Importantly, the metasurface can be designed to possess the remarkable 

capability of vortex beam detection. The flexibility of our approach enables on-chip parallel 

processing to 3D micro- and nano-fabrication [39], and offers the possibility of ultrahigh-

capacity and miniaturized nanophotonic devices for harnessing angular momentum 

multiplexing and mode sorting [40-41]. 

The design principle of the vortex plate is schematically shown in Figure 2. The phase 

distribution is obtained from the combination of an optimized Dammann Vortex Grating 



     

5 
 

(DVG), a Spiral Dammann Zone Plate (SDZP), and a lens factor, as shown in Figure 2(a) 

(Supplementary Materials). The DVG is particularly designed to create a two-dimensional 

vortex array in the x-y plane with uniform energy distribution among the designated 

diffraction orders. This is accomplished by integrating the blazing grating with a spiral phase 

pattern with intrinsic base topological charge of Lx and Ly in orthogonal directions, whereas 

each period is divided into equal segments for multi-level phase optimization with a simulated 

annealing algorithm to achieve better uniformity. Each diffraction order (m, n) in the 

transverse focal plane is characterized by an equal-energy optical vortex of topological charge 

mLx+nLy. The SDZP can achieve a sequence of coaxial vortices in the focal volume. Indeed, a 

SDZP is essentially a Dammann zone plate (DZP) into which a spiral phase structure with 

intrinsic base topological charge of Lz is nested. In analogy to the Dammann grating concept, 

by modulating the phase transition points in one period in radial direction of the SDZP, the 

light energy can be redistributed uniformly into several longitudinal coaxial vortices at the 

desired orders. In addition, a lens factor is also nested into the final phase mask to simplify the 

generation scheme of the vortex array, because traditionally one has to insert a lens in front of 

the SDZP. Thus a sequence of coaxial focused vortices carrying a topological charge of qLz 

for qth order can be generated longitudinally in the proximity of geometric focus, by 

combining the SDZP together with the lens factor. Note here the vortex located at the 

geometrical focal position of the lens is defined as zeroth order, whereas the vortices 

extending along the positive z direction are defined as positive orders and vice versa. 

Therefore, through overlapping these three phase profile of the DVG, the SDZP and the lens 

factor together, the final phase plate can be formed, which has the capacity to generate 3D 

vortex array with topological charge distribution obeying the rule of mLx+nLy+qLz. 

Numerical simulations show the transverse and longitudinal coaxial vortices intensity 

distributions in both the focal plane (in x-y plane) and the meridian plane (in y-z propagation 

plane) for each single DVG (Figure 2b) and SDZP (Figure 2c), respectively. The effect of the 
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lens factor, which converges the scattered light from the SDZP into separate longitudinal 

coaxial positions in the neighbourhood of focus volume, is schematically illustrated by Figure 

2d. 

With such a design an M!N!Q 3D vortex array can be achieved by combining an M!N 

DVG and a 1!Q SDZP together with a lens factor, where M, N, and Q are numbers of total 

diffraction orders along three orthogonal orientations, respectively. To verify the concept of 

our design methodology, a 5!5 DVG with intrinsic base topological charge Lx= Ly =2, a 1!5 

SDZP with Lz=2 and a lens factor with focal length f=800 µm are chosen for experimental 

demonstration. The detailed design principle can be found in the Supplementary Material. 

The vortex plate is realized by utilizing a dielectric geometric metasurface to encode the 

generated phase profile following the above design. The metasurface is composed by 

designed pattern of silicon nanofins on top of a glass substrate (Figure 3). Each single Si 

nanofin can be considered as a dielectric resonator, and its orientation dependent interaction 

with CP light generates the desired geometric phase discontinuity of "=2!" in the cross-

polarized scattered field, where !=±1 corresponds to the helicity of right- (RCP) and left 

circularly polarized (LCP) incident light, and the azimuthal angle " of the nanofin with 

respect to the laboratory frame [9]. It is well known that a half wave plate can fully convert a 

circularly polarized beam into the opposite handedness as the result of a phase delay of # 

between the fast and slow axes. Hence, to achieve high conversion efficiency between the two 

circular polarization states, we carry out a 2D parameter optimization using a rigorous 

coupled wave analysis method to optimize the size parameters of the nanofins. The lattice 

constant of the nanofin array was fixed to be 600 nm, and the length L to be 400 nm. The 

parameters for width and height of the Si nanofins are swept to find the optimum parameters 

for half-wave plate functionality at the operation wavelength of $=780 nm. For the refractive 

index of amorphous silicon (%-Si) at 780 nm a value of n=3.9231+0.1306i was used. The 

simulated conversion efficiency and phase difference & between the fast and slow axes are 
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shown in Figure 3(b). Note that the conversion efficiency is defined as the ratio of the cross 

polarization efficiency to the total transmission efficiency composed of both co-polarization 

and cross polarization. The optimized values for the height h and width w of the Si nanofins 

are chosen as 450 nm and 140 nm, respectively, resulting in a high conversion efficiency of 

57.2% and a phase delay of # at 780 nm. 

For the experimental proof of the concept we fabricate the dielectric metasurface sample 

by standard electron beam lithography and reactive ion etching of Silicon (for details see 

Supplementary Material). The vortex plate contains 666!666 pixels, with a lattice constant of 

600 nm. The fabricated Si nanofins have a size of 410!175!466 nm3 (L!w!h), which are 

close to our designed values (Figure 3c). 

For the characterization of the metasurface we first simulate the intensity distribution of 

vortex array in x-y plane at different focal planes along the z direction (Figure 4). The 

numerical calculations are performed by using a Fresnel diffraction method. From the 

intensity plots one can clearly observe that the characteristic beam profile for each vortex 

exhibits an annular intensity distribution in the cross section, and a characteristic dark spot 

with zero intensity in the center. Furthermore, an entire set of 5 focal planes along the z 

direction is achieved, whereas the 5!5 in-plane vortices on each plane are spatially variant. 

For further discussion we take the zeroth-order focal plane at z=815µm for #=780 nm as an 

example. According to the rule of mLx+nLy+qLz, we can easily determine that the 

distributions of topological charges should be symmetric about the diagonal line of such a 5!5 

array with q=0. As an illustration, the topological charges in the first row can be calculated as 

['8, '6, '4, '2, 0] by setting m=['2, '1, 0, 1, 2], n='2, q=0 . Each focused vortex beam 

shows quite distinct doughnut-shaped intensity distribution with a different radius. Similarly, 

the topological charge distribution at other focus planes can be calculated with the same 

method.  
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Experimentally we use a setup as shown in Figure 5(a). A linear polarizer (P) and a 

quarter wave plate (QWP) are positioned in front of and after the sample to prepare and select 

the desired circular polarization state for the illumination and transmission. Due to the sub 

millimetre size of the reconstructed vortex array, a 20! (NA=0.45) magnifying microscope 

objective is positioned right after the sample to collect the transmitted light and image it onto 

a CCD camera. The depth and spatial distribution of the 3D vortex lattice can be analysed by 

adjusting the 3D precision translation stage where the sample is mounted on. Thus, different 

focal planes can be imaged separately on the camera to obtain a series of 2D images, allowing 

the verification of the 3D vortex array located at the corresponding node of the 3D lattice. 

Although the metasurface is designed for a wavelength of $=780 nm (for which the 

metasurface functions as a half wave plate to efficiently enhance the conversion efficiency), it 

can also work at other wavelengths due to the dispersion-less phase property based on the 

Pancharatnam-Berry phase principle. We demonstrate this broadband effect by measuring the 

corresponding beam profiles for wavelengths of $=633 nm and $=785 nm at the q=0, 1, 2 

planes (Figure 5(b)). We observe that the vortices with topological charge equal to zero shift 

their positions from the center diagonal line to the secondary diagonal and third diagonal, 

respectively. The experimental results show good agreement with the numerical predictions in 

Figure 4. More detailed measurement results can be found in the Supplementary Material. 

Other performance parameters are characterized as well, including the transverse and 

axial focus spacing, uniformity, and efficiency. The transverse spacing in both x and y 

directions are equal to 100 µm as designed. On the other hand, the z positions for the coaxial 

planes for #=785 nm are shifted from 598 µm, 689 µm, 815 µm, 997 µm, to 1281 µm, 

respectively. While for #=633 nm the coaxial planes are shifted from 736 µm, 899 µm, 1003 

µm, 1226 µm, to 1579 µm, respectively. The distances between the coaxial planes and the 

metasurface is approximately inverse-proportional to the wavelength, which can be explained 

from Fermat’s principle. This simple relationship explains very well the experimental 



     

9 
 

observations as well as the actual z positions can be determined from the numerical 

calculations with the Fresnel diffraction theory. By applying the Dammann optimization 

scheme, the energy distribution for each vortex beam is quite uniform. By collecting the entire 

transmitted CP light with opposite handedness by a lens, we determined the overall energy 

efficiency. In particular, the transmission efficiency at $=785 nm reach up to 59.1%, while the 

efficiency at $=633 nm drops to 15.6%. 

The metasurface can also be used for measuring the topological charge of a vortex beam 

(Figure 6). Light from the He-Ne laser with $=633 nm is collimated and expanded through an 

objective and pinhole. By using a spatial light modulator (SLM), which is uploaded with a 

fork shaped phase profile (see inset of Figure 6) to generate the vortex beam of desired 

topological charge. When a b-charged vortex beam is selected as the incident beam, the 

topological charges of the 5 ! 5 vortex arrays on those five coaxial planes can be determined 

by mLx+nLy+qLz+b (Figure 7). When the topological charge of the vortex array at a certain 

order is zero, the vortex will be annihilated, and the dark core disappears. Instead, in the far 

field, a central bright spot appears which can serve as the criteria for detection of the 

topological charge. For the experiment we utilized a vortex beam with topological charge of 

l='4 to detect the corresponding vortices in the five coaxial planes. Thus, the corresponding 

vortex with l=4 would be quenched to be a bright focal point, as indicated by the green dashed 

lines in Figure 7. All the other vortices would acquire extra OAM of b . The experimental 

results confirm our theoretical expectations. The detailed results for incident vortex beam 

carrying different topological charges of l=0, '2, '4, and '6 can be found in the 

Supplementary Material. 

Our presented generation mechanism of 3D vortex arrays is an efficient and simple 

method for generating spatially variant vortex beams. The experimental results show that the 

overall 5 ! 5 ! 5 vortex arrays are tuneable by simply changing the OAM of the incident 

beam. Such flexibility in operation implies that the vortex array on one certain cross-sectional 
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plane can be freely manipulated and fully controllable. Besides the 3D vortex array generation, 

the metasurface possesses the remarkable capability of topological charge detection in 

multiplexed vortex beams. It should be noted that the energy distribution of each vortex 

located in the corresponding node of the 3D lattice can be adjusted to be proportional rather 

than equally through multilevel continuous phase optimization in each segment of the 

metasurface plate. Therefore, it can provide greater freedom in applications such as 3D 

parallel laser fabrication.  

In summary, we propose and experimentally demonstrate 3D vortex arrays with spatially 

variant topological charges. The concept was realized by an ultrathin dielectric geometric 

metasurface with chip-scale footprint as small as 400 (m2. The dielectric metasurface with Si 

nanofins can work effectively as a half wave plate at the operation wavelength of 780 nm 

which leads to a high efficiency for the Pancharatnam-Berry-phase effect. Such distinguished 

spatial separability of vortex beam carrying different OAM modes can potentially applied to 

chip-level high-efficiency high-capacity OAM communication, multi-channel optical trapping 

devices, and 3D parallel laser fabrication. 
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Figure 1. Illustration of the generation and reconstruction procedure of 3D vortex array 

based on dielectric metasurface. Each Si nanofin plays the role of a pixel of diffractive 

element, which can generate the required continuous local phase profile with normal 

incidence of CP light. The reconfigured 3D vortex array with spatially variant topological 

charges is designed to appear within the Fresnel range. 
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Figure 2. Design principle of the three-dimensional vortex plate. The phase distribution of 

the 3D vortex plate can be obtained from the combination of an optimized Dammann Vortex 

Grating, a Spiral Dammann Zone Plate, and a lens factor. For Dammann Vortex Grating, it 

can generate 2D vortex array in focal plane; and the Spiral Dammann Zone Plate together 

with a lens factor can generate coaxial space variant vortex array longitudinally along z 

direction. 
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Figure 3. Design of the dielectric metasurface. (a) The schematic structure of dielectric 

metasurface. It consists of Si nanofin array patterned on glass substrate. The orientation angle 

! of the individual nanofin is carrying the desired phase discontinuity. The period of the 

nanofin array is fixed to be 600 nm, and the length to be 400 nm. The parameters of width and 

height are swept to achieve half-wave plate at $=780 nm. (b) Simulated cross polarization 

conversion efficiency and phase difference $ by sweeping the parameters of width and height 

of Si nanofin. The operation wavelength is fixed at 780 nm. (c) Schematic of the sample 

design and scanning electron microscopy images of the fabricated sample (top view and 

oblique view). 
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Figure 4. Simulation results of 3D vortex array of each coaxial plane for !=780 nm . The 

green dashed lines indicate the positions where the topological charges are equal to zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     

19 
 

 

Figure 5. Experimental investigations of 3D vortex array at two different wavelengths. 

(a) The experiment set up for capturing an image of the 3D vortex array. Different focus 

planes can be obtained by tuning the distances between the objective and the vortex plate. 

Experimental results of vortex array at three different z positions for q=0, 1, 2, respectively, 

with an incident wavelength of (b) $=633 nm and (c) $=780 nm, respectively. The entire set 

of images can be found in the Supplementary Material. The green dashed lines indicate the 

location, where the topological charges are equal to zero. 
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Figure 6. Experimental set up for the detection of topological charges of the vortex array. 

The spatial light modulator (SLM) uploaded with fork phase profile is used to generate the 

vortex beam of desired topological charge as incidence beam for the metasurface. After 

passing through the metasurface sample the 3D vortex array is measured by imaging to a 

CCD camera (MO-microscopy objective; BS-beam splitter; P-Polarizer; W-quarter wave 

plate). 
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Figure 7. Experimental verification of the space variant topological charges of the 3D 

vortex array. Simulations results (top row) and experimental results (bottom row) for an 

incident vortex beam with l='4 and $=633 nm for different coaxial observation planes along z 

direction. The corresponding vortex array with l =4 would be quenched to singularity points 

for vortices located on the green dashed lines.  
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