
 
 

University of Birmingham

Colorectal cancer cell line proteomes are
representative of primary tumors and predict drug
sensitivity
Mouradov, Dmitri; Wang, Xiaojing; Jorissen, Robert N.; Chambers, Matthew C.; Zimmerman,
Lisa J.; Vasaikar, Suhas; Love, Christopher; Li, Shan; Lowes, Kym; Leuchowius, Karl-Johan;
Jousset, Helene; Weinstock, Janet; Yau, Christopher; Mariadason, John; Shi, Zhiao; Ban,
Yugan; Chen, Xi; Coffey, Robert J. C.; Slebos, Robbert J. C.; Burgess, Antony W.
DOI:
10.1053/j.gastro.2017.06.008

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Mouradov, D, Wang, X, Jorissen, RN, Chambers, MC, Zimmerman, LJ, Vasaikar, S, Love, C, Li, S, Lowes, K,
Leuchowius, K-J, Jousset, H, Weinstock, J, Yau, C, Mariadason, J, Shi, Z, Ban, Y, Chen, X, Coffey, RJC,
Slebos, RJC, Burgess, AW, Liebler, DC, Zhang, B, Sieber, OM & Wang, J 2017, 'Colorectal cancer cell line
proteomes are representative of primary tumors and predict drug sensitivity', Gastroenterology.
https://doi.org/10.1053/j.gastro.2017.06.008

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 16. Jul. 2025

https://doi.org/10.1053/j.gastro.2017.06.008
https://doi.org/10.1053/j.gastro.2017.06.008
https://research.birmingham.ac.uk/en/publications/19b8b8f2-ce9f-4d1f-a209-48a933906ccb














































































M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Colorectal cancer cell line proteomes are representative of primary tumors and predict 

drug sensitivity 

Jing Wang, Dmitri Mouradov, Xiaojing Wang, Robert N. Jorissen, Matthew C. Chambers, Lisa 

J. Zimmerman, Suhas Vasaikar, Christopher G. Love, Shan Li, Kym Lowes, Karl-Johan 

Leuchowius, Helene Jousset, Janet Weinstock, Christopher Yau, John Mariadason, Zhiao Shi, 

Yuguan Ban, Xi Chen, Robert J. C. Coffey, Robbert J.C. Slebos,, Antony W. Burgess, Daniel C. 

Liebler, Bing Zhang*, Oliver M. Sieber* 

Supplementary File 1 

This file contains Supplementary Data, Supplementary Methods and Supplementary Fig. 1-24. 

Supplementary Data Set 1 

This file contains Supplementary Tables 1-43. 
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SUPPLEMENTARY DATA 

Proteomic detection of single nucleotide variants (SNVs) in CRC cell lines 

WES and RNA-Seq captured a combined total of 111,022 nonsynonymous single 

nucleotide variants (nsSNVs), 19.4% of which were exclusively detected by RNA-Seq analysis 

with an enrichment of A:T to G:C transversions characteristic of RNA editing 1 (Supplementary

Fig. 4). Of the detected nsSNVs 1,702 unique variants were observed at the proteomic level 

(Supplementary Table 9); 276 corresponded to somatic variants reported in the 

TCGA/COSMIC databases, and 952 were listed in the Single Nucleotide Polymorphism 

(dbSNP) database and are likely to be germline variants (Supplementary Fig. 3a). 678 SNVs 

were not captured in these databases, and these were significantly enriched in hypermutated as 

compared to non-hypermutated cell lines (p=9.7e-08, two-sided Wilcoxon rank-sum test), 

suggesting that most represented somatic changes (Supplementary Fig. 3b). As observed for 

known somatic variants, previously unreported SNVs had significantly higher predicted 

functional impact than the dbSNP-supported variants (Supplementary Fig. 3c, Supplementary

Table 9). Non-dbSNP variants were associated with a stronger negative impact on protein 

abundance than dbSNP-supported variants (p<2.2e-16, two-sided Kolmogorov–Smirnov test), 

suggesting reduced protein stability or translational efficiency associated with these variants 2, 3. 

The 276 TCGA/COSMIC-supported protein variants mapped to 248 genes, including 23 

cancer genes in the Cancer Gene Census database such as KRAS, CTNNB1, TP53, EGFR, 

SF3B1, SMAD4, and CDH1. The list also included 27 targets of FDA-approved drugs or drugs 

in clinical trials 4, such as EGFR, ALDH1B1, HSD17B4, PARP4, GSR, MAP2K1, and 
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AKR1A1. Overall, we found TCGA/COSMIC-supported variants in protein drug-targets in 40 

out of the 44 cell lines.   

Proteomic, transcriptomic and mutational discordance among paired cell-lines 

Included in our cell line panel were 2 pairs/triplets originally derived from the same 

tumor (COLO201/COLO205, DLD1/HCT8/HCT15) and 2 pairs/triplets derived from a primary 

tumor and metastatic derivatives (SW480/SW620, IS1/IS2/IS3). Assignments of proteomics 

subtypes exhibited some discordance for paired cell lines, with one outlier for the triplet of cell 

lines derived from the same tumor (DLD1/HCT8/HCT15) and one outlier each for the two 

primary-metastasis cell line pairs/triplets (SW480/SW620, IS1/IS2/IS3) (Figure 7a). CMS 

classifications were only confidently assigned for the IS1/IS2/IS3 triplet, but these also indicated 

discordance (Supplementary Fig. 22a). This proteomic and transcriptomic heterogeneity is 

consistent with heterogeneity observed at the genomic level between these paired cell lines, with 

46, 372, 117, 116 and 129 mutational differences in the non-hypermutated pairs 

COLO201/COLO205, SW480/SW620, IS1/IS2, IS1/IS3 and IS2/IS3, and 4125, 2460 and 1584 

for the hypermutated pairs DLD1/HCT8, DLD1/HCT15 and HCT8/HCT15. 
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LC/MS-MS. The protein extraction and tryptic digestion of the frozen cell line pellets were 

performed as previously described for TCGA CRC specimens 2; however, the optimal cutting 

temperature (OCT) compound removal procedure was omitted, since OCT was not present. The 

resulting tryptic peptides were fractionated using off-line basic reversed phase high-pressure 

liquid chromatography (bRPLC). A total of 60 fractions were collected, concatenated, and 

analyzed on a Thermo Orbitrap-Velos mass spectrometer by reversed phase HPLC. All samples 

were analyzed on the same instrument system that was used for the TCGA CRC sample analysis 

and with the same chromatography components, separation conditions, instrument settings and 

laboratory personnel. Consistent with the TCGA CRC analysis, control samples from basal and 

luminal human breast carcinoma xenografts (CompRefs) were analyzed in alternating order after 

each set of five cell lines. Raw data were processed and used for database and spectral library 

searching using three different search engines, Myrimatch 5, Pepitome 6 and MS-GF+ 7, as 

previously described 2. Protein assembly for the cell line data was performed using IDPicker 3 8

at 0.2% PSM FDR and a minimum of 2 distinct spectra required per protein. To compare data 

from the cell line, tumor, and normal samples and to facilitate the integration between genomic 

and proteomic data, a gene-level assembly was performed for all cell line, tumor, and normal 

samples at 0.1% PSM FDR and a minimum of 2 distinct spectra required per protein. For the 

confidently identified proteins, we relaxed the PSM FDR threshold to 1% to rescue additional 

high quality PSMs that were excluded by the stringent PSM FDR threshold, as previously 

described 2. For the 5 tumors and all 30 normal cases with proteomic measurements from 

duplicated samples, only the sample with a larger total spectral count was included for 

quantitative analyses. Raw data for the cell lines, database search results, and the two versions of 

assemblies can be found at the Mass spectrometry Interactive Virtual Environment (MassIVE, 
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ftp to massive.ucsd.edu, username: MSV000080374, password: a. HTTP access from the 

MassIVE website will be available after publication of the manuscript.) 

Transcriptome sequencing. RNA samples from CRC cell lines were extracted from pellets 

collected at the same time as the samples for proteomics analysis using the AllPrep DNA/RNA 

Mini kit (Qiagen). Libraries were prepared for sequencing using the TruSeq Stranded Total RNA 

Library Preparation Kit (Illumina), pooled and clustered using the cBot system (Illumina) with 

TruSeq SR Cluster Kit v3 reagents (Illumina). Sequencing was performed on the Illumina HiSeq 

2000 system with TruSeq SBS Kit v3 reagents (Illumina) at the AGRF. Each sample was 

sequenced to a depth of at least 28 million reads. Sequencing reads were quality assessed and 

trimmed for any remaining sequencing adaptor using Trimmomatic (v0.22) 9; reads smaller than 

50 bp were removed. Reads were subsequently aligned to human genome build Hg19 using 

Tophat (v2.0.8.Linux_x86_64) 10 with parameters -g 1, --library-type fr-firststrand. Gene level 

expression was quantified using Gencode v15 annotation using featureCounts with a parameter 

to account for stranded counting (-s 2) 11. Data can be accessed at the Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ktadckourbkbbur&acc=GSE90830).  

Exome-capture sequencing. Whole exome mutation data on 35 CRC cell lines from our cohort 

have been published previously 12. Libraries for the additional DIFI, GEO, IS1, IS2, IS3, 

LIM1863, LIM2537, V9P and VAC05 cells were produced using the Nextera DNA Library 

Preparation Kit (Illumina), and 100bp paired-end read sequencing performed using the Nextera 

Rapid Capture Expanded Exome Enrichment Kit (Illumina) on an Illumina HiSeq 2000 System 
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at the AGRF. Sequence alignment and calling of SNVs and INDELs involved mapping with 

BWA (0.7.12) and variants calling with GATK (GATK-3.4-46). To ensure high-quality variant 

calling of putative somatic mutations in the absence of matched normal tissue by GATK, we 

created a hybrid pipeline between the GATK Germline and Somatic Best Practice Variant 

Detection Protocols (https://software.broadinstitute.org/gatk/best-practices/) as described 

previously 12. Briefly, we aligned paired-end reads to the human reference genome (hg19) with 

BWA-mem followed by adding read groups, marking duplicates and re-ordering with Picard 

tools (1.69). We then carried out base quality score recalibration and INDEL realignment using 

GATK modules. Finally we applied the GATK variant caller ‘HaplotypeCaller’ and filtered 

reads using the ‘VariantFiltration’ module. The minimum Phred-scaled confidence threshold for 

calling variants was set to 30. The ‘VariantFiltration’ module excluded SNVs with: a quality by 

depth score (QD) <2.0, a Fisher strand score (FS) >60.0, Mapping Quality Rank Sum Test 

(MappingQualityRankSum) < -12.5 and relative positioning of ALT alleles within reads 

(ReadPosRankSum) < -8.0. For INDELs, the following exclusion criteria were used: QD 

<2.0, FS >200.0 and ReadPosRankSum < -20.0. These filters ensured: (1) high confidence 

variant calls based on unfiltered depth of non-reference samples (QD); (2) low strand bias for 

detection of variants (FS) as strand bias is indicative of false positive calls; (3) checks for similar 

mapping qualities between REF and ALT alleles (MappingQualityRankSum) and checks to 

determine whether there was a position bias within the reads between ALT and REF alleles – 

ALT (but not REF)  alleles occurring at end of reads is indicative of false positive calls. To 

remove putative germline variants in the absence of matched normal data we annotated detected 

alterations against databases of human germline variations including the Single Nucleotide 

Polymorphism database (dbSNP, build 135, SAO = 1), 1000 Genomes Project database (build 
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20110521), Mills et al. data set of small insertions and deletions 13 and germline variants 

detected in 114 normal colorectal tissues analyzed in our laboratories. Regions of known 

germline chromosomal segmental duplications were excluded to reduce the possibility of false-

positive variants caused by read mismapping 14. For analyses of cancer gene mutations, 

following variant classification was considered: “FRAME SHIFT” / “Frame Shift Del” / “Frame 

Shift Ins", "CODON DELETION" / "In Frame Del", "CODON INSERTION" / "In Frame Ins", 

"SPLICE SITE ACCEPTOR" / "SPLICE SITE DONOR" / "Splice Site", "STOP GAINED" / 

"Nonsense Mutation", “NON SYNONYMOUS CODING" / "Missense Mutation", "CODON 

CHANGE PLUS CODON DELETION", "CODON CHANGE PLUS CODON INSERTION", 

"STOP LOST", "START GAINED", "START LOST”. 

Variant peptide identification and analysis. To identify variant peptides, we used a customized 

protein sequence database approach 15, 16 wherein we derived customized protein sequence 

databases from matched RNA-seq data and then performed database searches using the 

customized databases for individual samples. Sequence alignment and calling of SNVs and 

INDELs involved mapping with STAR 2.5.0c and variants calling with GATK (3.5-0-

g36282e4). To ensure high-quality variant calling by GATK, we followed the GATK Best 

Practice Variant Detection protocol on RNA-Seq 

(http://gatkforums.broadinstitute.org/dsde/discussion/3892/the-gatk-best-practices-for-variant-

calling-on-rnaseq-in-full-detail). Briefly, we aligned reads to the human reference genome 

(hg19) with STAR followed by adding read group, marking duplicates and re-ordering with 

Picard tools (1.78). We then applied the GATK pipeline that includes modules 

‘SplitNCigarReads’, ‘HaplotypeCaller’ and ‘VariantFiltration’. The minimum Phred-scaled 
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confidence threshold for calling variants was setting to 20. The ‘VariantFiltration’ module 

excluded SNVs with: a quality by depth score (QD) <2.0, a Fisher strand score (FS) >30.0 or 

clusters of at least 3 SNPs that were within a window of 35 bases between them. These filters 

ensured: (1) high confidence variant calls based on unfiltered depth of non-reference samples 

(QD); (2) low strand bias for detection of variants (FS)—as strand bias is indicative of false 

positive calls; (3) filtering of many false variant calls introduced by mapping error of RNA-Seq 

reads. For customized database construction and variant peptide identification we used the R 

package customProDB 15 to annotate variations predicted from RNA-seq, including mapping to 

dbSNP138 and COSMIC66 databases. For each sample, customProDB generates a protein 

FASTA database by appending proteins with nonsynonymous protein coding SNVs and aberrant 

proteins to the end of the standard RefSeq human protein sequence database. Peptide 

identification was performed for each sample separately using corresponding customized 

FASTA database and MS-GF+ and MyriMatch 2.1.87. Search settings were identical to those 

described above. IDPicker 3 was used for protein assembly as described earlier, except that the 

data set was filtered at 1% PSM FDR and a minimum of 5 spectra identified per protein. The full 

data set consisted of 9,983 protein groups with 4.3% protein FDR. Identified SNVs were further 

annotated for existence in the somatic variant list published by TCGA 17 (i.e., TCGA-somatic 

variants), existence in the COSMIC66 database (that is, COSMIC-supported variants), and 

existence in the dbSNP138 database (i.e., dbSNP-supported variants). Functional impact of the 

SNVs was analyzed using MutationAssessor 18 and Sorting Intolerant From Tolerant (SIFT) 19.  

SNP microarray analysis. SNP array data on 38 cell lines from our cohort have been published 

previously 12. SNP array assays on the additional DiFi, GEO, IS1, IS2, IS3 and V9P cells were 

performed at the AGRF using CytoSNP-850K v1.1 BeadChips (Illumina). SNP array data were 
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processed using GenomeStudio software (Illumina), and SNPs with detected copy-number 

variation in a reference set of 637 normal tissue samples were excluded from downstream 

analysis as described previously 12. The median call rate for the cell line samples was 97.3% 

(range 93.5-99.7%). DNA copy number segmentation with adjustment for normal contamination 

and intra-tumor heterogeneity was performed using the OncoSNP v2.18 suite 20, and the 

proportion of samples with gain or loss relative to ploidy (modal chromosome copy number) 

quantified at the SNP level. Average mean log R ratios were calculated for genes from the 

segmented data based on their RefSeq genomic positions. 

VOOM/LIMMA analysis. The application of Voom to count data 21 assumes that the gene-wise 

mean-variance relationship should be smoothly decreasing with the count size. This assumption 

was met by filtering for quantifiable proteins or mRNAs, defined as CPM>20 in 20% of samples 

for protein spectral counts and CPM>1 in 20% of samples for RNA-Seq counts (Supplementary

Fig. 24). Then, based on the quantifiable proteins or mRNAs, we used voom to normalize the 

proteomics or RNA-Seq data and performed differential gene expression analyses utilizing 

limma 22. Voom/limma analyses were performed using Limma 22 and edgeR 23 R packages, and 

method sensitivity and specificity for spectral count data were validated using the spike-in data 

set generated by the 2015 study of the Proteome Informatics Research Group (iPRG) of the 

Association of Biomolecular Resource Facilities (ABRF) (ftp://iprg_study@ftp.peptideatlas.org/ 

(password ABRF329)) (Supplementary Fig. 1). Briefly, the 2015 iPRG study was based on four 

artificially made samples of known composition, each containing a constant background 200 ng 

of tryptic digests of S.cerevisiae (ATCC strain 204508/S288c). Each sample was separately 

spiked with different quantities of six individual protein digests and analyzed in triplicate by LC-
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MS/MS acquisitions (total of 12 runs) using a Thermo Scientific Q-Exactive mass spectrometer.  

Data were acquired in data-dependent (DDA) mode. The MS/MS spectra were searched against 

the provided target-decoy protein database using three sequence search engines, OMSSA 24, MS-

GF+ 7 and Comet 25. The search results were first validated at the peptide-spectrum match (PSM) 

level by PeptideProphet 26, employing decoy-assisted semi-parametric modeling 27. The results 

from the three search engines were combined using iProphet 28. The LC-MS features were 

identified and quantified with Skyline 29 v.2.6.0.6851. The original Skyline-based quantification 

in a tab-delimited table form was downloaded from the ftp site. Voom/limma identified spike-in 

samples with a sensitivity of 87.1%, specificity of 99.9% positive predictive value of 93.1% and 

negative predictive value of 99.9% based on FDR<0.05 and greater than 2-fold change 

(Supplementary Fig. 1a-b), and voom/limma estimated fold-changes were highly correlated 

with expected fold-changes (Spearman’s correlation=0.95, p<2.2e-16, Supplementary Fig. 1c). 

Human Protein Atlas. The Human Protein Atlas data were downloaded from 

http://www.proteinatlas.org/about/download (cancer.csv and proteinatlas.tab), which contained 

the IHC expression scores of 185,406 patients for 16,235 proteins on colorectal tumor samples. 

Data were filtered for antibodies with “supportive” evidence. Summary tumor protein scores 

were classified as not detected, low, medium or high staining groups based on the mode of 

respective individual sample scores. 

Tumor stroma markers. Markers for tumor cells and stroma components were assembled from 

key human cell phenotype markers (BD Human and Mouse CD Marker Handbook, 
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https://www.bdbiosciences.com/documents/cd_marker_handbook.pdf; 

http://www.biolegend.com/cell_markers; 30), blood group systems 31, blood plasma 32 and 

extracellular matrix components 33 (Supplementary Table 41) 

KEGG pathway. The KEGG pathways and corresponding annotations were downloaded using 

KEGG API (http://www.kegg.jp/kegg/rest/keggapi.html) 34. We only considered the pathways 

from the classes “Metabolism”, “Genetic Information Processing”, “Environmental Information 

Processing”, “Cellular Processes” and “Organismal Systems”, which contained 229 pathways 

and 6,488 unique annotated genes. 

Correlation between steady state mRNA and protein abundance. Because steady state 

comparisons require mRNA and protein measurements within a sample to be comparable, we 

used FPKM (Fragments Per Kilobase Million) and NSAF (Normalized Spectral Abundance 

Factor) to normalize the RNA-Seq and proteomics data of tumors and cell lines. Then, based on 

the 8,874 overlapping genes among the four data sets, we calculated the Spearman’s correlation 

coefficients between FPKM and NSAF measurements for both tumors and cell lines.  

Correlation between mRNA and protein variation. To evaluate mRNA and protein variations across 

samples, we focused on 3,718 overlapping quantifiable genes identified from Voom among RNA-Seq and 

proteomics data of tumors and cell lines. The different sample sizes of tumor and cell line cohorts may 

cause the correlations between mRNA and protein variation from these two data sets to be incomparable. 

Thus, for the tumor data, we randomly selected 44 samples and calculated the Spearman’s correlations 
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between mRNA and protein variations across these 44 samples. We repeated this process 100 times and 

calculated the mean correlation for each gene. For the cell line data, we directly calculated the 

Spearman’s correlations between mRNA and protein variations across the 44 cell line samples. Then, 

based on the Spearman’s correlation of the tumor and cell line data, we identified the enriched KEGG 

pathways based on the two-sided Kolmogorov-Smirnov test under FDR 5%. 

Correlation of relative mRNA-protein abundances. To identify pathways that are modulated 

at the post-transcriptional level in cell lines and tumors, we used the FPKM and NSAF 

normalized data of the 8,874 overlapping genes among the four protein and mRNA data sets. We 

calculated the mean differences between mRNA and protein ranks for each gene within 

individual samples across each cohort and then performed the GSEA enrichment analysis against 

KEGG pathways (excluding the overview pathways in the “Metabolism” and “Organismal 

systems” classes) to identify the enriched pathways under a 5% FDR. 

Pathway signature identification. To assess whether genes in a given KEGG pathway have 

differing expression in tumors or cell lines relative to normal colorectal tissue, we modelled the 

protein or mRNA expression levels (cpm values for quantifiable genes) of pathway members 

using a linear mixed-effects model (lme4 R package, 35). Genes and sample type were treated as 

fixed effects (each as categorical variable), and the interaction terms between the genes and 

sample type (grouped by sample type) as random effects. The coefficient for sample type was 

interpreted as an aggregate measure of expression change for the pathway proteins/mRNAs in 

tumors or cell lines relative to normal tissue. P values were calculated using the degrees of 
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freedom for the sample type coefficients as the number of respective pathway proteins or 

mRNAs minus one.

Comparison of the impact of copy number alteration on protein abundance for cell lines 

and tumors. Evaluation of the association between copy number alteration and protein or 

mRNA levels was carried out for genes with complete gene-level log R ratio data (not all gene 

level data could be computed due to probe failure, see call rates) and which had quantifiable 

expression from Voom: 4,878 proteins and 12,277 mRNAs for cell lines, and 4,344 proteins and 

13,269 mRNAs for tumors. We performed voom/limma analysis utilizing robust linear 

regression for gene-level log R ratios against protein or RNA-Seq expression levels. 

Voom/limma analysis was run for each gene-level log R ratio state across all genes, retrieving 

only the relevant FDR adjusted statistic of the gene in question. Results were aggregated and 

overlapping significant associations identified between protein and mRNA data for cell lines and 

tumors. 

Comparison of the effect of candidate oncogene-targeting shRNAs on the proliferation of 

colon cancer cell lines. The shRNA gene level data was downloaded from the Achilles project 

website (https://portals.broadinstitute.org/achilles/datasets/5/download) and contained eight 

colon cancer cell lines overlapped with our 44 cell lines. We calculated the spearman’s 

correlation between shRNA score and log-transformed copy number data across eight cell lines 

for each candidate oncogene. The negative correlation indicates the gene knockdown affects the 

cell proliferation. Because of the limited sample size, we identified the significant candidate 
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oncogenes based on r<-0.5 instead of the p value. If one gene has multiple shRNAs, this gene 

was selected only if all shRNAs were concordant. 

Drug sensitivity studies. Cells were seeded into 384-well plates (1000 cells/well) in DME 

(Gibco) supplemented with 10% FBS (Bovogen Biologicals). Oxaliplatin (Cat# S1224), erlotinib 

(Cat# S7786) and regorafenib (Cat# S1178) were purchased from Selleck Chemicals. 5-

fluorouracil (5-FU) (Cat# F6627) was obtained from Sigma. Compounds were titrated in DMSO 

(10-point 3-fold dilution series) and added to the cells in quadruplicate using liquid handling 

robotics. Final DMSO concentration in all wells was 0.25%. After incubation with compounds 

for 72hr, cell viability was determined using CellTiter-Glo-2 (Promega) according to 

manufacturer’s instructions and calculated as a percentage of DMSO (100%) and 1uM 

bortezomib (0%, Cat# S1013, Selleck Chemicals). Data was analyzed in Pipeline Pilot 

(BIOVIA) and the IC50 values calculated using a four-parameter logistic nonlinear regression 

model. Data were summarized as pIC50 +/- SD= with 2-3 independent experiments for each cell 

line. For drug combination screening in HCT116 cells, 123 drugs were accessed from 

Compounds Australia, Griffith University, Australia (Supplementary Tables 4-5). For each 

compound at a given dose, we calculated the Bliss excess as BE = fcombo - fsingle - f2nd drug + (fsingle

× f2nd drug) for duplicate experiments. We then calculated the average BE over the doses for that 

compound in combination with either 5-FU or SN38. 

GDSC data. GDSC (Genomics of Drug Sensitivity in Cancer) drug sensitivity data 36 were 

downloaded from http://www.cancerrxgene.org/downloads (version 07/04/2016), which 
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contained 18 colon cancer cell lines used in this paper and 251 drugs. Because the sensitivity 

data of some drugs were missed in many of the 18 cell lines, we finally kept 210 drugs with at 

most five missing values for analysis. Drug-target gene and KEGG pathway level relationships 

tested are summarized in Supplementary Table 34. 

Comparison of omic modalities for prediction of drug sensitivity. To compare the utility of the 

proteomics, RNA-Seq, CNA and mutation data for predicting drug sensitivity to 5-fluorouracil, erlotinib, 

oxaliplatin, regorafenib and SN-38 in our 44 CRC cell line panel, 3269 common genes assayed by all four 

omics platforms were used as the features for the prediction.  Following the approach of Haibe-Kains et. 

al. 37, the 44 cell lines were dichotomized into sensitive and resistant groups for each drug based on the 

median of their respective pIC50 values. For each drug-omics modality combination, random forests 

models were constructed and evaluated using 100 times of 5-fold cross-validation based on AUROC (area 

under the receiver operating characteristic curve). During the training phase of each cross-validation, we 

used 1000 trees and optimized the number of features randomly sampled as candidates at each split from 

a grid of 100 pre-defined numbers using an inner-loop cross-validation. To compare the performance 

between proteomics data and other omics data, the two-sided Wilcoxon rank sum test was performed.  

Cell line proteomic and CMS subtype predictions. To assign cell lines to our previously 

identified proteomic subtypes 2, normalized cpm data from voom were transformed into z-scores 

and the R package pamr (http://CRAN.R-project.org/package=pamr) was used to apply our 

predefined signature genes to the cell line scaled expression matrix. To identify the optimal value 

of the shrinkage parameter for our PAM prediction model, we selected the value that minimized 

leave-one-out cross-validated misclassification error for 79 tumor samples (error rate<2%). We 
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assigned five proteomics subtypes to 40 cell lines with probability more than 0.8 using 1,377 

signature genes. For each sample in a subtype, we calculated the Pearson correlation with others 

in the same subtype. To assign CMS subtypes to cell lines and a dataset of 5 matched primary 

and metastatic tumors pairs, we used the CMSclassifier package in R (https://github.com/Sage-

Bionetworks/CMSclassifier). To make the RNA-Seq and microarray data compatible with the 

microarray data background set supplied with the package, gene expression values were quantile 

normalized to the reference distribution. Class assignments were made based on consistent 

predictions from both the nearest random forest and single sample predictors. 

Resources. To make the quantitative data described in this paper available to the scientific 

community, we developed a web application CRCOmics (http://crcomics.zhang-lab.org), which 

allows users to perform differential, correlation, and pathway analyses to compare cell lines and 

tumors, and to visualize analysis results using various types of statistical plots. To enable 

visualization of the variant peptides identified in this study in the context of the human genome, 

we converted PSMs from the customized search results into the proBAM format 38, which can be 

download or accessed in a JBrowse-based genome browser (http://proteogenomics.zhang-

lab.org/).  
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SUPPLEMENTARY FIGURES 

Supplementary Fig. 1. Voom/limma method sensitivity and specificity for protein spectral 

count data using spike-in data. (a) Six spike-in sample comparisons showing identified true 

positives (red), true engatives (blue) and false negatives (gold). (b) Test performance of 

voom/limma across spike-in experiments. (c) Comparison of expected and voom/limma derived 

log fold-changes for spike-in proteins. 
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Supplementary Fig 2. Mutation frequencies in 44 human CRC cell lines. Cell lines 

segregated into distinct hypermutated and non-hypermutated cases. MSI-H, microsatellite 

instability-high 
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Supplementary Fig 3. Proteomic detection of single nucleotide variants (SNVs) in CRC cell 

lines. (a) Classification of the SNVs detected in individual cell lines based on support from 

various variant databases. The cell lines are ordered by the number of new variants, then 

COSMIC/TCGA-supported somatic variants, and then dbSNP-supported variants. Yellow, light 

blue, and dark red indicate SNVs detected only by exome sequencing based database search, 

only by RNA-Seq based database search, and by both searches, respectively. Sample 

hypermutation (Hyper) status is labeled at the bottom (blue, hypermutated; grey, non-

hypermutated). (b) Association of all detected variants, COSMIC/TCGA supported variants, 
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dbSNP supported variants and new variants with cell line hypermutation phenotype. p for 

Wilcoxon rank-sum test. (c) Distributions of the functional impact scores calculated by 

MutationAssessor and SIFT for the three categories of SNVs. p for t-test. 
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Supplementary Fig. 4. Incorporation of non-synonymous single nucleotide variants 

(nsSNVs) into a customized database. (a) A scatterplot shows the number of nsSNVs detected 

by exome sequencing (x-axis) and RNASeq (y-axis). Each dot represents a cell line. (b) dbSNP 

rates of ncSNVs detected by exome sequencing (red) and RNASeq (blue) in 44 cell lines. The 

numbers above the box indicate the median value (c) The number of nsSNVs detected by exome 

sequencing only (red), RNASeq only (blue) and both (grey) for each cell line, ordered by the 

combined number of unique nsSNVs from the two platforms (from top to bottom). The 

hypermutation status is labelled on the left (blue, hypermutated; grey, non-hypermutated). (d) 

Mutation spectra for the three nsSNVs categories. Mutational patterns were calculated for 
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Supplementary Fig. 5. Proteomic platform stability. The cell line, tumor, and normal tissue 

proteomic analysis was performed on the same platform. To evaluate platform stability, we 

analyzed benchmark quality control (QC) samples (n=42) of basal and luminal human breast 

tumor xenografts run in alternating order after every five tumor, normal tissue, or cell line 

samples. (a) Heatmap representing the Spearman’s correlation between each pair of samples. 

The green and blue bars represent the WHIM16 and WHIM2 samples, respectively, whereas the 

brown, yellow, and purple bars represent interstitials within the tumor, normal, and cell line 

cohorts, respectively. (b) Principal component analysis plot. The color scheme is the same as (a).  
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Supplementary Fig. 6. Comparison of protein inventory between cell lines, tumor and 

normal tissue data. (a) Venn diagram comparison for the three data sets. (b-d) log-scaled mean 

CPM distribution for protein inventory of cell line, tumor and normal data. Black lines in the 

three figures represent 103 cell line-specific proteins, 42 tumor-specific proteins and 20 normal 

tissue-specific proteins, respectively. 86.4% of cell line-, 92.9% of tumor-, and 65.0% of normal-

specific proteins exhibiting <4 spectral counts per million (CPM).
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Supplementary Fig. 7. Proteomics (a) and RNA-Seq data (b) according to annotation for 

major Gene Ontology biological processes, molecular functions, and cellular components. 

Terms from GOSlim database.  
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Supplementary Fig. 8. Enriched GO biological process terms for genes overexpressed in 

cell lines (a) and tumors (b) based on the proteomics data. The boxes with red colored 

process names, numbers of proteins and adjusted p values represent the enriched GO terms. 
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Supplementary Fig. 9. Comparison between mRNA abundance of cell line and tumor data. 

Figure legend is the same as for Fig. 1. 
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Supplementary Fig. 10. Enriched GO biological process terms for genes overexpressed in 

cell lines (a) and tumors (b) based on the mRNA data. The boxes with red colored process 

names, numbers of genes and adjusted p values represent the enriched GO terms. 
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Supplementary Fig. 11. Validation of specificity of blood plasma, extracellular matrix and 

cell type-specific markers by inspection of the Human Protein Atlas. Exemplar staining 

images retrieved from the HPA. p/r indicates significance in proteomics and RNASeq data, 

respectively. 
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Supplementary Fig. 12. Validation of specificity of epithelial markers by inspection of the 

Human Protein Atlas. Exemplar staining images retrieved from the HPA.
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Supplementary Fig. 13. Pathway signatures related to the hypermutated samples for 

RNASeq cell line and tumor data. Figure legend is the same as for Fig. 2.

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Supplementary Fig. 14. Comparison of cell lines and tumors to normal tissues based on 

mRNA abundance data. Figure legend is the same as for Fig. 4. 
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Supplementary Fig. 15. KEGG pathway expression concordance between tumor versus

normal and cell line versus normal for (a) protein and (b) mRNA expression differences.
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Supplementary Fig. 16. Effect of shRNA for six oncogenes on the proliferation of colon 

cancer cells based on data from the Achilles study. X-axis represents the log ratio of copy 

number data and y-axis represents the shRNA score. The correlation was calculated by the 

Spearman’s correlation coefficient. 
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Supplementary Fig. 17. Heatmap of drug activity-protein associations. Proteins shown on the vertical axis (Supplementary Table 

37). Red and blue coloring, respectively, indicate positive and negative associations between drug pIC50 values and protein expression, 
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as obtained from voom/limma calculations. The intensity of the coloring corresponds to a range of False Discovery Rate (FDR) 

values, with the deepest to lightest corresponding to <10-4, <10-3, < 0.2 and �• 0.2. The drugs are ordered by their Spearman 

correlations for their pIC50 values and the cell doubling rate (plotted in the lower panel) and the proteins are ordered by their signed -

log10 FDR values for association with cell doubling rate, as obtained from the relevant voom/limma calculation (Supplementary Table 

37). 
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Supplementary Fig. 18. Heatmap of drug activity-protein KEGG pathway associations. For each drug, the False Discovery Rates 

(FDRs) for the KEGG pathways were obtained using the ranked protein list from the relevant voom/limma calculations to assess 

associations between drug pIC50 values and protein expression (Supplementary Table 38). The intensity of the coloring corresponds to 

a range of FDR values, with the deepest to lightest corresponding to <10-4, <10-3, < 0.2 and �• 0.2. The drugs are ordered by their 

Spearman correlations for their pIC50 values and the cell doubling rate (plotted in the lower panel) and the proteins are ordered by their 

signed -log10 FDR values for association with cell doubling rate, as obtained from the relevant voom/limma calculation 

(Supplementary Table 38).
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Supplementary Fig. 19. Concordance between GDSC and in-house pIC50 data for 

overlapping drugs.  
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Supplementary Fig. 20. Model for prediction of proteomics subtypes trained on primary 

tumor assignments. Overall and class-specific misclassification errors are shown for leave-one-

out cross-validation. Prediction Analysis of Microarrays (PAM) analysis with increasing values 

of centroid shrinkage. A set of 1,376 genes provided the minimum cross-validated prediction 

error. 
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Supplementary Fig. 21. Prediction of proteomics subtypes using 1,376 trained genes. Bar 

charts indicates the posterior probability of belonging to each proteomics subtype. A. Green; B, 

Orange; C, Purple; D, Blue; E, Red. 
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Supplementary Fig. 22. Concordance of mRNA CRC subtypes in cell lines and tumors (a), 

molecular features (b) and cell line drug response (c). Figure legend is the same as for Fig. 7. 
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Supplementary Fig. 23. Relationship of proteomics subtypes with drug sensitivity for 

microsatellite stable cell lines.  
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Supplementary Fig 24. Mean-variance trend plots based on the different combinations 

among cell, tumor and normal proteomics data and RNASeq data. The points in the plots 

represent the quantifiable proteins or mRNAs defined as CPM>20 in 20% of samples for protein 

spectral counts and CPM>1 in 20% of samples for RNA-Seq counts.


