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1. Introduction 
With the increase in population and rapid growth in 

industry and other sectors, the demand for the electricity 
raises [1]. This may not be necessarily managed by the 
addition of conventional and new generators unless 
intermediate mechanisms are in place in order to reduce grid 
electrical power losses and assure grid power quality, 
efficiency, and other operational benefits.  

Furthermore, power electronic devices are typically 
employed to enable loads to operate with high capacity, high 
performance and low cost [2]. Nevertheless, they present a 
drawback as these devices are commonly represented by 
non-linear loads, which affect the grid quality and increment 
the electrical losses [3]. 

Because the voltage levels are low in a power 
distribution system, the current magnitude is high and 
therefore the power losses in the distribution system is of 
much greater significance in comparison with the 
transmission system [4]. In order to assure the security 
standards, the grid must work in an optimal way to properly 
control the system. That is to reduce the distribution losses 
and assure the voltage magnitude and the Total Harmonic 
Distortion (THD) to be within the desired range. 

The employment of capacitors was proposed in 
different studies as a solution. There are different analytical 
methods to estimate the optimal size and location to install 
them [5-7]. Most of them consider linear loads, while the 
ones who dealt with non-linear loads [7, 8] did not take into 
account the optimum size and dispatch strategy. In spite of 
their price, which is low in comparison with other var 
compensators, they are not able to confront the problem of 
harmonics. 

On the other hand, Distribution Static VAR 
Compensators (D-SVCs) are another convenient way to 
handle the previous problems, as they have several benefits 
such as voltage support, power factor correction, loss 
reduction and billing charge reduction. However, their main 
advantage lies on the reactive power control and their 

capacity to mitigate harmonics [9]. It is then required to find 
an optimal approach to install them with a proper size, in the 
most convenient locations and to control their dispatch 
strategy to maximize the savings and assure the grid quality. 

Several studies do not offer an integration in their 
problem formulation to tackle the optimized design of D-
SVCs. That is, [10] only studies the location for var 
compensators without considering their optimum size and 
operation; the same issue goes for [11, 12] with the 
difference that they offer an algorithm with a better speed of 
convergence; [13] integrates the D-SVC’s size, however, 
their optimum operation is still not being considered and 
authors in [14] give an approach in order to minimize the 
power losses without bearing in mind economical features. 
Most of the studies just consider linear loads while the ones 
who deal with non-linear loads [15, 16] do not take into 
account the optimum size and dispatch strategy. 

Focusing in the optimization techniques, recent 
investigations present new approaches that are effective in 
robustness and bring a fast convergence to obtain the 
solution For instance, [17] implemented an intersect 
mutation differential evolution method to determine the 
optimal location and the size of DGs and capacitors 
simultaneously; the authors in [18] employed a hybrid 
harmony search algorithm approach in order to minimize 
power losses in radial distribution networks by determining 
optimal locations, optimally sized DGs and shunt capacitors; 
in [19] the optimal allocation for the SVC and DGs has been 
done using three different indices, namely, Voltage Profile 
Improvement Index (VPII), Line Loss Reduction Index 
(LLRI) and Revamp Voltage Stability Indicator (RVSI); [20] 
proposed an application of Cuckoo search algorithm to 
determine optimal location and sizing of SVC. Nevertheless, 
a deeper analysis on them reveals that the optimization for 
the operational scheduling of the var compensator was not 
considered or was performed for only a single hour. This is 
a deficiency on these studies, since load demand is expected 
to change in time (e.g. peak times, minimal load, among 
others). 
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This paper proposes an analytical method which 
deals with non-linear loads in a radial network and assures 
power grid quality (related to grid voltage and THD content). 
This approach allows reducing the conductor’s investment 
and energy losses that are presented in each segment of the 
feeder, which can be considered as savings.  Mathematical 
models were used for the implementation of the 
methodology that employs a multi-state Particle Swarm 
Optimization (PSO) algorithm, at first to select the 
placement and then to size and next to specify the dispatch 
strategy of the D-SVCs. Their objectives are to maximize 
the total savings of the radial power distribution system 
during a year, subject to voltage and THD standards 
regulations. The main contribution of this research is that it 
offers a comprehensive problem formulation to tackle the 
optimization for sizing, placement and scheduling of D-
SVCs, which considers a yearly demand for non-linear loads. 
The paper continues as follows: section 2 provides the 
mathematical model for D-SVC, non-linear loads and cost 
savings; section 3 details the problem formulation in which 
the objective function and the constraints are described in 
detail; section 4 gives a description of the proposed 
methodology, which optimizes the placement, size and 
yearly dispatch strategy for the D-SVCs by using two stage 
Particle Swarm Optimization (PSO) algorithms; Three case 
studies are introduced in section 5; the results are presented 
and analyzed in section 6; finally, in section 7 the 
conclusions are provided. 

2. Mathematical model  
2.1. Distribution Static Var Compensator (D-SVC) 

 
In power systems, the D-SVCs are employed very 

often due to its versatile and dynamic responses at the need 
of reactive power demand. They incorporate thyristor 
controlled reactors (TCR) and thyristor switched capacitor 
(TSC) for the reactive compensation. The equivalent circuit 
is introduced in reference [21] and the model is presented in 
Fig. 1 (a). The mathematical model for the SVC current, is 
as follows [22]: 

( )2 sin 2
;S M L CI jU B B

s s
s p a

p
-� �

= + = -� �
� �  

(1) 

where ������ is the system voltage, ��  is the TCR susceptance, 
��  is the capacitor susceptance, �  is the firing angle 
measured from positive going zero crossing of the applied 
voltage and � is the conduction angle.  

The modeling seems to be complex, however it can 
be simplified as presented: 

( )S M D SVCI jU Y a-=  (2) 

Hence, a simple model diagram of the D-SVC is as shown 
in Fig. 1 (b). 

The D-SVC operation primarily depends on the firing 
angle, which is controlled by using the reference voltage	�
. 
This control limits the optimum operation for the maximum 
cost savings. For instance, in a traditional control system, 
the reference voltage is usually 1.0 p.u. Based on this value, 
the D-SVC injects a reactive current in order to keep the bus 
voltage in a desired value. Nevertheless, the injected 
reactive current may not lead to a maximum cost savings 
and a new reference voltage value needs to be set as shown 

in Fig. 1 (c). Thus, an optimal scheduling for D-SVC is 
needed. 

 
(a) 

 
(b) 

�� �
(c) 

Fig. 1.  D-SVC: (a) equivalent circuit [23]; (b) simplify 
model; (c) voltage and current characteristic 

 
2.2. Linear and non-linear loads 

 
Linear loads are the loads that, if supplied by a 

sinusoidal voltage at the fundamental frequency, produce 
only the fundamental sinusoidal current [24]. Non-linear 
loads are the ones that cause distortion in the waveforms of 
voltage and/or current. These distortions are reflected by the 
presence of harmonic components in the voltage and current 
waves. 

Non-linear loads are modelled as a RLC load with 
a current source in parallel [24]. They act as sources of 
harmonic currents and they circulate current from the load to 
the source. Depending on the location of these loads in the 
grid, the harmonic current can spread to other loads. Based 
on its magnitude, the current injected by the non-linear loads 
could cause voltage spikes, damage to nearby equipment 
and can even affect the power supply [25]. 



3 
 

 
The THD is useful to express the harmonics 

content involved in a certain waveform. For instance, the 
harmonic current component ��  can be written in terms of 
the total current �  and THD [26]: 

hI THD I=  (3)�
When dealing with a linear load, the total current is 

formed by an active �
  and a reactive component ��  [27]. 
Nevertheless, in presence of non-linear loads, based on the 
Power Vector Configuration approach (applied for non-
linear loads) [28], the harmonic component is also 
considered as follows: 

$ $
A X hI I i I j I k= + +$

 
(4)�

where �� represent the active power domain, �� is the reactive 
power domain and ��  is the harmonics power domain. 

Then the apparent current magnitude is: 
2 2 2 2

A X hI I I I= + +  (5)�
By replacing (3) into (5) and solving for	�: 

2 2

21
A XI I

I
THD
+

=
-  

(6)�
The equations defined in this sub-section will be 

employed for the determination of the cost savings. 
 

2.3. Conductor’s investment cost savings 
estimation 

 
At a planning stage for the installation of a grid, the 

conductors that are used depend on the electrical conditions. 
As for example, if high current needs to be transported, 
thicker and more expensive conductors are required. By 
employing D-SVCs, the total current flowing from the 
feeder through the grid could be reduced. The cost savings 
resulting from this action are referred in this paper as the 
“conductor’s investment cost savings”. 

Fig. 2 (a) shows a three phase power distribution 
system for the estimation of cost savings, where ��  is the 
active power demand, ��  is the reactive power demand for 
the ��� node and ����  is the THD of the current for the ���  
branch that depends on time�, due to load demand variation.�

The first scenario is assuming that no D-SVCs are 
installed, where the three phase active power losses ��  
(assuming a balanced system) from segment �  of the 
distribution line is given by: 

2( ) 3 ( )Lk k kP t r I t=  (7)�

where ��  is the resistance of the segment k and ��  is the 
magnitude of the downstream apparent current of the radial 
network. Recalling (6), the magnitude current �� is: 

( ) ( ) ( )
( )

2 2

21
Ak Xk

k
k

I t I t
I t

THD t
+

=
-

 

(8)�
Hence: 

( ) ( )
( )

2 2

2( ) 3
1
Ak Xk

Lk k
k

I t I t
P t r

THD t
� �+

= � �� �-� �  
(9)�

A point of interest, is that	��  can be expressed in 
terms of the real current, reactive current and harmonic 
current defined by each load upstream (that is from node � 
to	�). The analysis starts from Fig. 2 (a), in which�� can be 
written as: 

( ) ( ) $ ( ) $

1 2( ) ( ) ( ) ( ) ( )

( )

k k k k n

n n n

k Ap Xp hp
p k p k p k

I t i t i t i t i t

I t i t i i t j i t k

+ +

= = =

= + + + +

� � � � � �
= + +� � � � � �

� � � � � �
� � �

L

$

 

(10)�
 Then its magnitude is: 

( ) ( ) ( )
2 2 2

2 ( )
n n n

k Ap Xp hp
p k p k p k

I t i t i t i t
= = =

� � � � � �
= + +� � � � � �

� � � � � �
� � �

 
(11)�

 Recalling (3): 

( ) ( ) ( ) ( )
2 2 2

2 ( )
n n n

k Ap Xp p p
p k p k p k

I t i t i t i t THD t
= = =

� � � � � �
= + +� � � � � �

� � � � � �
� � �

 
(12)�

From (5), it is possible to define: 

( )( )
n

Ak Ap
p k

I t i t
=

= �
 

(13)�
( )( )

n

Xk Xp
p k

I t i t
=

= �
 

(14)�
( ) ( )( )

n

hk p p
p k

I t i t THD t
=

= �
 

(15)�
Recalling (6), the magnitude �� must have the form: 

( ) ( ) ( )
( )

2 2

21
Ap Xp

p
p

i t i t
i t

THD t
+

=
-

 

(16) 

Since �
�  and ���  are known, the challenge is to 
determine the ����  as a function of the currents and THD 
demanded by each load upstream. From (3) it is known that: 

( )2 2 2( ) ( )hk k kI t I t THD t=
 (17)�

 Then (15) can be expressed as: 

( ) ( ) ( )
2

2 2( )
n

k k p p
p k

I t THD t i t THD t
=

� �
= � �

� �
�

 
(18)�

   
(a)                                                                                                   (b) 

 
  

Fig. 2. Distribution system with non-linear loads: (a) No D-SVC installed; (b) D-SVC installed����



4 
 

 
Replacing (8) and (16) in (18) and solving 

for	����: 

( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2 2

2

2
2 2

2 2
2

1

1

n
Ap Xp

p
p k p

k

n
Ap Xp

Ak Xk p
p k p

i t i t
THD t

THD t
THD t

i t i t
I t I t THD t

THD t

=

=

� �+� �
� �-� �=

� �+� �+ +
� �-� �

�

�
 

(19)�
 Replacing (13) and (14) in (19) 

( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2 2

2

22 2 2 2

2

1

1

n
Ap Xp

p
p k p

k

n n n
Ap Xp

Ap Xp p
p k p k p k p

i t i t
THD t

THD t
THD t

i t i t
i t i t THD t

THD t

=

= = =

� �+
� �
� �-� �=

� �+� � � � � �+ +� � � � � �-� � � � � �

�

� � �

 

(20)�
On the other hand, if a D-SVC is placed at node k, 

as shown in Fig. 2 (b), it will produce a current �� that flows 
to node k. As a result, the current �� !"�# can be expressed as: 

1 2'( ) ( ) ( ) ( ) ( )k k k k n CI t i t i t i t i t I+ += + + + + -L  (21)�
Since the capacitor just produce reactive current 

then: 

( ) ( ) $ ( ) $'( )
n n n

k Ap Xp C hp
p k p k p k

I t i t i i t I j i t k
= = =

� � � � � �
= + - +� � � � � �

� � � � � �
� � �$

 
(22)�

Recalling (6), ( )'kI t  magnitude is: 

( ) ( )22

2

( ) ( )
'

1 ( )
Ak Xk C

k
k

I t I t I
I t

THD t
+ -

=
-  

(23)�
The power consumption in segment k of the line 

with the D-SVC installed can be expressed as: 

( )( ) ( )22
2

2

2 2 2

2 2

2 2 2

2 2

( ) ( )
'( ) 3 ' 3

1 ( )

( ) ( ) 2 ( )
'( ) 3

1 ( ) 1 ( )

( ) ( ) 2 ( )
'( ) 3

1 ( ) 1 ( )

Ak Xk C
Lk k k k

k

Ak Xk Xk C C
Lk k

k k

Ak Xk C Xk C
Lk k

k k

I t I t I
P t r I t r

THD t

I t I t I t I I
P t r

THD t THD t

I t I t I I t I
P t r

THD t THD t

� �+ -
� �= =
� �-� �

� �- +
= +� �- -� �

� �+ -
= +� �- -� �  

(24)�
When no D-SVC is installed, the conductor on the grid to be 
installed at segment k is decided based on the maximum	���, 
to assure that the conductor will resist for the worst-case 
scenario (when the current is the highest). However, when 
the D-SVC is installed at the node k, the employed 
conductor for segment �  is decided based on the 
maximum	���

 ,  (again, to cover the worst-case scenario). As 
a result, to find the power losses reduction for segment k 
called as kLD , the following expression is applied: 

( ) ( )

2

max ( ) max '

2 ( )
3 max

1 ( )

k Lk Lk

Xk C
k k C

k

L P t P

I t I
L r I

THD t

D = -

� �-
D = � �-� �  

(25)�
Because the D-SVC installed at node k has the 

potential to reduce the power consumption not only at 
segment k but also to all other segments, the total reduction 
of power losses along the system can be rewritten as: 

1 2

1
1 2

1

2
2 2

2

2

2 ( )
3 max

1 ( )

2 ( )
3 max

1 ( )

2 ( )
3 max

1 ( )

n

X C
C

X C
C

Xn C
n C

n

L L L L

I t I
r I

THD t

I t I
r I

THD t

I t I
r I

THD t

D = D + D + + D =

� �-
+� �-� �

� �-
+� �-� �

� �-
+ � �-� �

L

L

 

(26)�
The same analysis can be applied for m number of D-

SVC "$ % �# located at m different nodes	&'( &)( * ( &+  in 
ascending order &' , &) , - ( , &+ , respectively. By 
applying the superposition principle, the expression for the 
total power losses reduction for this scenario is the same as 
(26) with the only difference that ��  is replaced by ��

. , 
defined as: 

1
1

1 2†
2

1

( ) ,

( ), &
( )

( ), &

m

Cq
q

m

Cq
qC

m

Cq m m
q m

I t for segment k before nodeC

I t for segment k between nodesC C
I t

I t for segment k between nodesC C

=

=

-
=

�
	
	
	
	

= 

	
	
	
	
�

�

�

�

M

 

(27)�
where ��/  is the injected current by the D-SVC located at 
node 0. 

The savings can be obtained by multiplying the total 
reduction of power losses by a constant 1�  ($/kW) [29], 
which represents the savings for using cheaper conductors 
on the grid: 

L Lsavings K L= D  (28)�
 

2.4. Energy savings estimation 
 
These savings are based on the reduction of the 

energy generated by the bulk supply point due to the 
presence of D-SVC.  

By first considering the scenario in which no D-SVC 
is installed, the total energy losses at segment k of the grid, 
during a period � , is given by (29). Note that for this 
analysis, discretized time is considered. 

0
( ) ( )T

Lk LKt
E t P t t

=
= D�  

(29)�
By substituting (9) in (29): 

( ) ( )
( )

2 2

2
0

( ) 3
1

T
Ak Xk

Lk k
t k

I t I t
E t r t

THD t=

� �� �+
= D� �� �� �� �-� �� �

�
 

(30)�
On the other hand, if a D-SVC is placed in the 

segment k, it will produce a reactive current �� . Then, the 
energy losses on the segment k of the line can be calculated 
using (24): 

0

2 2 2

2 2
0

( ) ' ( )

( ) ( ) 2 ( )
'( ) 3

1 ( ) 1 ( )

T
Lk LKt

T
Ak Xk C Xk C

Lk k
t k k

E t P t t

I t I t I I t I
E t r t

THD t THD t

=

=

= D

� �� �+ -
= + D� �� �� �- -� �� �

�

�
 

(31)�
 
Hence, the subtraction between (30) and (31) defines 

the reduction of energy losses for segment k: 
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2
0

( ) ( ) '( )

2 ( )
( ) 3

1 ( )

k Lk Lk

T
Xk C

k k C
t k

E t E t E t

I t I
E t r I t

THD t=

D = -

� �� �-
D = D� �� �� �-� �� �

�
 

(32)�
The installed D-SVCs at node k will not only reduce 

the energy losses at segment k, but will also do it for all the 
line segments. The total reduction of energy losses of the 
system due to the D-SVC installed at node k can be 
expressed as: 

1 2

1
1 2

0 1

2
2 2

0 2

2
0

( ) ( ) ( ) ... ( )

2 ( )
3

1 ( )

2 ( )
3 ...

1 ( )

2 ( )
3

1 ( )

k

T
X C

C
t

T
X C

C
t

T
Xn C

n C
t n

E t E t E t E t

I t I
r I t

THD t

I t I
r I t

THD t

I t I
r I t

THD t

=

=

=

D = D + D + + D =

� �� �-
D +� �� �� �-� �� �

� �� �-
D +� �� �� �-� �� �

� �� �-
+ D� �� �� �-� �� �

�

�

�
  

(33)�
In the case that more than one D-SVC is employed, 

(33) can be adapted by replacing ��  with ��
., given in (27). 

The energy savings are calculated by multiplying the 
reduction of energy losses into a constant 12  [$/kWh] [29], 
which represents the energy cost: 

( )E Esavings K E t= D  (34)�
 

2.5. Cost D-SVC estimation 
 
This cost is due to the expenses required to acquire 

the D-SVCs. For simplicity, a linear relation is assumed 
between the capacity �3
4�  and a constant 13
4�  
[$/kVAR]: 

DSVC DSVC DSVC
DSVC

T
COST K Q ceil

T
� �

= � �
� �  

(35)�
where TDSVC is the lifetime of the D-SVC and ceil is a 

function which rounds its argument up to the next integer. 
The ceil function is required in case the lifetime of the D-
SVC is lower than the one in the system. This means that a 
new D-SVC must be installed when the previous one has 
reached its lifetime. 

 
2.6. Total savings estimation 

 
Finally, the total savings for the system �
  [$] is 

given by: 

S L E DSVC DSVCT K L K E K Q= D + D -  (36)�
3. Problem formulation 

The main objective of this paper is to minimize the 
total power distribution losses and hence get the maximum 
value for the economic savings (which is considered as the 
objective function), subject to the constraints of the system. 

An hourly time-slotted system with slot index �  is 
considered for this formulation. The optimization problem 
can be defined as: 

1 1 1 1

( ) ( , ) ( )
n T n n

P E DSVC
i t i i

maximize savings i savings i t cost i
= = = =

� �+ -� �
� �
� �� �  (37)�

 
Subject to: 

1 1

( ) ( , ) ( , ) , 1, 2,...,

, 1,2,...,

n n

grid losses load
i i

P t P i t P i t j n

t T
= =

- = =

=

� �  (38)�
1 1 1

( ) ( , ) ( , ) ( , ),

1,2,..., ; 1, 2,...,

n n n

grid DSVC losses load
i i i

Q t Q i t Q i t Q i t

i n t T
= = =

+ - =

= =

� � �  (39)�
min max( ) ( , ) ( ), 1, 2,..., ; 1, 2,...,DSVCQ i Q i t Q i i n t T£ £ = =  (40)�
. .min . . . .max( , ) , 1,2,..., ; 1,2,...,p u p u p uV V i t V i n t T£ £ = =  (41)�

_ max0 ( , ) , 1, 2,..., ; 1, 2,...,V VTHD i t THD i n t T£ £ = =  (42)�
0 m n£ £  (43)�

where i  represents the node number and n  is the total 
number of nodes. 

The constraints shown in (38) and (39) indicate that 
the power (real or reactive) carried by the feeder should 
satisfy the load and the electrical power losses. The reactive 
power produced by an installed D-SVC is constrained by 
(40), since it has a minimum and maximum defined power. 
In addition, (41) follows the IEEE Standard 1860-2014 [30] 
which states that utility distribution nodes should provide a 
voltage regulation. On the other hand, (42) follows the IEEE 
Standard 519-2014 [31] which requires that there should be 
a regulation for the total harmonic distortion. Finally, 
constraint (43) is employed to control the number m of 
installed D-SVC. Note that only one D-SVC is allowed to be 
installed per node.   

4. Algorithm 
The current optimization problem cannot be solved 

employing basic mathematical methods or exact 
optimization algorithms because of the power flow analysis 
which is based on an iterative process. As a result, a meta-
heuristic optimization algorithm will be applied.  Regardless 
of the fact that these methods cannot assure to obtain the 
global solution, they are able to provide a sufficiently good 
solution. 

In the last decade, several studies have been done 
related with the optimal placement of SVC. These studies 
used different algorithms such as Particle Swarm 
Optimization (PSO) [10], Non-Dominated Sorting Particle 
Swarm Optimization (NDPSO) [11], Global Harmony 
Search [12, 13], Differential Evolution (DE) [14] and 
Cuckoo search [32]. Among them, PSO is chosen as the 
algorithm to be used in this study. This decision is based on 
the advantages it presents over other optimization 
algorithms, such as: (1) easy implementation; (2) stronger 
memorization capability achieved; (3) equal evolution 
opportunity for all candidate solutions; (4) low computer 
memory requirement; (5) descent convergence speed due to 
only primitive mathematical operators [33, 34].  

PSO defines an initial population of particles, each of 
them is at a particular position 5�"6#  with a given 
operational point. These are then evaluated on the system in 
order to select the best global particle position 7"6# and best 
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individual particle position 58�"6# for the current iteration 6, 
which are used to calculate the speed of each particle 
9�"6 : ;#  for the next iteration 6 : ;, as shown: 

( ) ( )1 1 2 2ˆ( 1) ( ) ( ) ( ) ( ) ( )p p p p pv h v h c r x h x h c r g h x hw+ = + - + -  (44) 

where < is the index of the particle, �'  and �)  are random 
numbers uniformly distributed between [0,1]. The 
parameters =( >'( >) are weightings for inertia such that 
? % = % ;@A , ? % >'( >) % A . Based on an empirical 
analysis, =( >'  and >)  values were chosen 0.2, 0.4 and 0.4 
respectively. 

Based on (44), the particle position for the next iteration 
is: 

( 1) ( ) ( 1)p p px h x h v h+ = + +  (45) 

On the other hand, this paper focus on the 
optimisation of D-SVC size, which refers to the best 
capacity of the D-SVC that maximizes the cost savings. 
While Dispatch strategy refers to the control of the power 
output of the already installed D-SVC. A significant 
advantage of D-SVCs in comparison with capacitors is that 
they can vary its var compensation and here comes the 
novelty of the proposed approach. The employed 
optimization technique is called Multi Particle Swarm 
Optimization, because it implements a PSO within another 
PSO. Consequently, this approach is convenient to assure an 
optimum D-SVC’s operation. An external PSO called	�BCDE , 
is used to estimate the optimal placement and size for the D-
SVC, while the second is an internal one called �BCFD that 
allows to get their optimal dispatch strategy. 

The process starts by defining the input data of the 
system such as line voltage, daily power consumption, total 
harmonic distortion for the load, line impedances and 
available D-SVCs in stock. Next, the maximum number of 
iterations for �BCDE  and �BCFD  are defined. For 	�BCDE , an 
initial population of particles is randomly generated. Each 
particle is a possible solution for the objective function, 
therefore, each of these become a set of var compensators 
with a given size and placement (the placement is defined 
by a setting the D-SVC at a node of the system). Initially, 
the particles are chosen randomly (random in number, size, 
and placement), then a new set of particles (here starts 
�BCFD ) is defined. This new particle takes a value of 
operation between the maximum and minimum reactive 
power given by the set of particles previously generated. 
Later, to estimate the currents and voltages on the grid, a 
power flow calculation based on the Backward/Forward 
Sweep Load Flow method is performed. Consequently, the 
total savings for each particle are obtained using (36). The 
particle with the best solution becomes the global best. Then, 
each particle starts moving (change its operation point) 
based on the best global by using (44) and (45). If there is a 
particle that achieves an improved total saving, the global 
best is updated and the particle with this solution becomes 
the new global best. A point to consider is the local best, 
which is the best result before and after particle’s movement. 
Then, �BCDE   particles are compared to obtain the best result 
and the set with the optimum number, size and placement of 
D-SVC is obtained. This process is repeated until the 
maximum number of iterations has been reached or if the 
values of the savings have a difference of ;?GH between the 
current and previous iteration, assuring a convergence in the 

solution. At the end of the simulation the best solution from 
the �BCDE   (placement and size) with its respective value of 
the optimization parameters from the �BCFD  (dispatch 
strategy optimization) are obtained.  

 
Fig. 3. Proposed Multi particle Swarm Optimization 

flowchart 
 

By this approach, the optimal placement, size and 
dispatch strategy of the D-SVCs in the grid are selected by 
solving the optimization problem described in section IV. 
Fig. 3 shows the proposed algorithm in a flowchart form 
which was implemented in Matlab. 

5. Case Study 
In order to show the efficacy of the proposed 

algorithm considering the proposed mathematical 
formulations given in the paper, the following case is 
studied. The studied systems are three IEEE distribution 
systems: (1) 9 bus [35]; (2) 69 bus [36]; (3) 119 bus [37]. It 
is then required to maximize the savings associated to the 
grid power losses IJ and energy consumption IK by adding 
reactive power compensators. A total of three scenarios are 
evaluated: 1. no VAR compensators are installed; 2. only 
capacitors are used; 3. only D-SVCs are installed. To 
simplify the analysis, the assumptions are as follows: 1. load 
balanced conditions; 2. negligible line capacitance; 3. time-
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variant loads; 4. time-variant harmonic generation at each 
point of the node; 5. the yearly load demand profile is kept 
constant; 6. conductor data is taken from [35-38]. 7. Ssame 
number of capacitors and D-SVCs are available. 

 

 
(a) 

 
(b) 

 
Fig. 4. System data: (a) Yearly load profile; (b) 24-hours 

Total Harmonic Distortion 
 
The yearly normalized load demand employed for the 

current investigation is presented in Fig. 4 (a). The load 
demand of each node is obtained by multiplying the 
previous load profile into each of the P & Q values defined 
for each node according to the respective IEEE bus system. 
In addition, the 24 hours THD profile for a single load is 
assumed as shown in Fig. 4 (b). For simplicity, it is 
considered to be the same every day for all the loads and all 
the IEEE distribution systems. All data related with the 
available capacitors, D-SVCs and constants are assumed as 
shown in Table 1. 

The grid has some regulations that must met. 
Following the IEEE Standard 1860-2014 [18], utility 
distribution nodes should provide a voltage between 0.95 
p.u. and 1.05 p.u. In addition, according to the IEEE 

Standard 519-2014 [19], utility distribution nodes should 
provide a harmonic distortion level of less than 5% provided 
customers on the distribution feeder limit their load 
harmonic current injections to a prescribed level. 

Table 1. VAR Components Specifications 

Available 3-phase D-SVC 
kVARmax 1000 2000 3000 

Available 3-phase fixed capacitors 
kVAR 1000 2000 3000 

Constants 

LK  DSVCK  CK  EK  

168 
 [$/kW] 

10.0 
[$/kVAR] 

4.00 
[$/kVAR] 

0.08 
 [$/kWh] 

6. Results and discussion 
The results were obtained through the proposed 

algorithm, which was run using a computer with a RAM of 
8.00 GB and processor Intel Core i7-6700 of 3.40 GHz. The 
optimization algorithm was run 10 times for each case study. 
The robustness of our approach is appreciated as the highest 
difference between the best and worst result with values of 
5.3%, 7.6% and 8.6% for the case study of 9 Bus IEEE, 69 
Bus IEEE and 119 bus IEEE, respectively. Furthermore, the 
average simulation time to perform the scheduling 
optimization for each time slot were 0.19 seconds, 0.31 
seconds and 0.76 seconds for the case study of 9 Bus IEEE, 
69 Bus IEEE and 188 bus IEEE, respectively.  

In order to get the voltage and THD profiles at each 
node, a power flow analysis using the Backward/Forward 
Sweep Load Flow method was run for each IEEE 
distribution system. Among the different power flow 
methods, the current one was chosen due to its accurate and 
fast convergence when dealing with radial distribution 
systems [39] assuring by this the implementation of the 
dispatch strategy in real life. As a result, a box plot as given 
in Fig. 5 is obtained. This provides the maximum, minimum, 
median and percentage of times that the system is within the 
voltage and THD permitted range, which is calculated as 
follows: 

max

,
,1 1

,
,max

1,
% 100% ;

0,

n T

i j
i ji j

i j
i j

x
if x within the range

range x
if x outside the rangen T

= = �	= · = 

	�

� �

 

(46)�

where �+LM is the maximum number of nodes. 
 
Case 1: Non-VAR Compensator Installed 
 

Initially, the voltage and THD for all the systems at 
some nodes are not in the desired range 	"?@NO	<@ P@ % Q %
;@?O	<@ P		RS��� % OT# , as shown in Table II (case 1). 
Moreover, the percentage of times that the voltage and THD 
meet the regulations is no more than 50% and 80% 
respectively. This scenario is employed as the benchmark to 
analyse the performance of the others. 
 

6.1. Case 2: Capacitors are installed 
 

The optimum number of installed capacitors for each 
test system is shown in Table 2.  The savings in this scenario 
are obtained by the installation of capacitors. An operational 
scheduling for fixed capacitors is redundant since the 
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reactive current that they can give is constant. However, 
there is an optimal size and placement for capacitors. As a 
result, only the �BCDE  algorithm is employed. Their 
optimum size and placement for each IEEE distribution 
system is presented in Fig. 6 (a). 

With the implementations of the capacitors, the 
maximum and minimum voltage for all the systems reaches 

values close to the limits, showing an improvement in their 
average values. The voltage profile shows an enhancement 
in the system since the percentage of times is within the 
allowed range is greater than 85% for all IEEE systems as 
shown in Fig. 5 (a) and Table 3. Nevertheless, for the THD 
profile, it presents an increment in comparison to case one 
as presented in Fig. 5 (b) and Table 4. 

 

 
(a) 

 
(b) 

Fig. 5���� � Summary: (a) voltage profile; (b) THD profile 
 

Table 2. Optimum number of var compensators installed 

Total number of IEEE 9  IEEE 69  IEEE 119 
Capacitors installed 4 15 27 
D-SVCs installed 4 14 23 
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�
(a) 

 

Table 3. Capacitors’ optimum size and placement 

Capacitor size 
[kVAR] 

IEEE 9 
capacitor 
installed 
at node  

IEEE 69 
capacitor 

installed at 
node 

IEEE 119 
capacitor 

installed at 
node  

1000 3, 4, 9 6, 31, 49, 
51, 56, 67 

8, 12, 33, 36, 
40, 36, 75, 79, 

99, 118 

2000 none  12,17, 25, 
39, 44  

17, 18, 23, 45, 
47 53, 59, 93, 
70, 100, 106 

3000 6 3, 9, 22, 64 4, 28, 64, 65, 
84, 110 

 

�
(b) 

 

Table 4. D-SVCs’ optimum size and placement 

Capacitor size 
[kVAR] 

IEEE 9  
D-SVC 
installed 
at node  

IEEE 69  
D-SVC 

installed at 
node  

IEEE 119  
D-SVC 

installed at 
node 

1000 2 8, 23, 30 
4, 7, 64, 76, 
91, 95, 102, 

107  

2000 6 
3, 14, 19, 

34, 41, 45, 
59 

30, 35, 42, 56, 
61, 79, 100, 

110, 115 

3000 4, 9 11,27, 55, 
63 

16, 25, 46, 52, 
70, 83 

 
 
 

IEEE 9 bus system 
IEEE 9 bus system 

IEEE 69 bus system IEEE 69 bus system 

IEEE 119 bus system IEEE 119 bus system 

Fig. 6 Optimum size and placement for: (a) Capacitor; (b) D-SVC����
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6.2. Case 3: D-SVCs are installed 

 
The optimum number of D-SVCs may not be 

necessarily the same as the optimum number of capacitors. 
Indeed, the results show that depending on the test system, 
the optimum number of D-SVC could be equal or less than 
the number of capacitors, as presented in Table 2. On the 
other hand, the D-SVCs show a better regulation for voltage 
and THD for all the distribution systems as given in Fig. 5 (a) 
and Fig. 5 (b), respectively. Their optimum operation 
scheduling does not only allow the maximization of savings, 
it also keeps the voltage in the desire range and reduce the 
THD. Fig. 6 reveals that the number of capacitors employed 
for the optimization is greater or equal in comparison with 
the number of D-SVC. This is due to the flexibility of the D-
SVC to inject reactive power. In contrast with the capacitors, 
the D-SVCs can vary the reactive power that they can feed 
on, and an operation scheduling is needed to maximize the 
savings. Hence, the full proposed algorithm is applied. The 
optimum size and placement of the D-SVCs for each 
distribution system is presented in Fig. 6 (b) and their 
optimal operation point for each D-SVC during minimal and 
peak load demand is shown in Error! Reference source not 
found..  

 

�
Fig. 7. Optimal D-SVC operation during minimal and peak 

load: (a) 9 bus; (b) 69 bus; (c) 119 bus 
 
 

 
 

The cost savings depends on the power losses and 
energy reduction and acquisition cost of the VAR 
compensators. Fig. 8 gives the accumulated power loss 
profile and by this the energy savings (i.e. the area under the 
curve) for the three cases per month. It is notable that with 
the inclusion of reactive power compensators, the power 
losses are reduced. For instance, with the installation of 
capacitors the percentage reduction of power losses are 
6.3%, 11% and 13% for the 9 bus, 69 bus and 119 bus, 
respectively. Nevertheless, the inclusion of D-SVCs have a 
better power loss reduction than capacitors, since the 
percentage reduction of power losses are 9.4%, 15% and 
22% for the 9 bus, 69 bus and 119 bus, respectively. Hence, 
the total savings during the first year will be more for the D-
SVCs than capacitors as shown in ������� .�

 
Fig. 8. Power losses profile [kW] 
 (a) 9 bus; (b) 69 bus; (c) 119 bus 

 
 

Table 5. First Year Cost-Savings Summary 

Case 2 
Cost-Savings IEEE 9 IEEE 69 IEEE 119 

     Energy savings  [$] 13978 87164 175200 
Conductor’s 

investment savings [$] 10562 59120 104018 

    Capacitor cost    [$] 12000 120000 196000 
     Total Savings    [$] 12540 26284 83218 

Case 3 
Cost-Savings IEEE 9 IEEE 69 IEEE 119 

     Energy savings  [$] 68032 185200 235360 
Conductor’s 

investment savings [$] 65145 146857 253396 

       D-SVC cost     [$] 120000 300000 490000 
     Total Savings    [$] 13177 32057 98756 

�
�
�
�
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�

7.  Conclusion 
This paper proposes an approach to maximize the 

cost savings based on the optimization of the placement, 
size and dispatch strategies of the D-SVCs. The approach 
incorporates particle swarm optimization algorithms in 
two-stages, one for the optimization of the placement and 
size of the D-SVCs and the other for the optimization of 
their dispatch strategy. 

The obtained results with the installation of 
capacitors and D-SVCs showed a good voltage regulation, 
following the IEEE Standard 1860-2014. However, only 
with the installation of D-SVCs, the THD was kept in the 
desired range meeting the IEEE Standard 519-2014. 
Despite the fact that the acquisition cost of the D-SVCs is 
higher than the one of the capacitors, the former ones can 
adjust their dispatch strategy to maximize the final 
savings. Hence, the optimization of the system by 
installing D-SVCs proved to be superior in comparison to 
the one in which capacitors are installed giving higher 
savings and better grid quality.  

8.  Acknowledgments 
This study was supported by the Walter Valdano 

Raffo II program in Escuela Superior Politécnica del Litoral 
(ESPOL) and the Secretariat of Higher Education, Science, 
Technology and Innovation of the Republic of Ecuador 
(Senescyt). 

9. References 
 
[1] A. Caillé, M. Al-Moneef, F. B. de Castro, A. Bundgaard-Jensen, A. 

Fall, N. F. de Medeiros, et al., "2007 Survey of Energy Resources," 
World Energy Council, vol. 2007, 2007. 

[2] M. Yano, S. Abe, and E. Ohno, "History of power electronics for motor 
drives in Japan," in IEEE Conference on the History of Electronics, 
2004, pp. 1-11. 

[3] F. C. Pereira, O. C. Souto, J. C. De Oliveira, A. L. Vilaça, and P. F. 
Ribeiro, "An analysis of costs related to the loss of power quality," in 
Harmonics and Quality of Power Proceedings, 1998. Proceedings. 8th 
International Conference On, 1998, pp. 777-782. 

[4] P. P. Barker and R. W. De Mello, "Determining the impact of 
distributed generation on power systems. I. Radial distribution 
systems," in Power Engineering Society Summer Meeting, 2000. IEEE, 
2000, pp. 1645-1656. 

[5] Y. M. Shuaib, M. S. Kalavathi, and C. C. A. Rajan, "Optimal capacitor 
placement in radial distribution system using gravitational search 
algorithm," International Journal of Electrical Power & Energy 
Systems, vol. 64, pp. 384-397, 2015. 

[6] J. Vuleti�  and M. Todorovski, "Optimal capacitor placement in 
distorted distribution networks with different load models using 
Penalty Free Genetic Algorithm," International Journal of Electrical 
Power & Energy Systems, vol. 78, pp. 174-182, 2016. 

[7] M. S. Javadi, A. E. Nezhad, P. Siano, M. Shafie-khah, and J. P. Catalão, 
"Shunt capacitor placement in radial distribution networks considering 
switching transients decision making approach," International Journal 
of Electrical Power & Energy Systems, vol. 92, pp. 167-180, 2017. 

[8] S. Kawasaki and G. Ogasawara, "Influence analyses of harmonics on 
distribution system in consideration of non-linear loads and estimation 
of harmonic source," Journal of International Council on Electrical 
Engineering, vol. 7, pp. 76-82, 2017. 

[9] M. Noroozian, N. Petersson, B. Thorvaldson, A. Nilsson, and C. Taylor, 
"Benefits of SVC and STATCOM for electric utility application," in 
Transmission and Distribution Conference and Exposition, 2003 IEEE 
PES, 2003, pp. 1143-1150. 

[10] M. Saravanan, S. M. R. Slochanal, P. Venkatesh, and J. P. S. Abraham, 
"Application of particle swarm optimization technique for optimal 

location of FACTS devices considering cost of installation and system 
loadability," Electric Power Systems Research, vol. 77, pp. 276-283, 
2007. 

[11] R. Benabid, M. Boudour, and M. Abido, "Optimal location and setting 
of SVC and TCSC devices using non-dominated sorting particle swarm 
optimization," Electric Power Systems Research, vol. 79, pp. 1668-
1677, 2009. 

[12] R. Sirjani, A. Mohamed, and H. Shareef, "Optimal allocation of shunt 
Var compensators in power systems using a novel global harmony 
search algorithm," International Journal of Electrical Power & Energy 
Systems, vol. 43, pp. 562-572, 2012. 

[13] R. Sirjani and A. Mohamed, "Improved harmony search algorithm for 
optimal placement and sizing of static var compensators in power 
systems," in Informatics and Computational Intelligence (ICI), 2011 
First International Conference on, 2011, pp. 295-300. 

[14] S. Udgir, L. Srivastava, and M. Pandit, "Optimal placement and sizing 
of SVC for loss minimization and voltage security improvement using 
differential evolution algorithm," in Recent Advances and Innovations 
in Engineering (ICRAIE), 2014, 2014, pp. 1-6. 

[15] M. Abdulla and Z. Salameh, "A graphical method to determine the 
harmonic magnification in radial feeders due to SVC operation," 
Electric Power Systems Research, vol. 57, pp. 9-14, 2001. 

[16] H. L. Wang and M. S. Lin, "A probabilistic approach for SVC 
placement with harmonic control and reactive power compensation," in 
2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), 
2015, pp. 1-6. 

[17] A. Khodabakhshian and M. H. Andishgar, "Simultaneous placement 
and sizing of DGs and shunt capacitors in distribution systems by using 
IMDE algorithm," International Journal of Electrical Power & Energy 
Systems, vol. 82, pp. 599-607, 2016. 

[18] K. Muthukumar and S. Jayalalitha, "Optimal placement and sizing of 
distributed generators and shunt capacitors for power loss minimization 
in radial distribution networks using hybrid heuristic search 
optimization technique," International Journal of Electrical Power & 
Energy Systems, vol. 78, pp. 299-319, 2016. 

[19] A. Rath, S. R. Ghatak, and P. Goyal, "Optimal allocation of distributed 
generation (DGs) and static VAR compensator (SVC) in a power 
system using Revamp Voltage Stability Indicator," in Power Systems 
Conference (NPSC), 2016 National, 2016, pp. 1-6. 

 
[20] K. P. Nguyen, G. Fujita, and V. N. Dieu, "Cuckoo search algorithm for 

optimal placement and sizing of static var compensator in large-scale 
power systems," Journal of Artificial Intelligence and Soft Computing 
Research, vol. 6, pp. 59-68, 2016. 

[21] M. Mahdavian, G. Shahgholian, P. Shafaghi, M. Azadeh, S. Farazpey, 
and M. Janghorbani, "Power system oscillations improvement by using 
static VAR compensator," in Electrical Engineering/Electronics, 
Computer, Telecommunications and Information Technology (ECTI-
CON), 2016 13th International Conference on, 2016, pp. 1-5. 

[22] J. Faiz and G. Shahgholian, "Modeling and damping controller design 
for static var compensator," in Power Engineering, Energy and 
Electrical Drives (POWERENG), 2015 IEEE 5th International 
Conference on, 2015, pp. 405-409. 

[23] I. Pisica, C. Bulac, L. Toma, and M. Eremia, "Optimal SVC placement 
in electric power systems using a genetic algorithms based method," in 
PowerTech, 2009 IEEE Bucharest, 2009, pp. 1-6. 

[24] R. Burch, G.-k. Chang, C. Hatziadoniu, M. Grady, Y. Liu, M. Marz, et 
al., "Impact of aggregate linear load modeling on harmonic analysis: A 
comparison of common practice and analytical models," IEEE 
Transactions on Power Delivery, vol. 18, pp. 625-630, 2003. 

[25] V. Wagner, J. C. Balda, D. Griffith, A. Mceachern, T. Barnes, D. 
Hartmann, et al., "Effects of harmonics on equipment," IEEE 
Transactions on Power Delivery, vol. 8, pp. 672-680, 1993. 

[26] L. Rozenblat. (2004, A primer on work and ac power in electrical 
circuit definitions and math equations for watt, VA, power factor and 
THD. Available: http://www.smps.us/power.html 

[27] J. D. Glover, M. S. Sarma, and T. Overbye, Power System Analysis & 
Design, SI Version: Cengage Learning, 2012. 

[28] A. Hoevenaars, "How harmonics have contributed to many power 
factor misconceptions," Mirus International Inc. January 15, 2014. 

[29] M. Gheydi and M. J. Golkar, "Optimal capacitor placement in 
distribution network with consideration of annual load profile: Case 
study Meshkinshahr distribution network," in IECON 2016 - 42nd 
Annual Conference of the IEEE Industrial Electronics Society, 2016, 
pp. 7208-7214. 

[30] "IEEE Guide for Voltage Regulation and Reactive Power 
Compensation at 1000 kV AC and Above," IEEE Std 1860-2014, pp. 
1-41, 2014. 

 



12 
 

[31] "IEEE Recommended Practice and Requirements for Harmonic 
Control in Electric Power Systems - Redline," IEEE Std 519-2014 
(Revision of IEEE Std 519-1992) - Redline, pp. 1-213, 2014. 

[32] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in Nature & 
Biologically Inspired Computing, 2009. NaBIC 2009. World Congress 
on, 2009, pp. 210-214. 

[33] C. Shang, D. Srinivasan, and T. Reindl, "An improved particle swarm 
optimisation algorithm applied to battery sizing for stand-alone hybrid 
power systems," International Journal of Electrical Power & Energy 
Systems, vol. 74, pp. 104-117, 2016. 

[34] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing 
vol. 53: Springer, 2003. 

[35]M. M. Hamada, M. A. Wahab, A.-H. M. El-Sayed, and H. A. Ramadan, 
"A new approach for capacitor allocation in radial distribution 
feeders," Online J Electron Electr Eng (OJEEE), vol. 1, pp. 24-29, 
2006. 

[36] J. Savier and D. Das, "Impact of network reconfiguration on loss 
allocation of radial distribution systems," IEEE Transactions on Power 
Delivery, vol. 22, pp. 2473-2480, 2007. 

[37] D. Zhang, Z. Fu, and L. Zhang, "An improved TS algorithm for loss-
minimum reconfiguration in large-scale distribution systems," Electric 
Power Systems Research, vol. 77, pp. 685-694, 2007. 

[38] D. Kaur,  J. Sharma " Optimal conductor sizing in radial distribution 
systems planning," International Journal of Electrical Power & 
Energy, vol. 30(4), pp. 261-271, 2008. 

[39] S. Ghosh and D. Das, "Method for load-flow solution of radial 
distribution networks," IEE Proceedings-Generation, Transmission 
and Distribution, vol. 146, pp. 641-648, 1999. 

 
 
 


