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Abstract

In the updated APOGEE-Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent
red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of
stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a
metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this
effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic
errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be
brought into agreement with the data if a metallicity-dependent convective mixing length is used, with ΔαML,

YREC∼0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection
simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by
as much as a factor of two even at modest deviations from solar metallicity ([Fe/H]=−0.5).

Key words: stars: evolution – stars: fundamental parameters

1. Introduction

The theory of stellar structure and evolution makes a rich
web of predictions about the life histories of stars. Many
predictions of this theory have proven accurate; in particular,
the agreement between the predicted and actual positions of the
core-hydrogen-burning main sequence in the Hertzsprung–
Russell diagram was a major triumph for 20th century
astrophysics. The situation for more evolved stars, however,
has been more challenging to evaluate. The temperature locus
of evolved red giants is sensitive to the input physics in

general, and to the efficiency of stellar convection in particular.
This efficiency of stellar convection, an inherently three-
dimensional process, has typically been parameterized in
one-dimensional stellar models as an effective mixing length
(Böhm-Vitense 1958). Testing the validity of models in this
more evolved regime has historically been difficult, due to the
lack of fundamental masses and reliable absolute spectroscopic
measurements of temperature, and detailed abundances for
large samples of stars, although small samples have generally
indicated reasonable agreement or only small discrepancies
(e.g., Huber et al. 2012; Takeda et al. 2016).
Correct modeling of the position of the red giant branch on the

Hertzsprung–Russell diagram is now of increased importance, in
light of the recently released Gaia data (Lindegren et al. 2016).
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temperature, and [α/Fe]. We find that the temperature offset is
best correlated with metallicity (see Table 2 for the linear
Pearson correlation coefficients). We also see many of the
correlations between the stellar properties that we would expect
from stellar evolution (e.g., between temperature and gravity)
and galactic chemical evolution (e.g., alpha enhanced stars are
likely to be old, and therefore have low mass and low
metallicity). The presence of the correlation between the
temperature offset and the metallicity in two independent sets
of models suggests that it may be a generic problem with
evolutionary models. However, before we conclude that, we
must explore more mundane explanations.

3.2. Model Uncertainties

First, we explore whether known uncertainties in the stellar
model physics, such as helium content and atmosphere
boundary condition, can cause shifts in giant branch temper-
ature on the level of what is observed in the APOKASC data.
We show, in Figure 5, the expected scale shifts, as well as the
differential offsets with metallicity, caused by choosing a
different atmosphere boundary condition (Kurucz or Castelli),
or by assuming a different helium abundance. The mean trend
in the APOKASC data is shown as a dashed line. It is clear that,
although there are many uncertainties in the theoretical models
that can cause changes in the temperature of the giant branch
locus, these shifts rarely show a strong metallicity dependence
and are less than 30 K dex−1, not large enough to explain our
offset, which is about three times larger.

3.3. Mass Biases

Next, we explore whether this trend could be due to
systematic errors in the APOKASC data. Although the seismic
masses we use are extremely precise, there have been
suggestions that they need to be corrected directly for the
effects of metallicity and temperature (White et al. 2011;
Epstein et al. 2014; Guggenberger et al. 2016; Sharma et al.
2016). We tested whether the observed correlation between

temperature offset and metallicity is a result of using
uncorrected scaling relations to determine the mass. For this,
we estimated masses from (1) grid-based modeling using Δν
computed from radial mode eigenfrequencies and the scaling
relation for νmax (A. Serenelli et al. 2017, in preparation),
(2) masses computed using the scaling relations, but with the
grid-interpolated correction to the Δν relation based on radial
modes by Sharma et al. (2016), and (3) scaling relation masses
using the Guggenberger et al. (2016) analytical correction to
the Δν relation. We find that corrections generally have an
effect less than 0.1Me (less than 30 K), and that these
corrections do not substantially affect the metallicity depend-
ence of the temperature offsets (see Figure 6). We also show
that using a different procedure to measure the global seismic
parameters (SYD, Huber et al. 2009) also does not substantially
affect the results.
We note that asteroseismic mass estimates are sometimes

adjusted to better agree with the properties expected from a grid
of stellar models; this is referred to as grid-based modeling.
However, we caution that grid-based modeling does not
necessarily improve asteroseismic results if the underlying
tracks are not correctly located. In the red giant case, naive
grid-based modeling will change the inferred posterior
temperatures to reduce the discrepancy between the observed
properties and the model predictions, dragging the metal-poor
stars to hotter posterior temperatures and metal-rich stars to
cooler posterior temperatures. These changes average
50–100 K at [Fe/H]=±0.5. If the quoted temperature
uncertainties are reduced to prevent this from occurring, the
grid-based modeling will instead alter the masses by about
±0.2Me at [Fe/H]=±0.5 to reduce the discrepancy between
the data and the models. These changes are completely
consistent with our expectations, given the metallicity depen-
dent temperature offset we discuss above, and we therefore
chose not to use grid modeling based masses in this work, as it
complicates the signal we are examining.

3.4. Spectroscopic Uncertainties

In this analysis, we use the updated APOGEE temperatures,
which have been corrected to the photometric scale. There
should not, therefore, be correlated errors between the
temperatures and the metallicities measured by the APOGEE
ASPCAP pipeline. We did, however, test whether substantial
changes would occur in the measured temperatures and
metallicities if we used the APOGEE grid of MARCS
atmospheres, rather than the Kurucz atmospheres used in

Figure 4. Plots of the difference between the temperature measured by
APOGEE and the YREC model predictions as a function of various
parameters, with log(g), mass, [α/Fe] and APOGEE temperature clockwise
from top left. Points are color coded by metallicity, and contours indicate the
extent of 68 and 95% of the sample. We note that the temperature offset is best
correlated with metallicity (see Table 2), although correlations appear on some
of these plots as a result of stellar evolution and galactic chemical evolution.

Table 2
Linear Pearson Correlation Coefficients between the Stellar Properties (Mass,
Gravity, Metallicity, α Element Enhancement, and Temperature) and the
Temperature Offset between the Data and the YREC Models (ΔTeff)

Mass log g [Fe/H] [α/Fe] Teff ΔTeff

Mass 1.00 −0.03 0.31 −0.51 0.12 0.12
log g −0.03 1.00 0.21 −0.27 0.84 0.03
[Fe/H] 0.31 0.21 1.00 −0.63 −0.19 0.20
[α/Fe] −0.51 −0.27 −0.63 1.00 −0.21 −0.15
Teff 0.12 0.84 −0.19 −0.21 1.00 0.00
ΔTeff 0.12 0.03 0.20 −0.15 0.00 1.00

Note. A value of 1 indicates a perfect positive correlation, a value of −1 would
indicate a perfect negative correlation, and a value of 0 indicates no correlation.
We show here that the temperature offset is best correlated with metallicity.
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DR13, for the 27 stars in our sample with Teff<4400 K, where
the MARCS grid is available (see Zamora et al. 2015). We find
that this, on average, moves the temperatures about 12 K cooler
and makes a star about 0.007 dex more metal-poor. However,
these changes are small and not strongly metallicity-dependent;
choice of spectroscopic model atmosphere is thus unlikely to
contribute to our observed offset.

We have also checked that the temperature offset is still
present in the Hawkins et al. (2016) reanalysis of the previous
APOKASC data set. This gives us more confidence that it is
not some peculiarity of the ASPCAP analysis that is causing
the metallicity dependent temperature offset.

One other major source of uncertainty in the spectroscopic
parameters is the use of atmosphere models constructed
assuming local thermodynamic equilibrium. It is well-known
that accounting for the effects of non-local thermodynamic
equilibrium (NLTE) can substantially change the measured
stellar parameters (see, e.g., Asplund 2005). Investigations by
Ruchti et al. (2013), for example, indicated that using an NLTE
analysis of optical iron lines could change the measured
temperature, metallicity, and gravity in a metallicity dependent
way. Although there have been fewer studies of the effects of
NLTE corrections to lines in the infrared (Zhang et al. 2016),
and it is unclear how the full spectral fitting done for the
APOGEE spectra would differ from the analysis of individual
lines, we use the Ruchti et al. (2013) study to estimate the kind
of parameter changes we might expect if NLTE effects were
included. In our analysis, we are calibrating our temperatures to
the photometric scale, which should be unaffected by spectro-
scopic systematics like NLTE effects. Similarly, because we
are using seismic gravities, we are not concerned about the
effect of NLTE corrections on the measured surface gravity. In
terms of metallicity, which has not be calibrated to a
fundamental scale, the Ruchti et al. (2013) analysis indicates
that the measured metallicities change by less than 0.1 dex for
high-metallicity stars like our APOKASC sample. We therefore
choose to proceed with the assumption that our measured trend
is not caused by spectroscopic uncertainties, but recommend
further investigation into the effect of NLTE corrections on the
APOGEE analysis.

3.5. Comparison with Other Data Sets

3.5.1. Star Clusters

Star clusters are a natural laboratory for checking the
concordance between theoretical models and stellar data. In

Figure 5. Plots of the difference in model temperature over a range of masses
and gravities as a function of metallicity for different helium values (top) and
atmosphere boundary conditions (bottom). The mean trend line of temperature
offset vs. metallicity from Figure 3 is again shown here, as a dashed line.

Figure 6. Plots of the offset between the APOGEE temperature and the model
temperature for four different mass scales. The top left plot uses scaling relation
masses and gravities from the SYD pipeline (Huber et al. 2009), rather than the
OCT pipeline. The top right panel uses masses computed from the OCT
pipeline values, but with corrections as given in Guggenberger et al. (2016).
The bottom left panel uses masses computed using grid-based modeling as in
A. Serenelli et al. (2017, in preparation) using the actual APOGEE temperature
errors. The bottom right panel uses masses computed using the Sharma et al.
(2016) corrections. The temperature offset persists no matter the choice of
seismic mass scale. The dashed lines indicate the best fit from Figure 3; solid
lines indicate the best fit for each panel. Contours indicate the extent of 68 and
95% of the sample.
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principle, because clusters are coeval and the red giant branch
lifetime of a star is relatively short, the red giants in a cluster
should represent a homogeneous sample of a single known
mass and composition. The offset between the cluster
isochrone and the measured temperature at the gravity of each
star can therefore be used to measure a temperature offset
similar to our procedure for asteroseismic data. This approach
is powerful but caution is needed. Some methods for
determining color–temperature relationships, for example, or
fitting for cluster parameters, involve minimizing deviations
between isochrone and data (for example, by applying zero
point offsets to align cluster CMDs with theory). Globular
clusters are also not simple stellar populations, and deviations
from a universal mix may not be captured in theoretical
isochrones assuming a solar mixture with alpha enhancement
(Beom et al. 2016). With these caveats in mind, there is a large
set of APOGEE data for star clusters, and we have used it to
test both our temperature scale (Figure 1) and the offsets
between cluster data and theory (Figure 7).

For globular clusters, we took cluster members with
APOGEE data from M2, M3, M5, M13, M71, and M107 as
described in J. Holtzman et al. (2015; 2017, in preparation). We
note that this list excludes clusters below a metallicity of −2.0
because of known uncertainties with the spectroscopic gravity
corrections in such clusters. We also included only stars with
first generation abundance patterns, as the ASPCAP fitting
process (García Pérez et al. 2016) yields spurious correlated
metallicity and temperature offsets for stars whose base model
atmospheres differ significantly from the assumed base model.
For the open cluster NGC 2420, we took the members from
Souto et al. (2016); M67 members were taken from stars with
asteroseismic and APOGEE data as tabulated in Stello et al.
(2016, submitted). Finally, for the open clusters NGC 6819 and
6791, we took targets with asteroseismic and spectroscopic
data from M. H. Pinsonneault et al. (2017, in preparation). In
open clusters where evolutionary states where available, we
used the relevant analysis to exclude red clump stars. In the
globular clusters, we used the red clump cut defined by Bovy
et al. (2014) to limit our sample to shell burning giants. We
excluded stars whose measured APOGEE metallicity was more
than three sigma away from the cluster mean, as well as stars
outside the gravity range of our APOKASC sample (log(g)
between 3.3 and 1.1). This limits contamination by AGB stars,
and also eliminates any concern that the temperature offset may
become gravity-dependent at very low gravities.

Metallicities and α-element enhancements reflect the mean
abundances in the chosen samples (see Table 3). In the cases of
M67, NGC 6819, and NGC 6791, red giant masses can be
accurately predicted by eclipsing binary stars with measured
masses on the upper main sequence. We assume a red giant
branch mass of 1.63Me for NGC 2420, consistent with Souto
et al. (2016) A red giant branch mass of 0.85Me was assumed
for the old globular clusters. We note that the temperature
offsets on the RGB are relatively insensitive to a change in
mass (<10 K per 0.05Me), but they are more sensitive to a
change in metallicity (∼25 K per 0.05 dex). Given our sample
sizes, these systematic errors are in most cases more significant
than random errors, and their quadrature sum is approximately
represented by the size of the diamonds in Figure 7. We
assumed that all cluster members had the mean metallicity and
[α/Fe] of the cluster and computed the offset between an
evolutionary track with the cluster RGB mass and metallicity

and the individual stellar spectroscopic temperatures at the
corrected spectroscopic gravity; the spectroscopic temperatures
were corrected for the trends described in Section 2. The results
are illustrated in Figure 7. Using the cluster data with APOGEE
metallicities, we see no strong evidence for a trend across the
full metallicity range, although there is some evidence that the

Figure 7. Plot of the offset between the measured APOGEE and model
temperatures for stars in clusters, using APOGEE metallicities in the top plot
and literature metallicities from Holtzman et al. (2015) in the bottom plot.
Large diamonds indicate cluster means, and show the approximate size of the
systematic error bars given a mass uncertainty of 0.05 Me and a metallicity
uncertainty of 0.05 dex. Error bars indicate the standard error on the mean, if it
is larger than the systematic uncertainties. Individual stars are represented by
smaller points. We note that many of these clusters were also used to check the
APOGEE temperature calibration (red stars in Figure 1), so they are consistent
with the photometric temperature scale. The solid line indicates the best fit in
each plot, treating each cluster as a single point. The dashed line represents the
mean trend with metallicity from Figure 3. Note that it is consistent with
clusters in the metallicity range spanned by the APOKASC data, but
inconsistent with the low-metallicity globular clusters (see text). We therefore
caution against extrapolating these results to the low-metallicity regime.
Because of the known uncertainties with the APOGEE metallicity scale (see
Section 2) we show this figure with both the APOGEE (top) and literature
metallicity scales (bottom).
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these discrepancies could indicate either that there is physics
not captured or correctly converted to the 1D-mixing length
proxy from the 3D-simulations, or that the temperature offset
between the data and the models is not entirely due to a change
in convection properties on the giant branch, but rather due to
other metallicity dependent errors in our stellar evolution model
physics.

4.2. Implications for Age Measurements

This correlation between metallicity and temperature offset
complicates the interpretation of the recent Gaia data.
Combining a photometric temperature (and possibly metalli-
city) with the luminosity inferred from the parallax will not
allow for accurate isochrone fitting of masses, and therefore
ages, of red giants using standard stellar models. Given our
observed temperature offset, we would expect isochrone
masses computed from uncorrected models to be off by as
much as 0.2Me (∼50 K) at [Fe/H] of ±0.5, even in the
optimistic case where the solar metallicity tracks have been
properly calibrated. This corresponds to ages being incorrect by
about a factor of two, which is several gigayears in the solar
mass case. Moreover, low-metallicity stars will be inferred as
less massive (and therefore older), whereas high-metallicity
stars will be inferred as more massive (therefore younger),
giving a shallower age–metallicity relation in the local galaxy.
We show in Figure 10 the expected difference between a star’s
real age and the age that would be inferred using a solar mixing
length isochrone, for stars whose actual and inferred masses fall
within our grid of models, and whose actual age is less than
15 Gyr. We note that the age errors are particularly large for
low-mass stars, and can become larger than five gigayears for
low-mass, low-metallicity stars. We therefore emphasize the
need for isochrones to be made at a variety of mixing lengths,
which can be calibrated to correct for these effects.

4.3. Implications for Nucleosynthesis

If the temperature offset is caused by a real change in
convection, this would have important implications for the
stellar nucleosynthesis models of low- and intermediate-mass
stars (1<M<10Me). This is because theoretical stellar
nucleosynthesis models usually assume the same solar
calibrated mixing length parameter for different metallicities
and evolutionary stages, including the red giant branch and
asymptotic giant branch phases (see e.g., Lugaro et al. 2012;
Karakas & Lattanzio 2014). For example, a higher mixing
length parameter produces a higher horizontal branch temper-
ature and the predicted yields for massive AGB and super-
AGB stars may vary significantly as a result (for some
elements, up to a factor of 3; see e.g., Doherty et al. 2014).

4.4. Implications for Stars in the Instability Strip

We have noted here that changes in the mixing length are
required to match giant branch observations. Previous work on
subgiant stars has indicated a definite, although possibly
smaller, metallicity dependence for the mixing length (Bonaca
et al. 2012; Metcalfe et al. 2014). We suspect, therefore, that
there is likely a metallicity dependence for the mixing length of
all stars between the main sequence and the main giant branch
locus, including those in the RR Lyrae and Cepheid instability
strips. Changing the stellar mixing length affects the minimum
masses of stars that develop the Cepheid loop, with the reduced

mixing length at low metallicity making it harder to reach the
instability strip, and hence increasing the minimum Cepheid
mass. Similarly, the reduced mixing length at low metallicity
will make it hard for low-mass stars to reach the RR Lyrae
instability strip, and hence will require even more mass loss
than commonly invoked to explain the CMD of low-metallicity
globular clusters.

4.5. Implications for Galaxies

The physical properties of extra-galactic unresolved stellar
populations like star clusters and galaxies are obtained by
comparing observational spectrophotometry with so-called evolu-
tionary population synthesis models (e.g., Maraston 1998, 2005;
Bruzual & Charlot 2003; Conroy et al. 2009, etc.). These
models, which provide integrated spectral energy distributions and

Figure 10. Top: the difference between the real age, assuming our mixing
length formula, and the age that would have been inferred from a fixed solar
mixing length isochrone of the correct metallicity for a 100 Le star (colors). We
have removed points that required extrapolation outside our grid, and excluded
stars whose actual age would be greater than 15 Gyrs, because they should not
exist in the real Gaia sample. Bottom: a similar plot in fractional age, with
contours and colors indicating percent and fractional errors respectively. We
have truncated the color scheme at age errors of 100% for clarity. Above about
two solar masses, low-metallicity stars can still be crossing the Hertzsprung gap
as subgiants evolving toward the red giant branch locus at a 100 Le, which
reduces the impact of the giant branch temperature offset. Because of these
large errors, ages should not be computed for Gaia stars using solar mixing
length isochrones.
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