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Abstract  95 

Missing data from air quality datasets is a common problem, but it is much more severe 96 

in small cities or localities. This poses a great challenge for environmental epidemiology 97 

as high exposures to pollutants worldwide occur in these settings and gaps in datasets 98 

hinder health studies that could later inform local and international policies. Here, we 99 

propose the use of imputation methods as a tool to reconstruct air quality datasets and 100 

applied this approach to an air quality dataset in Temuco, a mid-size city in Chile as a 101 

case-study. We attempted to reconstruct the database comparing five approaches: 102 

mean imputation, conditional mean imputation, K-Nearest Neighbor imputation, multiple 103 

imputation and Bayesian Principal Component Analysis imputation. As a base for the 104 

imputation methods,  linear regression models were fitted for PM2.5  against other air 105 

quality and meteorological variables. Methods were challenged against validation sets 106 

where data was removed artificially.  Imputation methods were able to reconstruct the 107 

dataset with good performance in terms of completeness, errors, and bias, even when 108 

challenged against the validations sets. The performance improved when including 109 

covariates from a second monitoring station in Temuco. K-Nearest Neighbor imputation 110 

showed slightly better performance than multiple imputation for error (25% vs. 27%) and 111 

bias (2.1% vs. 3.9%), but presented lower completeness (70% vs. 100%). In summary, 112 

our results show that the imputation methods can be to a certain extent successful in 113 

reconstructing air quality dataset in a real-life situation.  114 

 115 

Keywords: 116 

Wood-burning; Air pollution; Missing data; Multiple imputation; Environmental 117 

epidemiology; Single imputation. 118 
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1 Introduction  119 

Missing data in environmental monitoring is a common problem worldwide, but can be 120 

much more severe in small cities or localities (Green and Sánchez, 2012). Some 121 

conditions that drive this higher than usual losses in air quality networks include lack of 122 

coverage and representativeness, main localization in capital cities, stations run 123 

manually, instrument failures, and human errors (Riojas-Rodriguez et al., 2016; Toro A. 124 

et al., 2015). This is a great challenge for environmental epidemiology, as higher 125 

exposures to pollutants often occur in these settings, particularly in lower income 126 

countries, and this lack of data could later hinders health impact assessments (Pascal et 127 

al., 2013)  or epidemiological studies that in turn could inform local and international 128 

policies (World Health Organization, 2016). 129 

 130 

Missing data is, at its root, a statistical problem. It represents a form of measurement 131 

error that may both bias the sample and decrease sample size (Little and Rubin, 1987). 132 

Proper handling of missing data should be observed in all statistical analyses, and the 133 

methods to be used depend on the missing mechanism (Little and Rubin, 1987). 134 

Basically, there are three possible mechanisms: i) missing completely at random 135 

(MCAR), where missing data are unrelated to either observed or unobserved data; ii) 136 

missing at random (MAR), where missing data are partially related to observed data; 137 

and, iii) missing not at random (MNAR), also known as non-ignorable or non-response, 138 

where missing observations are related to values of the unobserved data (Little and 139 

Rubin, 1987). 140 

 141 
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When faced with missing data, researchers often employ the complete case approach, 142 

also called list-wise deletion, where the analysis is performed after deleting all 143 

observations with any missing data (van Buuren, 2012). As a result, sample size and 144 

statistical power is reduced, and bias may be introduced if data are MNAR. Another 145 

common approach is single imputation, where missing data are replaced or imputed with 146 

a single value provided by a suitable method such as mean imputation, random 147 

imputation, or conditional mean imputation. However, these methods may generate 148 

biased and unsatisfactory results, as the imputation error is neglected, and thus 149 

underestimating standard errors (Greenland and Finkle, 1995). 150 

 151 

Since the mid-eighties more sophisticated approaches have been introduced, including 152 

expectation maximization, weighted estimating equation methods, and particularly, K-153 

Nearest Neighbor, multiple imputation  and imputation using Bayesian principal 154 

component analysis. The nearest neighbor  imputation draws imputed values from the 155 

closeness observation based on the absolute difference between the linear prediction for 156 

the missing value and that for the complete values (Dixon, 1979). Multiple imputation is 157 

based on Bayesian methods, and its main purpose is to properly reproduce the 158 

variance/covariance matrix had the data been complete, thus providing valid inference 159 

under MAR assumptions (Little and Rubin, 1987). It uses an iterative form of stochastic 160 

imputation, creating multiples copies of the database, where missing values are 161 

replaced by imputed values from a posterior predictive distribution using the partially 162 

observed data. Subsequently, every database is analyzed and results are combined, 163 

including standards errors. Therefore, data uncertainty is incorporated in the process 164 

(Little and Rubin, 1987; Rubin, 1987). The Bayesian principal component analysis 165 
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imputation involves Bayesian estimation of missing values with the iterative expectation 166 

maximization algorithm. This analysis is based on  three processes: principal component 167 

regression, Bayesian estimation, and an expectation–maximization (EM)-like repetitive 168 

algorithm (Bishop, 1999).  169 

 170 

Despite the fact that imputations tools are available in many statistical packages, they 171 

are not often used very in epidemiological studies (Klebanoff and Cole, 2008; Sterne et 172 

al., 2009; Stuart et al., 2009). Moreover, in environmental epidemiology the most 173 

common approaches have been to ignore them (i.e., the complete case analysis), to 174 

replace missing data based on prior knowledge, or to use single imputation, for instance, 175 

from a multiple regression (Roda et al., 2014). Some studies have included multiple 176 

imputation applied to air quality datasets (Junger and de Leon, 2009, 2015; Junninen et 177 

al., 2004; Roda et al., 2014), but overall its application remains scarce with few tests of 178 

performance in real-life situations and providing little guidance with respect to the 179 

application in other settings. 180 

 181 

Here, we propose to use imputation methods as a tool to reconstruct air quality datasets 182 

and applying them to an air quality dataset in Temuco, a mid-size city in Chile as a case-183 

study. Temuco resembles the problems faced in many small-medium cities in the world, 184 

whose datasets may be fragmented. It also faces a major environmental health problem 185 

being heavily impacted by residential wood-burning,  as many southern Chilean cities, 186 

highlighting the importance of having full data for epidemiological studies (Díaz-Robles 187 

et al., 2008; Gómez et al., 2014; Villalobos et al., 2017). In this study, we attempt to 188 

reconstruct the database comparing five  approaches: mean imputation,  conditional 189 
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mean imputation, K-Nearest Neighbor imputation,  multiple imputation and Bayesian 190 

Principal Component Analysis imputation. The overall approach considers i) developing 191 

a standard regression model of PM2.5 using available predictors that could explain the air 192 

pollutant concentration in the case study (i.e. meteorological and co-pollutants), ii) based 193 

on the best models, applying the imputation methods to complete the datasets, iii) 194 

building validation datasets by artificially removing data, and iv) assessing the 195 

performance of the methods in reconstructing the removed data in the validation sets. 196 

The application of the best method is expected to be used in a real-life situation in 197 

Temuco by completing the PM2.5 datasets required to build a land-use regression model, 198 

which will later be used to estimate exposures in a health study of wood-burning air 199 

pollution and pregnancy outcomes (Ruiz-Rudolph, 2014). 200 
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2 Methods 201 

2.1 Study Area 202 

Temuco is a mid-size city of 290,000 inhabitants located in the Araucanía Region, in 203 

southern Chile (longitude 39.7°E; latitude 73.0°S) in a valley crossed by the Cautín river 204 

and surrounded by hills, native forest, and agricultural fields (Minsal, 2016). The “Great 205 

Temuco” is a conurbation of two cities: Temuco, to the north, and Padre Las Casas, to 206 

the south across the river (Figure 1). Temuco, and the Araucanía region in general, 207 

present a population of medium to low socioeconomic status, which is reflected by the 208 

22.9% of the households that are classified as poor, and by the only 8.2 years of 209 

schooling on average of the head of the household (Ministerio de Desarrollo Social, 210 

2011). The city experiences a Mediterranean climate with oceanic influence (Csb), with 211 

average temperatures close to 12ºC, rainfall above 1,000 mm per year, and marked 212 

seasonal differences, with cold, humid winters, and low wind speeds associated with 213 

poor air pollution dispersion (Ministerio de Medio Ambiente, 2014). 214 

 215 

The study area has some characteristics different from other many Chilean cities but 216 

similar to many in  the south. For example, the industrial activity in the area is low with 217 

agriculture being the main economic activity (Minsal, 2016). Known air pollution sources 218 

include some stationary emissions such as industrial wood- and coal-fired boilers 219 

associated with the processed woods industry (Ministerio del Medio Ambiente, 2015), 220 

and a medium-sized fleet of 67,800 motorized vehicles (INE, 2017). However, the 221 

largest aggregated source of PM2.5 and PM10 is the residential wood-burning that is used 222 

throughout the city in winter for heating and cooking. More than 88% of homes have 223 
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wood-stoves, and approximately 654,000 m3 of wood are used per year (Gómez et al., 224 

2014; Ministerio del Medio Ambiente, 2015; Molina Sepúlveda and Oyarzo Gómez, 225 

2013; Villalobos et al., 2017). 226 

2.2 Data sources 227 

The Great Temuco has an air pollution monitoring network that measures PM10, PM2.5, 228 

SO2, NOx, O3, CO, and meteorological variables. This network is run by the Ministry of 229 

the Environmental, and hourly data is available online (Ministerio de Medio Ambiente, 230 

2017). The network is comprised by two stations in Temuco (Las Encinas and Museo 231 

Ferroviario stations) and another one in Padre Las Casas comprise the network (Figure 232 

1). The three stations began PM2.5 measurements in 2009. Since Las Encinas contains 233 

more  the complete sets, we focus in reconstructing its full series of PM2.5 from 2009 to 234 

2014, so it can be later used to estimate historical exposures. Note that there is no 235 

available dataset capturing the regional contribution of air pollutants levels in the studied 236 

area. Additional meteorological data were obtained from the Maquehue station run by 237 

the Meteorological Office of Chile (Dirección Metereológica de Chile, 2016), which is 238 

located outside the urban area, about 3 kilometers south of the downtown area close to 239 

a former aerodrome. 240 

  241 

2.3 Statistical analysis and imputation methods 242 

Hourly air pollution data was converted to daily means according to the national 243 

legislation (Ministerio del Medio Ambiente, 2018). After an initial analysis of 244 

completeness, the missing data mechanism was diagnosed using two tests: Little´s 245 

MCAR test (Little, 1988) and the test of missingness (Schafer and Graham, 2002). The 246 
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data distribution was explored for all variables through histograms, Q-Q plots and the 247 

Shapiro-Wilk to test normality (Figure S 1). As distributions of PM2.5 and PM10 were 248 

heavily skewed, they were log-transformed, which improved their performance and were 249 

used in further analysis. Descriptive analyses were performed for all variables including 250 

mean, median, percentiles and measures of dispersion (Table S1- S 2), along with 251 

boxplots by year (Figure S2), season (Figure S3) and precipitations (Figure S4). To 252 

explore associations between variables, bivariate analyses were performed, including 253 

scatterplot and Pearson correlations for continuous variables and boxplots, t-test and 254 

one-way ANOVA, for categorical ones.  255 

 256 

To reconstruct the datasets, five imputations methods were used: mean imputation, 257 

conditional mean imputation, K-Nearest Neighbor imputation, multiple imputation and 258 

Bayesian Principal Component Imputation, which are all based on multivariate 259 

regression models of PM2.5. We built two initial regression models using log-transformed 260 

PM2.5 and usual covariates, as previously done (Díaz-Robles et al., 2008; Koutrakis et 261 

al., 2005; Sax et al., 2007). Model 1 included meteorological and temporal covariates, as 262 

well as PM10 from the same monitoring station, as shown in Equation 1.  263 

 264 

 

iiiiii
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 Equation 1 265 

 266 

Where,   is the regression intercept; βpm, βt, βw, βrh, βp, βy, βm, βd, and βh are the 267 

regression coefficients of the independent variables: ln(PM10), pmi; mean temperature, ti; 268 
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wind speed, wi; relative humidity, rhi; precipitations pi; year, yi; month, mi; day of the 269 

week, di; holiday, hi. and error term εi, for observation i. Ln (PM10), mean temperature 270 

and wind speed, precipitation, and relative humidity were included as continuous 271 

variables; while year, month, day of week, and holiday were included as categorical 272 

variables, creating dummy variables for each level. Additionally, Model 2 was fitted in a 273 

similar was than Model 1, but including the logs of PM2.5 and PM10 from a second 274 

monitoring site, the Museo Ferroviario station. 275 

Once solved, PM2.5 could be expressed as the product of terms representing the 276 

concentration impact factor (f) for each variable, which were calculated by 277 

exponentiating the estimated βs, as shown in Equations 2 and 3. 278 

ix

if


exp           Equation 2 279 

ihidimiyipirhiwitip fffffffffPM ,,,,,,,,,5.2      Equation 3 280 

With fi being the concentration impact factor for any given regression estimate β for 281 

variable x in observation i; α being the PM2.5 concentrations when all covariates hold 282 

their reference values; and fp,i, ft,i, fw,i, frh,i, fp,i, fy,i, fm,i, fd,i, and fh,i  being the concentration 283 

impact factors for ln(PM10), temperature,  relative humidity, precipitations, year, month, 284 

day of the week and holiday, respectively. Notice that a sensitivity analysis was 285 

performed using Reduced Major Axis (RMA) regression to examine the functional 286 

relationship between PM2.5 and PM10. 287 

 288 

Subsequently, the five imputations methods were applied to reconstruct the dataset. The 289 

first method was single imputation using the mean,  where missing PM2.5 values were 290 

replaced by the mean. The second imputation method, i.e., single imputation using 291 
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conditional mean, where missing PM2.5 values were replaced by estimates from the 292 

multiple linear regression model for all observations with complete covariates data. The 293 

third method was K-Nearest Neighbor imputation. Here, we used the "mi impute pmm" 294 

command in STATA 13 (StataCorp, College Station, TX) with 20 imputation sets and the 295 

10 nearest neighbors. The command fills in the missing data with the closest values 296 

based on the absolute difference between the linear prediction for the missing value and 297 

the complete values. The fourth method was multiple imputation and was carried out 298 

using the ‘mi’ command in STATA 13 (StataCorp, College Station, TX).  Basically, 299 

multiple imputation works through two stages—the imputation stage and the analysis 300 

stage. The imputation stage creates imputations through an iterative Markov Chain 301 

Monte Carlo process, assuming a multivariate normal underlying model. Twenty 302 

imputations were executed, and each imputation iterated 2000 times, generating 303 

complete datasets for both predictors and covariates. The convergence of the algorithm 304 

was verified by examining autocorrelation and trace plots of imputed values. Each 305 

completed dataset was verified to determine if the imputation process was complete. In 306 

the analysis stage, final model parameters were estimated by combining each result 307 

using Rubin´s combination rules (StataCorp.Ltd, 2013).  Finally, Bayesian Principal 308 

Component imputation was employed. The number of principal components for each 309 

model was selected. Then, an Expectation–maximization approach along with a 310 

Bayesian model was employed to calculate the likelihood for a reconstructed value 311 

(Stacklies et al., 2007) .  312 
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2.4 Validation datasets and evaluation of model performance 313 

As we are unable to directly assess the quality of the imputation methods on missing 314 

data, a variation of a k-fold cross validation method was used (James et al., 2015). 315 

Briefly, a portion of the actual datasets was removed in a systematic way to later assess 316 

the ability of the methods to reconstruct this portion. To this end, validating datasets 317 

were built by removing PM2.5 values from all 24 quarters from January-March, 2009 to 318 

October-December, 2014, in order to attempt to reproduce the missing pattern observed 319 

in the case study (Table S 1) .  Thus, 24 sets were generated, with different quarter 320 

being removed in each set. Afterwards, each validating dataset was reconstructed using 321 

the five imputation methods and applying the two different base models (i.e., Model 1 322 

and 2). 323 

 324 

To evaluate the performance of environmental models, each imputed quarter was 325 

compared against the original set separately, using five indicators commonly used to 326 

assess the performance of environmental models (Bennett et al., 2013): i) Coefficient of 327 

determination (R2), ii) Root of the mean square error (RMSE), iii) Mean Absolute Error 328 

(MAE), iv) Index of Agreement (IA), and v) Bias (B), as described in Equations 4-8: 329 
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 335 

Where, yi and ŷi are the ith observation for the reconstructed and the comparison 336 

datasets, while ӯ and ỹ are the means for the reconstructed and comparison datasets. 337 

R2  is a squared version of the Pearson correlation coefficient and ranges from 0 (bad) to 338 

1 (good). It indicates how well the model explains the variance in the observations, 339 

compared with using their mean as the prediction. RMSE expresses the error in a metric 340 

that is in the same units as the original data. MAE is similar to RMSE except that the 341 

absolute value is used instead, thus, reducing the bias towards large events. IA, in turn, 342 

resembles to the coefficient of determination but is designed to better handle differences 343 

in modeled and observed means and variances. Finally, B calculates the mean error and 344 

indicates if the model tends to under- or over-estimate the measured data with an ideal 345 

value of zero. For log-transformed variables, the exponential form informs us the relative 346 

error or bias, and can be expressed as percentage (%).  347 
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3 Results 348 

3.1 Data completeness and pattern of missingness. 349 

Table 1 shows data completeness for the monitoring stations. In general, completeness 350 

of PM10 and PM2.5 was not very high, with losses of the order of 20%, and a slightly 351 

better performance of Las Encinas compared to Museo Ferroviario. For the other 352 

pollutants (NOX, CO, O3), completeness was even worse. This highlights the need to 353 

reconstruct the PM datasets, as a large portion of the health data would not have 354 

exposure data available. Meteorological variables presented a much better performance, 355 

particularly at the Maquehue station, so it was used for the regression models. 356 

 357 

The pattern of missingness is shown in Table 2. When considering PM10, PM2.5, and 358 

meteorological variables (temperature, relative humidity, precipitation, and wind speed) 359 

at Las Encinas, the main pattern is complete case (76%), followed by missing PM2.5  and 360 

PM10 (9%), and PM2.5 only (7%) with all other patterns being negligible. A similar pattern 361 

is observed for the Museo Ferroviario dataset. The Little test obtained a Chi2  of 762 (df: 362 

72, p<0.01), indicating that the data seems to be MAR because there exists an 363 

identifiable pattern for the missing data.  In addition, the test of missingness for 364 

independence showed that data was MAR with losses associated with other variables in 365 

the dataset: PM10 (OR=1.5; p<0.01), years (overall p<0.01), March (OR=0.3; p<0.01), 366 

April (OR=0.4; p<0.01), September (OR=0.5; p=0.05), and October (OR=0.5; p=0.02) 367 

(Table S4). 368 

 369 
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Table 1. Data completeness for Temuco air quality and meteorological stations. 370 
 371 

 Pollutants  Meteorological variables 

 PM2.5 PM10 NOX O3 CO  Temperature RH Wind speed Precipitation 

Year LE MF LE MF LE MF LE MF LE MF  LE MF MQ LE MF MQ LE MF MQ LE MF MQ 

2009 0.94 0.93 0.94 0.93 0.69 NA 0.94 NA 0.94 NA  0.99 0.99 1.00 0.94 0.99 1.00 0.99 0.91 1.00 0.99 NA 1.00 
2010 0.71 0.64 0.71 0.64 NA NA 0.33 NA 0.33 NA  0.78 0.54 1.00 0.66 0.57 1.00 0.75 0.65 1.00 0.32 0.19 1.00 

2011 0.90 0.70 0.90 0.70 NA NA 0.00 NA 0.00 NA  0.89 0.72 1.00 0.90 0.71 1.00 0.89 0.70 1.00 NA NA 1.00 

2012 0.71 0.98 0.71 0.98 NA NA 0.45 NA 0.45 NA  0.74 0.98 1.00 0.74 0.98 1.00 0.74 0.94 1.00 0.75 0.98 1.00 

2013 0.79 0.81 0.79 0.81 NA NA 0.44 NA 0.44 NA  0.79 0.85 1.00 0.75 0.73 1.00 0.46 0.49 1.00 0.45 0.50 1.00 

2014 0.99 0.98 0.99 0.98 NA NA 0.00 NA 0.00 NA  NA NA 0.67 NA NA 0.67 0.76 0.76 0.67 NA NA 0.70 

Total 0.84 0.84 0.84 0.84 0.69 NA 0.36 NA 0.36 NA  0.84 0.82 0.95 0.80 0.80 0.95 0.77 0.74 0.95 0.63 0.28 0.95 

* In bold, completeness >90%. LE: Las Encinas. MF: Museo Ferroviario. MQ: Maquehue. NA: no available 372 
*Wind speed: scalar average 373 
 374 

Table 2. Missing data patterns for the Las Encinas, Museo Ferroviario and Maquehue 375 
monitoring stations. 376 

 Las Encinas   Museo Ferroviario 

 Presence (+) / Absence (-) of data   Presence (+) / Absence (-) of data 

PM2.5 PM10 Temp RH WS PP 
N° of 
days 

% 
data 

 PM2.5 PM10 Temp RH WS PP 
N° of 
days 

% 
data 

+ + + + + + 1675 76  + + + + + + 1609 73 

- - + + + + 198 9  - - + + + + 334 15 

- + + + + + 147 7  - + + + + + 87 4 

+ + - - - - 101 5  + + - - - - 85 4 

+ - + + + + 47 2  + - + + + + 37 2 

+ - - - - - 7 <1  + - - - - - 22 1 

+ + - - + + 5 <1  + + + - + + 6 <1 

+ + + - + + 5 <1  + + - - + + 4 <1 

+ + - - + - 1 <1  + + - - + - 1 <1 

Temp: temperature; RH: relative humidity; WS: wind speed; PP: precipitation 377 

 378 

 379 

 380 
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3.2 Variable characterization 381 

Table 3 and Figure S2 show summary statistics and distributions for PM2.5  and PM10. 382 

Overall, PM2.5 and PM10 concentrations exceeded national standards and international 383 

guidelines with PM2.5 concentrations being significantly above the national annual 384 

standard of 20 µg/m3  (Ministerio de Medio Ambiente, 2014) and the WHO annual Air 385 

Quality Guideline of 10 µg/m3 (World Health Organization, 2006). Many days exceeded 386 

the national daily standard of 50 µg/m3, and even reached concentrations as high as 200 387 

µg/m3. PM10 also showed concentrations above standards, but mainly driven by PM2.5, 388 

as about 80% of PM10 is comprised of PM2.5 (Ministerio del Medio Ambiente, 2015). 389 

 390 

Table 3. Summary statistics for PM2.5 and PM10, by year and station. 391 

 PM2.5  PM10 

 Las Encinas Museo 
Ferroviario 

 Las Encinas Museo 
Ferroviario 

Year Mean SD Mean SD  Mean SD Mean SD 

2009 42.4 51.6 44.0 46.0  64.3 60.6 52.5 48.1 

2010 34.3 49.9 18.7 19.8  62.3 50.6 30.2 20.6 

2011 47.6 44.2 49.8 46.3  65.5 54.3 74.0 55.5 

2012 50.6 57.3 37.9 45.6  72.3 63.1 54.4 47.2 

2013 40.4 44.0 41.5 41.5  57.3 48.2 57.5 42.1 

2014 31.5 37.8 30.5 38.1  47.1 39.7 53.2 42.1 

Period 40.9 47.8 37.1 42.1  61.2 53.6 54.5 46.0 

SD: standard deviation. 392 

 393 

The bivariate analyses (Figure 2) show strong associations of PM2.5 with temporal 394 

variables such as  some years (with no temporal trend) and month (higher in winter), but 395 

not with weekday or weekends. Additional associations were observed with PM10 396 

(directly associated), temperature (higher when cold), relative humidity (higher when 397 

humid), and wind speed (higher when stagnant), but not with precipitations. When 398 

analyzing hourly patterns (Figure S3), highest concentrations were observed at night 399 
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from 6 pm to 4 am, independent of the day of the week, with the pattern more 400 

pronounced in winter, and with little evidence of other peaks associated with traffic-rush 401 

hours. These patterns are all in agreement with small, residential wood-burning particles 402 

being the main source of PM2.5, which persist in summer due to the use of stoves for 403 

cooking, although attenuated. 404 

 405 

3.3 Regression model and imputation. 406 

Results of initial regression models for log PM2.5 of Las Encinas are shown in Table 4. 407 

Model 1, which included predictors from Las Encinas only, presented a high R2 of 0.91, 408 

and RMSE of 0.317, implying an error of about 31%.  Strong, significant predictors were 409 

PM10 (8% increase per each 10% of increase in PM10), temperature (17% decrease per 410 

five-degree increase), and wind speed (16% decrease per 10-knots increase). Some 411 

temporal variables remained significant after controlling for pollutants and meteorology, 412 

with higher PM2.5 in 2011 compared to other years and in winter months. Holidays and 413 

weekdays were not significant. For Model 2, which also included predictors from Museo 414 

Ferroviario, the R2 increased to 0.94, and RMSE decreased to 0.262, implying a smaller 415 

error of 29%. Results were similar to Model 1 but included impacts from Museo 416 

Ferroviario  with increases in PM2.5 and PM10 being associated with increases adn 417 

decreases in PM2.5 at Las Encinas, respectively.  This negative coefficient for PM10 might 418 

be partially explained by a local source of coarse particles in Museo Ferroviario not 419 

present in Las Encinas, which can be further influenced by collinearity between 420 

variables. In general, models were in agreement with the notion that residential wood -421 

burning is the main source of PM2.5. Note that similar results were obtained for the 422 
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sensitivity analysis of PM2.5 and PM10 in both models with the RMA regression (Table S 423 

5).  424 



22 
 

Table 4. Regression models for Ln(PM2.5) using the complete case approach. 425 

  

Model 1: Predictors from Las 
Encinas and Maquehue 

  

Model 2: Predictors from Las 
Encinas, Museo Ferroviario 

 and Maquehue 

N=1657, completeness 80%,  
  

N=1379, completeness 67%,  

R
2
=0.910, RMSE=0.317 R

2
=0.941, RMSE=0.262 

Effect  Est. SE 
p-

value CIF   Est. SE 
p-

value CIF 

Intercept -0.338 0.160 0.03 0.71   0.005 0.150 0.97 1.01 

Year     <0.01*         <0.01*   

   2010 -0.105 0.027 <0.01 0.90   -0.042 0.028 0.13 0.96 

   2011 0.232 0.025 <0.01 1.26   0.188 0.025 <0.01 1.21 

   2012 -0.124 0.027 <0.01 0.88   -0.001 0.026 0.96 0.99 

   2013 -0.189 0.026 <0.01 0.83   -0.088 0.025 <0.01 0.92 

   2014 -0.187 0.028 <0.01 0.83   0.077 0.029 0.01 1.08 

Month     <0.01*         <0.01*   

   February -0.100 0.039 0.01 0.90   -0.096 0.040 0.02 0.91 

   March 0.057 0.039 0.14 1.06   0.070 0.039 0.07 1.07 

   April 0.421 0.045 <0.01 1.52   0.306 0.045 <0.01 1.36 

   May 0.641 0.050 <0.01 1.90   0.420 0.049 <0.01 1.52 

   June 0.565 0.052 <0.01 1.76   0.326 0.053 <0.01 1.38 

   July 0.532 0.054 <0.01 1.70   0.334 0.053 <0.01 1.40 

   August 0.536 0.052 <0.01 1.71   0.361 0.050 <0.01 1.43 

   September 0.487 0.048 <0.01 1.63   0.413 0.046 <0.01 1.51 

   October 0.113 0.045 0.01 1.12   0.165 0.042 <0.01 1.18 

   November -0.014 0.042 0.73 0.99   0.114 0.040 <0.01 1.12 

   December -0.258 0.039 <0.01 0.77   -0.054 0.037 0.15 0.95 

Day of the week   0.38*         0.33*   

   Monday -0.02 0.029 0.50 0.98   0.023 0.027 0.39 1.02 

   Tuesday -0.03 0.029 0.36 0.97   0.001 0.027 0.99 1.00 

   Wednesday -0.06 0.029 0.05 0.94   -0.023 0.027 0.40 0.98 

   Thursday -0.05 0.029 0.10 0.95   -0.037 0.027 0.17 0.96 

   Friday -0.05 0.029 0.09 0.95   -0.017 0.027 0.51 0.98 

   Saturday -0.01 0.029 0.65 0.99   0.008 0.026 0.76 1.01 

Holiday  -0.071 0.039 0.07 0.93   -0.073 0.032 0.02 0.93 
Temperature -0.037 0.004 <0.01 0.83   -0.030 0.003 <0.01 0.86 
RH 0.009 0.001 <0.01 1.09   0.005 0.001 <0.01 1.05 
Wind speed -0.015 0.003 <0.01 0.86   -0.011 0.003 <0.01 0.90 
Precipitation -0.001 0.001 0.81 0.99   -0.002 0.001 0.11 0.99 
Ln(PM10), Las Encinas 0.825 0.018 <0.01 1.08   0.711 0.023 <0.01 1.07 
Ln(PM2.5), Museo Ferroviario na na na na   0.499 0.023 <0.01 1.05 
Ln(PM10), Museo Ferroviario na na na na   -0.341 0.027 <0.01 0.97 
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The estimates are expressed as one-unit increase in the predictor. Reference variables are 2009, January, Sunday 426 
and working day. *Overall p-value for the variable. CIF: concentration impact factor. CIF is referred to changes in 427 
predictors of: ΔPM10=10%; ΔPM2.5=10%; ΔTemp=5ºC; ΔWS=10knots; ΔRH=10%; na= not applicable; Wind speed: 428 
scalar average 429 
 430 
 431 

3.4 Performance of imputation methods on validation datasets. 432 

The results of the imputation methods on full and validation datasets are shown in Table 433 

5, Figures S 5- S 6. In general, K-Nearest Neighbor presented a better performance 434 

than other imputations methods in both full and validation datasets. However, to the 435 

contrary of multiple imputation, K-Nearest neighbor was unable to reconstruct the full 436 

dataset because of missing values in the covariates (keeping missing data about 12%) 437 

(Figure S5). Model performance improved when including data from another station 438 

(Museo Ferroviario, Model 2) (Figure 3). For the full dataset, multiple imputation using 439 

model 2 provided the highest completeness (100%) with a lower error (eRMSE=27%, 440 

eMAE=24%), and lower bias (eBias=3.9%), thus being a promising option to reconstruct the 441 

Temuco dataset. The lower performance was observed for Bayesian principal 442 

component imputation for both models. When challenged with the validation datasets, 443 

the performance remained for most indicators and most datasets, but decreased slightly 444 

for R2 and IA, in general, and particularly for some sets. In addition, for some sets (p25 - 445 

p75), bias was away from 0 on the order of 10%-20%, indicating that in some cases a 446 

small bias can be introduced in the set due to the imputation process.  447 
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Table 5. Results of imputation methods on validation datasets. 448 

Model Obs R
2
 RMSE (%)* MAE(%)** Bias(%)*** IA 

Full dataset       
Model 1:             

Complete case analysis 1657 0.91 37 31 4.9 0.98 
Mean Imputation 1804 0.85 49 33 2.3 0.96 
Conditional Mean Imputation 1804 0.92 36 31 4.9 0.98 
K-Nearest Neighbor 1804 0.91 25 25 2.1 0.98 
Multiple Imputation 2061 0.91 34 31 5.8 0.99 
Bayesian Principal component analysis 2061 0.86 45 37 8.1 0.96 
Model 2:             
Complete case analysis 1379 0.94 30 24 3.2 0.98 
Mean Imputation 1439 0.91 38 25 1.2 0.98 
Conditional Mean Imputation 1439 0.94 29 24 3.2 0.99 
K-Nearest Neighbor 1439 0.94 25 25 2.1 0.98 
Multiple Imputation 2061 0.94 27 24 3.9 0.98 
Bayesian Principal component analysis 2061 0.89 40 32 6.1 0.97 
 
Validation datasets  

 
Median 

(p25-p75) 

 
Median 

(p25-p75) 

 
Median 

(p25-p75) 

 
Median 

(p25-p75) 

 
Median 

(p25-p75) 

 
Median 

(p25-p75) 
Model 1:             
Mean Imputation 80 0.80 26 28 2.9 0.92 

(63-88) (0.46-0.90) (19-28) (24-34) (-7.4-16.4) (0.76-0.96) 
Conditional Mean Imputation 80 0.80 27 28 4.3 0.91 

(63-88) (0.45-0.89) (21-30) (22-32) (-12.5-9.8) (0.78-0.97) 
K-Nearest Neighbor 80 0.80 28 28 4.1 0.90 

(63-88) (0.45-0.89) (21-30) (22-32) (-12.1-9.6) (0.78-0.97) 
Multiple Imputation 82.5 0.78 29 33 7.7 0.87 

(66-10) (0.41-0.89) (21-33) (27-43) (-21.9-17.4) (0.72-0.95) 
Bayesian Principal component analysis 82 0.75 29 40 9.2 0.89 

(65-89) (0.37-0.84) (21-31) (30-54) (-19.9-32.0) (0.62-0.92) 
Model 2:             

Mean Imputation 71.5 0.83 20 22 0.6 0.95 
(25-82) (0.73-0.91) (18-24) (18-26) (-7.8-6.5) (0.92-0.97) 

Conditional Mean Imputation 72 0.85 21 22 -1.8 0.95 
(25-82) (0.74-0.91) (19-26) (19-27) (-7.8-5.6) (0.91-0.97) 

K-Nearest Neighbor 80 0.80 28 28 4.1 0.90 
(63-88) (0.45-0.89) (21-30) (22-32) (-12.1-9.6) (0.78-0.97) 

Multiple Imputation 83 0.81 26 31 -2.8 0.92 
(66-90) (0.61-0.90) (20-31) (22-37) (-2.8--13.8) (0.81-0.96) 

Bayesian Principal component analysis 82 0.79 25 37 5.2 0.89 

(65-89) (0.55-0.86) (20-31) (24-51) (-19.9-24.7) (0.69-0.94) 

Obs: Observations; RMSE: Root mean square error; MAE: Mean absolute error, IA: Index of agreement .  449 
*RMSE(%)=[exp(RMSE)-1]*100; **MAE(%)=[exp(MAE)-1]*100;  ***Bias(%)=[exp(Bias)-1]*100 450 
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4 Discussion 451 

In this article, we attempted to reconstruct the PM2.5 dataset from Temuco, a mid-size 452 

city heavily impacted by residential wood-burning. As with in many cities in Chile, the 453 

dataset presented a high rate of losses (over 20%), which could jeopardize further 454 

health analysis. Data seemed to be MAR with some associations with other variables, 455 

but in agreement with losses due to technical failures. Regression models were 456 

successful in predicting PM2.5 with many predictors, such as temperature and season 457 

associated with residential wood-burning (Jorquera et al., 2018), and with better 458 

performance when including data from another station (Museo Ferroviario).  459 

 460 

When applying imputation methods, multiple imputation was able to reconstruct the 461 

dataset with improved performance when including covariates from the other station. 462 

The performance seemed promising in terms of R2, errors and bias, even when 463 

challenged with validation datasets. K-Nearest Neighbor  showed slightly better 464 

performance than multiple imputation for error and bias but was not able to reconstruct 465 

the full dataset. The lower performance of multiple imputation is expected as it 466 

incorporates the imputation error (Rubin, 1996). 467 

 468 

Rather few previous studies have used imputation methods to reconstruct datasets. In a 469 

comprehensive study using data with missingness near 25% from Helsinski, Finland, 470 

and Belfast, North Ireland; similar measures of performance were found with R2 of 0.49, 471 

RMSE of 0.22 and MAE of 0.16 (Junninen et al., 2004). Additionally, they found that 472 

single imputation methods underestimated the error variance and accuracy of missing 473 
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data compared to multiple imputation, which might explain our results. In another study 474 

using datasets in La Coruña, Spain, several imputation methods were compared 475 

(Gómez-Carracedo et al., 2014). They used factor analysis with Varimax rotation along 476 

with the imputation methods, but did not provide overall performance measures, in terms 477 

of completeness, error, and bias, and did not challenge the methods with validation sets. 478 

They found that multiple imputation had more scattered results when datasets had more 479 

than 43.5% of missingness and were poorly correlated with other variables; however, 480 

results were similar when missingness was medium, as in our case. Finally, an infant 481 

cohort study investigating the effects of pollution on asthma risk (Roda et al., 2014), 482 

compared methods for imputing indoor domestic pollutants. The complete case reduced 483 

the statistical power, while single imputation overestimated the association and multiple 484 

imputation was too conservative and unable to show significant associations. 485 

Considering this experience, it seems necessary that researchers continue attempting 486 

the reconstruction of datasets, particularly where more needed, such as low- middle- 487 

income countries and small cities. It seems important to provide overall indicators of 488 

performance, as these can be locally driven by the quality of the data and the base 489 

regression model. Junger and de Leon (2015) developed a time-series for an air 490 

pollution simulation study using complete case analysis, unconditional mean imputation, 491 

conditional mean imputation and other approaches such as a regular Expectation 492 

Maximization algorithm (EM), EM algorithm filtered by splines, among others. They 493 

found that when the amount of missing data was less than 5%, the complete case 494 

analysis had a good performance. However, when the missing data was higher the 495 

validity of estimates degraded. 496 

 497 
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The results are limited only to Temuco and for the time-period under study. The 498 

combination of explanatory variables selected in our imputation models for Temuco 499 

might differ in other locations.  For instance, the application of this framework to areas 500 

located near large industrial complexes or surface mining operation might highlight wind 501 

direction to be a strong predictor for ambient PM2.5, whereas the model for Temuco did 502 

not include this variable in the final model. Similarly, cities located in arid regions have a 503 

larger influence from coarse particles, weakening the correlation between PM10 and 504 

PM2.5. However, the methodological framework employed in this study to identify the 505 

best imputation model could be usefully replicated in other regions and cities. Therefore, 506 

it would be interesting to extend the current approach to other time periods in Temuco, 507 

other cities in Chile and elsewhere, taking  into in consideration the specific atmospheric 508 

composition, sources and dynamics of the air shed in individual cities.  509 

 510 

A limitation of this work is the fact that the background concentration of air pollution or 511 

the boundary layer are not measured by the monitoring air quality network and could not 512 

be included in the statistical models. However, previous research in the study area have 513 

shown that  the main source or air pollution is residential wood burning (Jorquera et al., 514 

2018; SICAM, 2014; Villalobos et al., 2017, 2015).  A potential  limitation  of using 515 

imputation methods to predict missing values would occur in the case that the data were 516 

MNAR, as it might introduce bias in the data set. Results from our validation dataset, 517 

showed small bias in general, but more significant in some specific cases like Bayesian 518 

principal component analysis. This is a warning as in some circumstances a bias in 519 

PM2.5 estimation might be introduced even if the MAR assumptions would be met; 520 

however, this bias seems not to be high, on the order of 10%-20%. In any circumstance, 521 
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the possibility of biasing the health estimates due to the introduction of a small bias 522 

during the imputation process should be weighed against the possible bias incurred by 523 

not including the full dataset in the analysis. 524 

 525 

In summary, our results show that using imputation methods, particularly multiple 526 

imputation, can be to a certain extent successful in reconstructing an air quality data set 527 

with relatively low-medium missingness in a real-life situation. This is relevant for 528 

datasets in small locations where the problem of missing data might be more frequent 529 

alongside with serious environmental health problems. 530 

 531 

 532 

 533 
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Figure 1



a) PM10 (R2=0.79, p<0.001) b) Temperature (R2=0.60 p<0.001) c) Relative humidity (R2=0.30 p<0.001)

d) Wind speed (R2=0.25 p<0.001) e) Precipitation (R2=0.07 p<0.001) f) Year (F=17.85 p<0.001

g) Month (F=261.95 p<0.01) h) Day of the week (F=0.29 p=0.96) i) Holiday (F=2.49 p=0.11)

Figure 2



a) Mean Imputation

b) Conditional Mean Imputation

c) K Nearest Neighbord Imputation

d) Multiple Imputation

e) Bayesian Principal Analysis Imputation

Figure 3
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