Corpus-based cognitive semantics.
Divjak, Dagmar; Gries, Stefan

Citation for published version (Harvard):
Abstract

In this paper we will present a corpus-based cognitive-semantic analysis of five verbs that express 'begin' in English and Russian, i.e. *begin*, *start*, *načat’*, *načat’sja* and *stat’*. On the basis of a quantitative analysis of data extracted from the ICE-GB and the Uppsala Corpus we conclude that the prototype for each verb and set of verbs in each language revolves around a different set of characteristics altogether: the difference between *begin* and *start* is lexical in nature, that between *načat’* and *stat’* can be described as aspectual, whereas the differences between *načat’* and *načat’sja* should be termed argument structural. Dissimilarities like these that are of an entirely different order can only be picked up if a methodology is used that adequately captures the multivariate nature of the phenomenon; the Behavioral Profiling approach we have developed and applied here does exactly that.

Keywords: Behavioral Profiling; ID tag; verb sense, complementation, near-synonymy; polysemy; prototype; English; Russian

1. Introduction

Ever since the emergence of Cognitive Linguistics as a research paradigm, the analysis of semantic structures has been high up on the cognitive-linguistic agenda. Early studies, which shaped the field for years to come, investigated the degree to which, for example, metaphor could be used to account for meaning extension, while radial categories allowed for new insights into the linguistic organization – if not also mental representation – of polysemy, and to a lesser extent near-synonymy.

Yet, despite these advances that promoted a unified analysis of semantic phenomena, semanticists working on polysemy or near-synonymy within a cognitive
linguistic framework also faced problems. Polysemy requires the researcher to determine whether two usage events are identical or sufficiently similar to be considered a single sense; what the degree of similarity is between different senses; where to connect a sense to others in the network; and which sense(s) to promote as prototypical one(s). Linguists interested in (near) synonymy are not only faced with these four issues, albeit at word level, but, in addition, have to decide what the differences are between the near-synonyms as well as what the relation is between semantically similar words in a domain.

By and large, three different approaches to these problems can be distinguished, i.e. (i) approaches that are not based on empirical data, (ii) approaches that are partially based on empirical data as well as (iii) fully empirical approaches. We will discuss these in turn in Section 1.1., then go on to presenting the Behavioral Profile approach, our corpus-based answer to problems of cognitive semantics (Section 1.2).

1.1 Some background
The best known example of what we, admittedly provocatively, classify as a non-empirical approach is Lakoff and collaborators' (1987) full-specification approach. In this approach, minimal perceived differences between usage events constitute different senses. While this approach results in very detailed lexical semantic analyses, it also leads to a difficult-to-constrain proliferation of senses and distinctions, the cognitive reality of which is questionable. In an attempt to improve some shortcomings of the full-specification approach, Kreitzer's (1997) partial-specification approach specifies that minimally different usage events need not constitute different senses. However, while Kreitzer's approach is somewhat more rigorous, both approaches rely largely on decontextualized data, collected by means of introspection and analyzed using intuitions regarding what constitutes a semantically or even cognitively relevant distinction or a prototypical sense, or what the exact structure of a postulated sense network looks like.

An example of a partially empirical approach is Tyler and Evans' (2001) and Evans' (2005) principled-polysemy approach. This approach presents a substantial improvement over any non-empirical approach in two ways. First, the approach is more
stringent since a so-called meaning criterion rules out adding senses *ad libitum* since it requires a new meaning component compared to other already established senses. Second, the approach makes testable predictions regarding both conceptual elaboration and grammatical distribution.

Within the class of empirical approaches, two strands can be distinguished, depending on whether the data used in the analysis are elicited or non-elicited. Prime examples of cognitive lexical semantics based on experimental data are Sandra and Rice (1995) as well as Rice (1996) who present lexical analyses based on data from sorting or sentence generation tasks and judgment elicitation techniques. Another example is work by Raukko (1999, 2003), who uses sentence generation and paraphrasing tasks and elicits prototypicality judgments for his polysemy-as-flexible-meaning approach (cf. Gries and Divjak, submitted, for more discussion).

Within cognitive semantics, *corpus-based approaches* that use non-elicited data are few and far between. One early cognitive-semantic corpus-based approach that immediately springs to mind and is relevant for the present paper is the largely corpus-based approach of Kishner and Gibbs (1996) on *just* and Gibbs and Matlock (2001) on *make*. These studies rely on collocate analysis (words at R1, i.e. the first word to the right of the head word) as well as colligation analysis (i.e., the syntactic structure of the word combination is included in the analysis) and correlate different senses with collocations and colligations. Their "findings suggest the need to incorporate information about [...] lexi-co-grammatical constructions in drawing links between different senses of a polysemous word". Other more recent work includes the papers published in Stefanowitsch and Gries (2006) and Gries and Stefanwitsch (2006), in particular Schönefeld (2006), who investigates the translational equivalents of the basic posture verbs *sit*, *stand*, and *lie* in English, German, and Russian with regard to how these languages have conventionalized the same, physiologically determined perceptual experiences. Her investigation is based on approximately 8,000 collocations of the relevant posture verbs, and her work's crosslinguistic orientation has been a source of inspiration for the present study.

Yet, citations in corpus data have more to offer than just individual collocations
and colligations: restricting the collocate/colligation analysis to the first word to the right of the head word is a heuristic that is blind to the wider syntactic structure the keyword occurs in. Corpus linguists realized so long ago, and corpus-based approaches to lexical semantics in the field of corpus linguistics have consequently produced impressive results. Take for example Atkins' (1987) study on danger. Her study includes an extensive collocation (words at L7 to R7, i.e. seven words to the left and seven words to the right of the head word) and colligation analysis as well as part of speech characteristics of the head word. Next, she introduces "ID tags", or a collocation/colligation that correlates (probabilistically or perfectly) with a particular sense. In his study on urge, Hanks (1996) extends Atkins' analysis: starting from a collocation and colligation analysis and "sense triangulation", i.e. the correlation of collocates in different clause roles, he arrives at 'Behavioral Profiles' or the totality of complementation patterns of a word that determine its semantics (Hanks 1996:77). The full capacity of approach is not exploited, however, a topic we will return to in Section 1.2.

Summarizing, it can be stated that, by and large, cognitive semantic studies have traditionally been based on decontextualized data, collected and analyzed by means of introspection. As a consequence, the findings may be empirically problematic: not all fine-grained sense distinctions are necessarily supported by the data (cf. Gries and Divjak, submitted). In addition, reliance on introspection as a means of data collection and intuition as main analytic method has prevented the development of a rigorous and objectively applicable methodology. Corpus-based or computational-linguistic studies, on the other hand, have always relied on large data collections, yet their studies may be less interesting from a linguistic point of view, and this for four reasons: first, corpus-based studies are often restricted to words with few different senses or small sets of semantically similar words (almost vs. nearly, high vs. tall, between vs. through (cf., e.g, Kjellmer 2003, Taylor 2003, Kennedy 1991), they typically focus on topics that are of little interest to theoretical linguistics such as semantic prosody (cf. Xiao and McEnery 2006), they tend to be based on impoverished subsets of data available and, thirdly, those data may be noisy or skewed given (semi-) automatic preprocessing tools.
In the present study, we argue strongly for more corpus-based work in lexical semantics in general and cognitive semantics in particular, a domain that is considered by many not to be particularly well-suited for corpus-linguistic studies. We present our Behavioral Profile approach, which we believe combines the best of both the cognitive and corpus linguistic traditions, i.e. a precise, quantitative corpus-based approach that yields cognitive-linguistically relevant results. We will bring the Behavioral Profile approach to bear on polysemous near-synonyms that express 'begin' in a contrastive English-Russian analysis. Hence, focus of the study is to present a corpus-based methodology that can be used to pursue cognitively-inspired lexical semantic analyses and yields cognitive-linguistically relevant results, rather than to present a cognitive-semantic analysis of verbs that express 'begin' in itself.

1.2 Our proposal

The key assumption underlying the Behavioral Profile (BP) approach (Divjak 2003, 2004, 2006, Gries 2003, 2006, Divjak and Gries 2006, Gries and Divjak 2008, submitted, in progress) relies on the parallelism between the distributional and functional plane. Starting from the retrieval of all instances of a word's lemma from a corpus, we proceed with a (largely) manual analysis of morpho-syntactic, syntactic and semantic properties of the head word, its collocates, and the hosting clause/sentence. In other words, we extend Hanks's (1996) form of behavioral profile from being restricted to complementation patterns and roles to include a comprehensive inventory of elements co-occurring with a word within the confines of a simple clause or sentence in actual speech and writing. This way, we arrive at a maximally comprehensive behavioral profile of the lexical items studied. The BP approach differs in two important respects from previous corpus-based studies, both within and outside of cognitive linguistics: the fine granularity of the annotation goes beyond most previous work and the subsequent evaluation of the data using is statistical in nature. The resulting semantic description is hence entirely data-driven, thus delaying the need for arguable personal interpretations until the very last stage of the analysis, if not bypassing it altogether.
The first purpose of the present application is to strengthen support (see studies quoted above) for the BP approach as a powerful method that provides an objective basis for the semantic analysis of both polysemous and synonymous items. The second is to show that this approach can also be applied to the notoriously difficult area of cross-linguistic comparisons. In order to achieve this two-fold aim, the approach will be put to the test by attempting a simultaneous within-language description and across-languages comparison of polysemous and near-synonymous items belonging to different language families, i.e. English and Russian.

The current project was partially inspired by Schmid (1993), one of the very first large-scale corpus-based cognitive semantic analyses. Schmid (1993) provides an in-depth corpus-based analysis of *begin* and *start* based on an analysis of 318 instances of the lemma *start* and 472 instances of the lemma *begin* extracted from the LOB corpus. Each instance is annotated in terms of
- the inflectional form of the verb;
- clause type: intransitive, intransitive with adverbials, and transitives;
- the syntax of the complement: zero, AdvP, *ing*-clause, NP, PP, *to*-clause;
- the semantics of the subject and the semantics of the complement:\(^1\) abstract, action, animate, cognition, human, institution, locative, manner, object, process, state, temporal;
- verb sense: 'be far from', 'begin a career', 'begin as', 'begin to speak', 'cause to begin', 'introduce', 'jump', 'protrude', 'set going in a conversion', 'set in motion', 'set out', 'set out (fig.)', 'set up', 'start a race', 'start running', 'start time unit', 'inchoative.

Of particular interest is the correlation between the choice of phasal verb and the kind of syntactic complement. Table 1 is an excerpt of Schmid's (1993:228) Table 4.

\(^1\) Note that Schmid only distinguishes between subject and complement, but not between the semantic roles of Beginner and Beginnee. Thus, Schmid's discussion of intransitive clauses (with or without adverbials) does not distinguish agentive and non-agentive subjects.
Table 1: Cross-tabulating transitive phasal verb with type of complement

<table>
<thead>
<tr>
<th></th>
<th>begin</th>
<th>start</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>48</td>
<td>96</td>
<td>144</td>
</tr>
<tr>
<td>ing-clause</td>
<td>24</td>
<td>53</td>
<td>77</td>
</tr>
<tr>
<td>to-clause</td>
<td>256</td>
<td>39</td>
<td>295</td>
</tr>
<tr>
<td>Totals</td>
<td>328</td>
<td>188</td>
<td>516</td>
</tr>
</tbody>
</table>

These data show, as does Schmid's (1993:239) evaluation of only the transitive verbs with an inchoative sense, that begin correlates with to-constructions whereas start prefers ing-constructions. Following Quirk et al.'s (1985:1192) classification of to as signalling potentiality and ing as indicating performance, Schmid relates those features to the respective preferences of begin and start given the strong correlation the two verbs show with to and ing respectively.² Begin then gives a view into the state after

² Quirk et al. (1985) and Biber et al. (1999) should more reliably be summarized as relating ing-constructions to generality, actuality, simultaneity, and direct action while relating to-constructions to specificity, potentiality, futurity, and indirect action. In order to be able to support/reject Schmid's claims on independent grounds, we will first analyze the two dichotomies present in the dataset separately: we will first deal with the constructional complementation preferences (ing vs. to) of begin and start, then proceed to the lexical complementation preferences of begin and start. In order to arrive at a more comprehensive picture concerning the phasal verbs' preferred complementations, we decided to look at a larger corpus, the 100-million words British National Corpus World edition. With an R script, we extracted all instances of any form of begin or start tagged as a verb (either with an unambiguous tag or a portmanteau tag) followed by a word tagged as in verb gerund as well as of any form of begin or start tagged as a verb (either with an unambiguous tag or a portmanteau tag) followed by to (tagged as "to0") followed by a word tagged as in verb infinitive. On the basis of the concordance data, we were able to

1) count how often each verb was attested with each of the two complementation patterns. The result is summarized in the table below (with expected frequencies in parentheses) and shows a highly significant correlation of begin with to and start with ing ($\chi^2=5,491.6; df=1; p<.001$, Cramer's $V=0.38$). These results conform to Schmid's (1993) LOB data as well as Wulff and Gries's (2004) ICE-GB data. Since cognitive linguistic/construction grammar approaches assume that structures co-occur (or are inserted into each other) to the extent that their meanings are compatible, this adds to the body of evidence that associates begin with the potentiality etc. and start with actuality.

<table>
<thead>
<tr>
<th></th>
<th>begin</th>
<th>start</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>ing-complementation</td>
<td>2,780 (5,738.4)</td>
<td>6,239 (3,280.7)</td>
<td>9,019</td>
</tr>
<tr>
<td>to-complementation</td>
<td>21,458 (18,499.7)</td>
<td>7,618 (10,576.4)</td>
<td>29,076</td>
</tr>
<tr>
<td>Totals</td>
<td>24,238</td>
<td>13,857</td>
<td>38,095</td>
</tr>
</tbody>
</table>

2) On the basis of the concordance data we also counted how often each of the two phasal verbs was attested with each verb in the two complementation patterns. The resulting co-occurrence
the onset of the action: it expresses modality/intentionality and refers to later states of affairs. It typically applies to cognitive-emotive events and non-perceivable things. *Start*, on the other hand, focuses on the actual action, the actual beginning, the very moment of transition from non-action to action. It is dynamic and applies to visible changes and actions.

The approach is comparable to the BP approach in that it involves a rather fine-grained annotation of instances obtained through an exhaustive corpus search. However, it differs in terms of the rigor with which the data are evaluated. With very few exceptions, Schmid (i) does not evaluate the data statistically in any systematic way\(^3\) and (ii) restricts his attention to bivariate co-occurrence patterns (sometimes even within nested tables), which underutilizes the large amount of data at his disposal.

In the next section, we will demonstrate how the language-internal behavior of verbs expressing 'begin' in English and Russian was mapped out. In Section 4, we will show how those data can be used to contrast senses and lemmas language internally.

3. Profiling the behavior of phasal verbs

The current application of the BP approach features a contrastive analysis of 5 polysemous near-synonyms verbs that express 'begin': for English 298 instances of the lemma *begin* and 531 of the lemma *start* were extracted from the ICE-GB; for Russian 321 examples of the lemma *načat’*, 173 of the lemma *načat’sja*, and 156 with the

\(^3\) Where he does, the methodological choices are not always ideal. The interpretation of the data that are cited in connection with the most important semantic difference between *begin* and *start* (Schmid's (1993:238) Table 6.9) involves the computation of a standard deviation for three percentages that are taken out of a larger and higher-dimensional table.
lemma *stat’* were collected from the journalistic part of the Uppsala Corpus of Russian.4

Let us look at some examples that illustrate the main complementation patterns available: not surprisingly, and as discussed by Schmid, *begin* can be used intransitively (cf. (1a)), transitively (cf. (1b)), and as quasi-aspectual verbs (cf. (1c-d)); (2) presents the corresponding examples with *start*.

(1) a. *The land campaign has* therefore *begun.*
 b. It's not thirty-two hours since *she began her shift.*
 c. And who would expect *the character to* [...] *begin writing* a letter?
 d. *Accidents were beginning to happen.*

(2) a. Well, *war hasn't started* yet.
 b. *What* are we going to give ourselves *to start this song?*
 c. *I'm glad you’ve started wearing* the T-shirts.
 d. So *I started to think* about the Crystal Cave.

In the first two Russian examples, *načat’* is used, once followed by an infinitive in (3) and once by another noun in (3). In (5) *načat’sja* is illustrated - it only opens up a subject position — and in (6) *stat’* is illustrated that only combines with infinitives.

(3) Буквально с первых часов космического полета организм человека начинает приспосабливаться к невесомости.
 [Literally from the first hours of a space flight *the human organism begins to adapt* to weightlessness.]

(4) 18 апреля в Лондоне начинает работу общеевропейский Информационный форум.
 [April 18th in London the Pan-European information forum begins its activity.]

(5) Сафронов был лишен депутатского иммunitета, и *следствие началось.*
 [Safronov was deprived of his deputy immunity and *the investigation began.*]

4 We are aware of the fact that comparing written and spoken data might not be ideal, yet ICE-GB type spoken data is currently not available for Russian. In addition, the issue of how situationally-defined registers differ from each other with regard to near synonyms remains unresolved. In addition, it has been shown for English (i) that journalism resembles spoken language as far as some linguistic features, relevant in this analysis, are concerned (e.g., frequency of present perfects; cf. Gries 2007:121) and (ii) the variation within the spoken mode and within the written mode can be so large as to make between-register variation look pale by comparison (cf. Gries 2007: 121 again and 135).
The corpus-based method we will introduce to analyze sentences such as the ones listed above focuses on co-occurrence information of symbolic units: the symbolic unit is considered the basic unit within a cognitive linguistic approach and co-occurrences of symbolic units are easily extractable from corpora. Secondly, our approach hinges on the assumption that the words or senses investigated are part of a network of words or senses. In this network, elements which are similar to each other are connected and the strength of the connection reflects the likelihood that the elements display similar syntactic and semantic behaviour as distributional similarity is generally considered a good proxy for functional and conceptual similarity.

In total, 1,479 English and Russian sentences were annotated for 73 properties, listed summarily in Table 2; these properties capture the syntax and semantics of the verbs and its immediate surroundings.

Table 2: Annotation table

<table>
<thead>
<tr>
<th>Kind of ID tag</th>
<th>ID tag</th>
<th>Levels of ID tag [to homogenize with G&D08]</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite verb</td>
<td>lemma</td>
<td>načat', načat'sja, stat', begin, start</td>
</tr>
<tr>
<td></td>
<td>aspect</td>
<td>imperfective vs perfective (for Russian)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>na (for English)</td>
</tr>
<tr>
<td>mode</td>
<td></td>
<td>indicative, imperative, infinitive, gerund, participle, conditional/subjunctive</td>
</tr>
<tr>
<td>tense</td>
<td></td>
<td>Russian: past, present, future</td>
</tr>
<tr>
<td></td>
<td></td>
<td>English: past, present</td>
</tr>
<tr>
<td>person</td>
<td></td>
<td>English: base form, third person singular,</td>
</tr>
<tr>
<td>sense</td>
<td></td>
<td>have a beginning, cause to have a beginning, operate, cause to operate, first part characterized by</td>
</tr>
<tr>
<td>voice</td>
<td></td>
<td>active, passive</td>
</tr>
<tr>
<td>complement</td>
<td>noun</td>
<td></td>
</tr>
<tr>
<td>argument type</td>
<td>verb</td>
<td>ing-form vs infinitive</td>
</tr>
<tr>
<td>argument type</td>
<td>type</td>
<td>Russian: ot+gen, s+gen, s+gen (time), s+instr</td>
</tr>
<tr>
<td>argument type</td>
<td></td>
<td>English: copula, intransitive, monotransitive, complex</td>
</tr>
</tbody>
</table>
transitive, ditransitive, transitive

<table>
<thead>
<tr>
<th>clause type</th>
<th>main vs dependent</th>
</tr>
</thead>
<tbody>
<tr>
<td>sentence type</td>
<td>declarative, interrogative, exclamation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>semantic roles</th>
<th>Beginner and Beginnee</th>
</tr>
</thead>
<tbody>
<tr>
<td>abstract, action, animate being, change of state (self), communication, event (has natural endpoint), perception/emotion, human being, illness, intellectual/mental, linguistic_unit (e.g., texts, words), military_action (e.g., war, campaign), motion_other, motion_other (metaphorical), motion_self, motion_self (metaphorical), social/group, perception/emotion, process (lacks natural endpoint), temporal, inanimate thing</td>
<td></td>
</tr>
</tbody>
</table>

Here are some examples of the sense distinctions available for both English and Russian:

(7) have a beginning: *He started accusing her.*

(8) cause to have a beginning: *She began her shift.*

(9) first part characterized by: *One must begin with examining ...*

In addition, English *begin* and *start* occur in the 'operate' and 'cause to operate' sense that their Russian counterparts lack. They cover a wider semantic spectrum than Russian *načat’, načat’sja and stat’,* hence are polysemous to a larger extent.

(10) operate: *It wouldn’t start.*

(11) cause to operate: *He started the car.*

The result of this extensive annotation is a table with co-occurrence frequencies (for a detailed description of the procedure we refer to Gries and Divjak (2008)) that contains quantitative behavioral profiles for each of the verbs or sense and can be used for quantitative analysis. In Section 4 we will present some techniques for extracting relevant semantic information from these quantitative behavioral profiles.

4. **Contrasting the behavior of phasal verbs**

In this section, we will rely on the information contained in the behavioral profiles for each verb and verb sense to arrive at an accurate and largely objective description of what defines each verb and verb sense and what differentiates them. In Section 4.1, we will present contrastive results obtained for verb and verb sense in English; in
Section 4.2, we will look at the Russian data in more detail.5

\section{English}

\subsection{Plotting the BP for each lemma}

Overall, there is no large difference in terms of semantic variety between \textit{begin} and \textit{start}: when corrected for frequency, both verbs are attested with about the same number of senses. A different picture emerges when individual ID tags are considered, however. In order to compare the individual ID tag levels of \textit{begin} and \textit{start}, we first computed the differences of each of the 53 behavioral profile percentages for \textit{begin} and \textit{start}. For example, within the ID tag 'Beginner'/'what begins', 57.82\% and 37.25\% of all entities doing the beginning are human beings for \textit{start} and \textit{begin} respectively. The difference is therefore -20.57\%, which is the largest difference between all pairwise compared percentages observed in our dataset for English and, correspondingly, reveals the most pronounced difference between \textit{begin} and \textit{start}. By contrast, the difference for 'Beginnee'/'what begins' of all temporal entities (e.g., \textit{this week}) is only 0.34\%, which means that with regard to this tag \textit{begin} and \textit{start} behave very similarly in our data. The inspection of the differences of the behavioral profile reveals strong ID tag levels and candidates for prototypical uses:

\begin{itemize}
 \item \textit{begin} is preferentially used in main clauses, in the present participle/progressive aspect, when nothing that is explicitly expressed or a concrete object ('Beginner'/'what begins': thing or 0) begins to undergo a change of state ('Beginnee'/'what's begun': change of state (self)) or something abstract ('Beginnee'/'what's begun': intellectual/mental, linguistic unit, war, abstract); other Beginnees close to the top also support that pattern: 'Beginnee'/'what's begun': event, percepts, processes, ...;
 \item \textit{start} on the other hand is preferentially used transitively and in subordinate clauses, in the infinitive, when a human instigator ('Beginner'/'what begins': human) causes an action (in particular communicative actions) to take place or,
\end{itemize}

5 All computations and graphs were performed and created with R for Windows 2.5.1 (cf. R Development Core Team 2007).
a bit further down the list, causes a concrete object to operate (which nicely corresponds to the specific sense of *start* exemplified in *He started the bike*).

In order to summarize the overall tendencies in a way that allows for a straightforward comparison with the Russian data in the following section, Figure 1 summarizes the behavioral profile for both *begin* and *start* using only the ID tags that apply to both the English and the Russian data. In the plot, ID tags are given preceding three consecutive underscores, ID tag levels following the underscores, while highlighting (in blue or red) indicates the most distinctive ID tags for each verb.

Figure 1: Snake plot of the most distinctive ID tags for each verb

In the next section, we will briefly address the issue of how different senses of *begin* and *start* are related to each other.

4.1.2 Clustering the BPs for each sense
Contrary to Schmid, and in line with the more recent and more rigorous attempts to avoid positing large numbers of senses, we have restricted our sense annotation to the five high-level senses listed in Table 2. As in our previous work, we applied a hierarchical agglomerative cluster analysis to the complete behavioral profile (similarity...
measure: Canberra metric, amalgamation rule: Ward's algorithm); we found that the five different verb senses ('have a beginning', 'cause to have a beginning', 'first part characterized by' 'operate', 'cause to operate') form two clear clusters. The left panel of Figure 2 contains the dendrogram showing the two clusters, while the right panel shows average and individual silhouette widths (the grey step function lines and the vertical black lines respectively) for all possible cluster solutions; the maximum silhouette width is obtained for a two cluster solution.

Figure 2: Cluster-analytic results of begin’s and start’s senses

Here, different (high-level) senses of two verbs begin and start are clustered on the basis of overall semantic similarity, while in Gries (2006) different fine-grained senses of the same verb run were mainly distinguished in terms of causativity/transitivity. This result may in large part be due to the fact that the five senses of the two verbs here exhibit a very high degree of semantic similarity to each other – much more so than many of the semantically very different senses of the verb run. When overall semantic similarity is low, distinguishing senses along a fundamental parameter such as causativity/transitivity can account for much of the variation. However, when overall semantic similarity is high, as with the phasal verbs, causativity/transitivity simply does not add much discriminatory power – lower-level semantic features are more important.
In the following section, we will perform similar analyses for our Russian data and finally, proceed to comparing the results cross-linguistically in Section 5.

4.2 Russian

Given that Russian has three verbs to express 'begin', this section will be structured slightly differently. First, we will cluster the three verbs načat', stat' and načat'sja to find out which ones are more similar to each other (Section 4.2.1); next (Section 4.2.2), we will plot the BPs of the three verbs against each other to reveal in which respects they resemble each other and in which respects they differ from each other. Finally, we will turn to analyzing the verbs' senses (Section 4.2.3): clustering the BPs facilitates selecting the most distinctive ID tags per verb sense.

4.2.1 Clustering verbs

Out of all 73 assignable ID tag levels, 69 are contained in the behavioral profile for načat', 41 in the BP for načat'sja and 44 in the BP for stat'. Yet, given that načat' is by far the most frequent, i.e. it is used in 50% of all occurrences, all three verbs should be considered equally versatile.

Cluster analysis shows that načat' and stat' form one cluster, while načat'sja is kept separately. This bipartition reveals a strong influence of the semantics of the argument structure on the clustering, i.e. načat'sja lacks a syntactic/semantic subject position, i.e. it lacks a Beginner, whereas načat' and stat' have both Beginner and Beginnee. We will return to this difference below.

4.2.2 Plotting the verbs' BPs

As above for begin and start, we computed pairwise differences of behavioral profile percentages of ID tag levels. In order to be able to compare the English and the Russian data, we provide a snake plot of the ID tags attested in both languages (hence aspect will not show up in the plot). Figure 3 contrasts načat' and stat'.
The following is a discussion of the top 17 distinctive properties between the behavioral profiles for the two most similar verbs *nacat’* and *stat’*.

- *Načat’* differs from *stat’* in that it is found in the imperfective, as a gerund or infinitive, and in the present tense; it is often found in combination with *s* followed by a genitive (‘since’), expressing a situation that has a clear source or begins at a specific moment in time. The beginning applies to both nouns and verbs expressing abstract concepts and changes of state instigated by the unknown or by nature. *Načat’* expresses all three senses, i.e. “have a beginning”, “the first part is characterized by” as well as something has been “caused to have a beginning”.

- *Stat’*, on the other hand, prefers the perfective, the indicative and the past, is instigated by human beings and is aimed at actions in general as well as at communicative activities. Different from *načat’, stat’* is restricted to expressing that something, in particular an event, has a beginning. Supporting this finding is that fact that *stat’* is never encountered with nouns or without Beginnee altogether.

Several of the differences revealed by an analysis of the BP underpin traditional
interpretations (Flank 1987, Paillard 1998, Dickey 2000, Padučeva 2001) claiming that both verbs differ with respect to the phase of action that is referred to: stat' is said to defocus the beginning and to express a smooth transition into a new state, whereas načat’ is typically thought to foreground the beginning as an independent event:

Načat' expresses a situation that begins at a specific moment in time; the beginning it expresses is ongoing and can be observed hence is an action in its own right. The preferences of *stat’*, on the other hand, can be interpreted as an indication of the fact that *stat’* itself expresses a completed action. At the same time, *stat’* is restricted to expressing that something has a beginning: it requires a second action in order to express phasal meaning (in combination with a noun in the instrumental case, *stat’* means "become"). The reliance of phasal *stat’* on that second action, backgrounds the beginning while foregrounding the second event.

Načat' differs from the, morphologically related, third verb *načat’sja*. The properties that distinguish best between *načat’* and *načat’sja* are summarized in Figure 4.

*Figure 4: Snake plot of the most distinctive ID tags for *načat’sja* vs *načat’**

- the first distinctive property for *načat’sja* is the zero Beginner, the second
distinctive property signals that načat'sja is restricted to expressing the meaning “have a beginning”; the following properties flag up that this meaning is typically expressed in a main clause, with načat'sja in the past tense; načat'sja applies to processes, events and time-related situations.

- compared to načat'sja, načat' favors the present tense and dependent clauses; it conveys a wider range of senses including “causing something to have a beginning” and “characterizing the first part of X”; načat' is instigated by human beings, groups/institutions or phenomena of nature and is typically applied to actions and changes of state that affect the self, yet the Beginnee does not need to be explicitly expressed.

Načat'sja, being restricted to a Beginnee, lacks an overt active Beginner. These argument structural restrictions signal that načat'sja embodies an externally imposed, agentless beginning (cf. Padučeva 2001:34); it applies exclusively to obligatory nominal Beginnees that express events and processes. Načat' is načat'sja's inverse: it has slots for both Beginner and Beginnee, and can choose to fill up either or both positions with elements from a variety of semantic groups.

In this section, we have briefly touched upon how the three verbs, i.e. načat', načat'sja and stat', correlate with the three different senses 'have a beginning', 'cause to have a beginning' and 'characterize the first part of X'. In the next section, we will investigate how the senses themselves relate to each other and which ID tags and levels of ID tags are involved in defining and distinguishing senses.

4.2.3 Clustering verb senses

In Russian, all three verbs express the sense 'have a beginning', whereas only načat' can render 'cause to have a beginning' and 'characterize the first part of X'. Yet, a hierarchical agglomerative cluster analysis reveals that the senses 'have a beginning' and 'cause to have a beginning' cluster together – as they do for English – and are more similar to each other than either of them is to the sense 'characterizing the first part of X'. Clearly, argument structure plays an important role here and semantic differences caused by diathesis alternations are rightly considered highly similar.
Grammatically speaking, the sense 'have a beginning' scores high (values ranging from 0.6 up to 0.99) for the following ID tags and levels: declarative main clause, perfective indicative finite verb and active infinitive. 'Cause to have a beginning' is typically expressed by perfective *načat’* when combined with a noun and is encountered in the indicative mode in declarative main clauses. Finally, the sense 'characterizing the first part of X' is most typical of declarative sentences with imperfective present *načinat’* followed by a noun.

As far as the semantic roles of Beginner and Beginnee are concerned, human beings, phenomena of nature and nothing that is explicitly expressed tend to begin actions, processes and mental activities. Human beings, social entities or nothing that is explicitly expressed cause a process or event expressed by a noun or a communicative act to have a beginning. And finally, human beings and nothing that is explicitly expressed tend to have a first part that is characterized by or begun with or from something.

5. **A cognitive cross-linguistic comparison**

Overall, the within-language similarity is higher than between language similarity: in an across language cluster analysis including only properties attested in both languages *begin* and *start* cluster together as *načat’* and *stat’* do, while *načat’sja* is kept separately.

Yet, a dissimilarity matrix reveals that while *begin* and *start* may well be most similar to each other within one language, seen across languages *načat’* and *begin* are most similar. From this it does, however, not follow that *stat’* and *start* are equivalent. When we look at *stat’* in more detail, we see that it does indeed resemble *start* in that it prefers the past tense and certain types of Beginnee, i.e. actions, communications and mental activities. At the same time, *stat’* resembles *begin* in that it highlights the "view into the state after the onset of the action". These findings highlight the fact that a one-to-one lexical and/or conceptual mapping between phasal verbs in Russian and English may well be absent, a conclusion that is supported by our overall conceptual findings.

The prototype for each verb and set of verbs in each language seems to revolve
around a different set of characteristics altogether: this difference is clearly revealed by the snake plots. In English (Figure 1), 12 out of the 15 most distinctive properties for *begin* and *start* relate to the type of Beginner and Beginnee; English *begin* is concerned with more abstract, less tangible/non-perceivable processes whereas *start* is associated with more dynamic and concrete actions instigated by humans. In Russian (Figures 3 and 4), however, only 6 out of the 17 (for *načat’* versus *stat’*) and 8 out of the 19 (for *načat’* versus *načat’sja*) most distinctive ID tags relate to lexical preferences of the phasal verbs; the majority of distinctive properties relates to the aspectual and argument structural peculiarities of the verbs. The two Russian verbs *načat’* and *stat’* differ with respect to the phase of action that is referred to: given that each of the structural verb-related differences account for a relatively large portion of the variation between *stat’* and *načat’,* *stat’* can be said to defocus the beginning and to express a smooth transition into a new state, whereas *načat’* is typically thought to foreground the beginning as an independent event. The difference between *načat’* and *načat’sja,* on the other hand, clearly revolves around the concept’s compatibility with agentivity: *načat’* does take Beginners, *načat’sja* does not. In other words, the difference between *begin* and *start* may be termed lexical, whereas that between *načat’* and *stat’* seems aspectual in nature (cf. Zaliznjak & Šmelev 2002: 219-222, and in less overt terms Černova 1999: 165-169) and the difference between *načat’* and *načat’sja* could be considered argument structural.

Verbs that express ‘begin’ in English and Russian are but one example of languages’ tendency to carve up (a similar) conceptual space in a unique way and opt for a different division of labour between the lexemes available to express similar concepts. This can lead to dissimilarities that are of an entirely different order and are bound to be overlooked by comparative cognitive semanticists unless a methodology is used that adequately captures the multivariate nature of the phenomenon; behavioral profiling does exactly that.

6. Conclusion

In this study, we have put our BP approach to the test by applying it to the study of
polysemous near synonyms in English and Russian that express 'begin'. We hope to have achieved three objectives.

First of all, we have provided the most detailed usage-based characterization of *begin*, *start*, *načat’*, *načat’šja* and *stat’*, captures in what we have termed the verbs' behavioral profile; snake plot summaries facilitate an immediate identification of the most central usage characteristics of these five verbs and of the related prototypical scenarios they evoke. These findings are of interest to both theoretically-oriented cognitive linguists and practically-oriented lexicographers. Secondly we have illustrated how, within a semantically homogenous set of verbs and senses, clusters of verb senses exist, and these may be revealed on the basis of distributional characteristics collected in BPs. The skeptic might argue that a cluster analysis will *always* yield clusters. While this is true, there are many possible cluster solutions, but only few make sense, and the ones we obtained are probably the most or the second-most sensible solutions one could have wished for. Finally, we have shown how the objective annotation of comparable semantic and distributional ID tags of translational equivalents across languages enables us to take first steps toward a more rigorous cross-linguistic and cognitive-linguistic analysis.

While corpus-linguistic methods are more frequently consulted in cognitive linguistics than in many other linguistic frameworks, their utility has not been sufficiently, let alone uniformly, recognized. Among others, Raukko (1999, 2003) launches a ferocious attack at corpus linguistic methods, but such criticism typically throws out the baby with the bathwater especially now that corpus linguistics is evolving towards a methodologically more mature and quantitatively more sophisticated state; the present study applies some of these quantitatively more refined methods to the study of near synonyms in a cognitive-linguistic framework.

Quantitative rigor does not imply that the job is done, however. There are both methodological and conceptual steps left to take. We have illustrated, albeit in an early footnote, that both the BP approach to *begin* and *start* as well as previous approached are supported and enriched by additional analyses. The analysis of data from a different and much larger corpus than has been used for this paper and with a method that has
been shown to be sensitive to lexical and constructional semantics confirms the patterns and interpretations found as well as the conclusions derived from the behavioral profile. On the methodological side, the results from behavioral profiles must be tested against other empirical – not intuitive! – data, and the level of detail present in an objective data collection of this kind makes this task feasible. In the present case, for example, additional corpus data from English-Russian parallel corpora may help to determine how well our BP approach has succeeded in identifying the relevant dimensions of variation and hence in predicting the choice for one or other available alternative. Alternatively, a reasonable next step would be to pursue a more fine-grained sense coding (possibly along the lines of Schmid 1993) to see with which distributional patterns, if any, the sense distinctions are correlated. The data-driven nature and comprehensiveness of behavioral profiles offers many different avenues of research, which are out there waiting to be explored by cognitive linguists.
Bibliography

