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Abstract

While the effects of pattern learning on language processing are well known, the way in which

pattern learning shapes exploratory behavior has long gone unnoticed. We report on the way in which

individual differences in statistical pattern learning affect performance in the domain of language

along multiple dimensions. Analyzing data from healthy monolingual adults’ performance on a serial

reaction time task and a self-paced reading task, we show how individual differences in statistical

pattern learning are reflected in readers’ knowledge of linguistic co-occurrence patterns and in their

exploration and exploitation of content-specific and task-general information. First, we investigated

the extent to which an individual’s pattern learning correlates with his or her sensitivity to systematic

morphological and syntactic co-occurrences, as evidenced while reading authentic sentences. We

found that the stream of morphological and syntactic information has a more pronounced effect on

the reading speed of, as we will label them, content-sensitive learners in that the more probable the

co-occurrence pattern, the faster their reading of that pattern will be. Next, we investigated how dif-

ferences in pattern learning are reflected in the ways in which individuals approach the reading task

itself and adapt to it. Casting this relation in terms of exploration/exploitation strategies, known from

Reinforcement Learning, we conclude that content-sensitive learners are also more likely to initially

probe (explore) a wider range of directly relevant patterns, which they can later use (exploit) to opti-

mize their reading performance further. By affecting exploratory behavior, pattern learning influ-

ences the information that is gathered and becomes available for exploitation, thereby increasing the

effect pattern learning has on language cognition.
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1. Introduction

Over the past two decades, evidence has amassed documenting the extent to which lan-

guage cognition depends on learning spatiotemporal regularities in a probabilistic manner

(Jost & Christensen, 2017). Recent studies highlight the existence of individual differ-

ences within this ability (Kidd, Donnelly, & Christiansen, 2018) and discuss the possibil-

ity that statistical learning might not be a unitary learning mechanism but a set of

domain-general computational principles that operate in different modalities (Frost, Arm-

strong, Siegelman, & Christiansen, 2015). While the effects of pattern learning on lan-

guage processing are well described, the way in which pattern learning shapes

exploratory behavior more generally has long gone unnoticed.

In this paper, we link research on the effects of pattern learning on language process-

ing to research on the alignment of desirable learning strategies across tasks. We build on

previous work by Milin, Divjak, and Baayen (2017) to demonstrate how individual differ-

ences in pattern learning correlate with skilled readers’ handling of morphological and

syntactic co-occurrence patterns and how these differences are reflected in their explo-

ration and exploitation of content- and task-related patterns. More specifically, we test

three hypotheses: learning non-linguistic and linguistic sequences relies on the same

mechanism (Section 3.1); individuals differ in their pattern learning and this is reflected

in how they read morphological and syntactic patterns (Section 3.2); depending on their

pattern learning, individuals differ in their readiness to explore and exploit the environ-

ment in order to adapt to the task and improve their performance (Section 3.3). By affect-

ing exploratory behavior, pattern learning influences the information that is gathered and

becomes available to be exploited, thereby doubling the effect it has on performance

within the domain of language.

1.1. Statistical learning, learning theory, and usage-based linguistics

Statistical learning1 (SL) starts from the observation that organisms appear to extract

probabilistic information from their environment automatically. Probabilistic information

can reveal properties of events co-occurring in an environment, or of events occurring

one after the other in time. Learning these patterns is assumed to happen “non-intention-

ally, without explicit hypothesis formation or testing, and certainly without conscious

access to the kinds of computations that appear to produce the learning” (Williams &

Rebuschat, 2012, p. 237). Indeed, the theoretical assumption shared by many (if not all)

models of learning is that learners approximate probabilistic (stochastic) relationships in

the environment through iterative tuning of associative links between objects and/or

events, that is, cues and outcomes. One way or another, all formal learning traditions

share this assumption, even though learning models differ in their views on how cues

compete to gain their predictive potential, yielding an adaptive advantage (cf. Johnston,
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1982; Rescorla, 1988). Statistical learning has been highly successful in predicting and

explaining performance on a range of tasks requiring the learning of regularities across

modalities. Implicit recognition and unintentional learning of structured patterns are con-

sidered to be general abilities in both animals and humans (for an overview, see Milne,

Wilson, & Christiansen, 2018). For a recent and comprehensive overview of how accu-

mulated evidence regarding the (implicit or statistical) processing of regularities in the

environment is starting to shape and constrain theories of cognitive systems, we refer to

the Philosophical Transactions of the Royal Society B (2017, volume 372, issue 1711).

Language cognition is no exception. Statistical learning captures the ability to encode

and represent sequential input, using preceding context to draw inferences about upcom-

ing units (cf. Conway, Bauernschmidt, Huang, & Pisoni, 2010). Language abounds with

patterns. Detailed explorations of the distributional richness of language that could serve

as input for learning have acted as impetus for usage-based “emergentist” approaches to

language (Tomasello, 2003). Rather than coming to the language learning task with

knowledge about the possible structures of human languages, learners might be endowed

with an ability that would enable them to discover structure and probabilistic abstractions

(i.e., grammar), based on their experience with language and guided by the probabilistic

properties of linguistic input. Support for this position stems from the observation that

adults’ knowledge and usage of grammatical patterns are graded and probabilistic, and

reflect the statistics of the language they experience (Bybee, 2010). For a summary dis-

cussion of the successes and challenges that this account of language cognition faces, see

Wonnacott (2013).

What has made statistical learning particularly attractive to language researchers is the

assumed domain-generality of the statistical learning ability. If experience-based proba-

bilistic learning can be shown to be driven by pattern recognition abilities that are not

unique to language, it can be invoked to argue against nativist, domain-specific accounts

of language and cognition. In other words, a domain-general statistical learning mecha-

nism obviates the need to posit innate mechanisms that specifically account for the human

ability to acquire the basics of a highly complex communicative system in a relatively

short time span. Theories of learning, too, have invested considerable effort to argue for

one general principle of learning (cf. Bouton, 2007). Recent studies examining common-

alities in learning distributional information have, however, revealed consistent modality

and stimulus specificity. Frost et al. (2015) have therefore proposed that statistical learn-

ing might not be a unitary learning mechanism but rather a set of domain-general compu-

tational principles that operate in different modalities. Despite its apparent contradiction,

the view that combines domain-generality with modal specificity finds support in the neu-

rological literature on statistical learning. Schapiro and Turk-Browne (2015) discuss the

repeated observation of activation of the same brain regions across tasks and interpret this

as a sign that SL is at least partly a domain-general process. Hasson (2017) concludes, in

a similar vein, that different sensory systems implement similar computations over inputs

with different characteristics. While domain-generality explains why SL in one domain

influences performance in another as we see when visual segmentation predicts language

abilities, the differences in inputs trigger modality and stimulus specificity.
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What remains in limited supply in the literature, yet what is crucial for usage-based

theories of language cognition, is empirical evidence supporting an association between

individual differences in implicit learning abilities on a non-language task and processing

authentic language in context in healthy populations. Among the work that addresses this

question directly, the following papers stand out for their care to avoid language in the

pattern learning task, and their concern for the contextual embedding of the linguistic pat-

terns in the language processing task. Conway et al. (2010) made participants view and

reproduce a sequence of colored squares and listen to audio recordings of poor quality to

find out whether they would find it easier to infer that “mop” was missing in the expected

statement “wash the floor with a mop” than to infer that “tent” was missing in the unex-

pected combination “we rode off in our tent.” They found that implicit learning abilities

are essential for acquiring long-term knowledge of the sequential structure of language,

that is, knowledge of word predictability. Williams and Rebuschat (2012) adapted the

self-paced reading (SPR) task to present both non-linguistic and linguistic stimuli which

focused on word order regularities in German in L2 learners, for example, Yesterday
scribbled David a letter to his brother versus *Scribbled yesterday David a letter to his
brother. They found that response times were longer overall in the ungrammatical than

the grammatical sequences at the points at which the sequences were violated. Kidd

(2012) presented children aged 4 to 7 with a 10-sequence pattern involving a cartoon

character, the position of which they had to learn to predict. The linguistic task consisted

of a priming experiment with full be-passives in English. He found implicit statistical

learning ability to be directly associated with the long-term maintenance of the primed

structure. Frost, Siegelman, Narkiss, and Afek (2013), finally, provided evidence that (vi-

sual) pattern recognition abilities correlate with attainment in L2 assimilation of the

Semitic structure of Hebrew words. They employed a visual statistical learning task, mon-

itoring their participants’ implicit learning of the transitional probabilities of visual shapes

in a continuous stream. Their linguistic task used a cross-modal morphological priming

paradigm from auditory presentation to written recognition to test subjects’ sensitivity to

Hebrew word structure. Native English speakers who were better able to learn conditional

relations between shapes generally performed better at picking up Hebrew word morphol-

ogy.

On other linguistic tasks, however, evidence supporting a link between (visual) pattern

learning and language processing is less equivocal. Reading is a case in point. Arciuli

and Simpson (2012) found a relation between pattern learning as measured by a visual

embedded triplet paradigm and reading single words out loud in English in children and

adults. Yet, Schmalz, Moll, Mulatti, and Schulte-K€orne (2019) found no evidence of a

relationship between pattern learning as measured by a serial reaction time task or an arti-

ficial grammar learning task and reading single words out loud in German.2 Our study

will analyze the relationship between performance on a visual serial reaction time task

and on a SPR task, which requires word-by-word reading of naturalistic sentences. The

rationale for these tasks is provided in Section 2.2. below.
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1.2. Statistical learning and individual differences

Older studies on statistical learning tended to focus on the ability of the average partic-

ipant (Siegelman & Frost, 2015). Two factors played a role in this methodological or,

rather, epistemological decision. On the one hand, there was Reber’s (1993) explicit state-

ment that profound individual differences in statistical learning ability are unlikely to be

detected, due to the ancient nature of this type of learning. This would imply that any

observed differences between individual language users would be negligible or purely

random. On the other hand, and less specific to statistical learning, there was the general

tendency of experimental approaches to treat individual differences as secondary to coar-

ser but typically more robust group-based differences in experimental designs. Yet it has

been argued that individual differences would usefully constrain cognitive theories (Vogel

& Awh, 2008) by acknowledging that meaningful (i.e., non-random, systematic) individ-

ual variation exists in cognitive processes. Statistical learning is no exception. Hunt and

Aslin (2001) were the first to report that, although all 10 participants showed improve-

ment on a sequence learning task, seven showed consistent learning of bigram structure,

while three seemed to have learned trigrams. Sensitivity to particular kinds of statistical

regularities (i.e., adjacent or non-adjacent regularities) in artificial grammars is also pre-

dictive of processing ability for different types of sentence constructions. The better a

participant was at learning adjacent dependencies in a statistical learning task, the more

interference he or she experienced when processing information that conflicted locally

(Misyak & Christiansen, 2007). Conversely, those participants who were better at learning

non-adjacent dependencies in the statistical learning task were also better at processing

linguistic long-distance dependencies (Misyak, Christiansen, & Tomblin, 2010). Kidd

et al. (2018) present an extensive overview of individual differences in language acquisi-

tion and processing, showing that such differences are pervasive across the linguistic

spectrum.

To rule out alternative explanations, for example, that both statistical learning ability

and performance on an (artificial) grammar learning task would be correlated with a third

variable, studies typically measure general cognitive abilities such as intelligence or

working memory and partial out the effects of these abilities statistically. The results on

possible confounds have not been equivocal. Siegelman and Frost (2015) were among the

first to run a large-scale study involving a battery of statistical learning tasks in the visual

and auditory modalities, using verbal and non-verbal stimuli, with adjacent and non-adja-

cent contingencies. Statistical learning tasks were administered along with general cogni-

tive tasks in a within-subject design at two points in time. They found that statistical

learning, as measured by some tasks,3 is a stable and reliable capacity of an individual.

Yet it is not a unified capacity; hence, individual sensitivity to conditional probabilities is

not uniform across the visual and auditory modalities, nor across verbal and non-verbal

stimuli. Moreover, statistical learning was found to be independent of general cognitive

abilities. For this reason, general cognitive abilities are not included in the present study.

Instead, we focus on the effect that an individual’s statistical learning has on aspects of

learned linguistic performance. Specifically, our study builds on previous work (Milin
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et al., 2017) that links linguistic performance to the exploration/exploitation hypothesis

from Reinforcement Learning (RL).

1.3. Probabilistic reinforcement of explorative and exploitative behavior

Reinforcement Learning emerged as a highly interdisciplinary field intersecting

machine learning, psychology, and neuroscience. Yet it originated in experimental psy-

chology, in the early work of Thorndike (1911/1965) and Skinner (1938/1990) on instru-

mental (operant) conditioning. In RL, individuals can show differences in their respective

learning rates or, somewhat less obviously, in their “commitment” to an outcome (target)

of learning, in terms of its rewarding characteristics (cf. Gallistel & Gibbon, 2000;

Luzardo, Alonso, & Mondrag�on, 2017). The discrimination of rewarding behavior

emerges over time and, eventually, yields an optimal set of actions (Gureckis & Love,

2015; Niv, 2009). An important determinant of such long-term adaptive behavior relates

to explorative and exploitative actions; at first, a system (be it an organism or computer)

needs to explore and exhaust the possibilities to discover those that are desirable, so as to

be able to exploit them and benefit later on.

The observation that behavior might have a longer-term desirable effect forms the

basis of a key explanatory framework for animal and human learning and adaptation (cf.

the “law of effect” in Thorndike, 1911 and later work by Hull, 1935). For learnable

aspects of language behavior, specifically, one question seems to be of crucial impor-

tance: Do particularly successful learning strategies show up in different guises across

learning contexts? Previous work (Milin et al., 2017) has provided indirect evidence for

the alignment of desirable learning strategies that encourage pattern learning across tasks.

Participants’ engagement with a (reading) task correlated with the mental speed with

which they approached a sequence learning task and the information they had at their dis-

posal. The change in participants’ behavior across experimental trials involving random

and patterned sequences was predictive of participants’ language processing as indexed

by word reading latencies. Those readers who were more challenged by the sequential

responses task (interpreted as evidence of a lower mental speed) were the most reliant on

visual orthographic input in the self-paced sentence reading task. Those who were less

challenged (interpreted as having a higher mental speed) did not need such orthographic

support at all. At the same time, learners with higher mental speeds showed evidence of

an exploration-exploitation strategy. Their reading behavior was more variable at the

beginning (exploration) of the task and less variable later on (exploitation).

Results from across a divergent set of experimental tasks have been successfully inter-

preted in terms of earlier exploration and later exploitation. Gureckis and Love (2009)

relied on explorative-exploitative behavior to account for the appreciation of delayed (but

overall higher) rewards in a decision-making task with conflicting short- and long-term

rewards. Stafford and Dewar (2014) reported that game players who exhibit greater initial

variability in performance achieved a higher overall score. Hayes and Petrov (2016)

showed evidence of exploration-exploitation in eye pupil dilation during an analogical

reasoning task. Gameiro, Kaspar, K€onig, Nordholt, and K€onig (2017) viewed the trade-
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off between the number and length of fixations in eye-tracking data as, essentially, a

trade-off between explorative and exploitative viewing behavior. Finally, applying the

ideas of Stafford and Dewar (2014) and Milin et al. (2017) to the study of English com-

pounds, Schmidtke, Gagn�e, Kuperman, and Spalding (2018) argued that the diversity of

relational knowledge might be reflecting the “explored” space of conceptual knowledge,

to enrich the semantic possibilities and “exploit” them by achieving greater semantic pre-

cision.

These results suggest that the exploration-exploitation hypothesis from RL is attractive

as a framework for discussing the individual differences in adaptive behavior observed in

experimental settings, including settings that focus on language processing (for further

discussion see Gureckis & Love, 2015; Mehlhorn et al., 2015). Here, in particular, we

propose a parallelism between the specifics of the exploration/exploitation hypothesis

and, more generally, the dyad of learning and performance. Learning and performance do

not exist without one another: We gradually learn to perform a task in an (presumably)

ever more optimal way, and each performance creates new opportunities to learn and

adapt further to our environment. This constitutes the core of our understanding of the

exploration/exploitation hypothesis (see also Milin et al., 2017), which we expand here to

highlight the synergy between the learning (exploration) and performance (exploitation)

components of the full adaptation cycle.

Specifically, we use RL to model the incongruity between the computational demands

of tracking the statistics of a more stationary system like language, represented by the

experimental stimuli, and those of a continuously changing world, in this case, the experi-

ment. This incongruity needs to be integrated and turned into coherent information with a

certain adaptive value, such that the performance on the task at hand can become suffi-

ciently efficient. The diverging demands are modeled in RL as two types of uncertainty:

the known uncertainty of a set of potential outcomes given the current stimulus and the

unknown uncertainty which reflects the lack of veridical knowledge about what the con-

tingency structure of the environment actually is (Yu & Dayan, 2005). We link these two

systems and the associated levels of uncertainty back to individuals’ pattern learning abil-

ity to develop understanding of the many dimensions along which this ability affects per-

formance.

1.4. The current study

We test three interrelated hypotheses that, taken together, show how individual differ-

ences in pattern learning ability surface as differences in processing language at the local

sentence level and morph into radically different learning styles in the global learning

context.

First, statistical learning is a general learning mechanism that supports the learning of

both non-linguistic and linguistic sequences (cf. Milne et al., 2018). This pattern learning

mechanism is different from task adaptation, which is attested even for random sequences

(Section 3.1).
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Second, individuals differ in their pattern learning, and this is reflected in their lan-

guage processing. For learners focusing on the information content (hereafter: content-

sensitive learners), more than for learners focusing on the task (hereafter: task-sensitive

learners), the stream of morphological and syntactic information will have a more pro-

nounced effect on reading speed in that the more probable the co-occurrence pattern, the

faster their reading of that pattern will be (Section 3.2).

Third, individuals differ in their pattern learning, and this is reflected in their readiness

to explore and exploit the environment in order to adapt. In that respect, content-sensitive

learners will be more likely to initially probe (explore) a wide range of morpho-syntactic

possibilities, for later use (exploitation) in optimizing their reading (Section 3.3).

2. Methods

In this paper, we focus specifically on testing whether individual differences in pattern

learning are directly related to individual differences in linguistic processing and whether

pattern learning affects performance on multiple dimensions of a given language-related

task. To this end, we ran a sequence of two experimental tasks.4 To measure pattern

learning in the non-linguistic domain, we employed a serial reaction task (SRT, described

in Section 2.2.1). Participants’ knowledge of linguistic patterns was measured using a

SPR task (described in Section 2.2.2).

2.1. Participants

The data stem from a homogenous group of highly educated native speakers of Rus-

sian who, crucially, did not significantly differ in self-reported reading habits. We

recruited 39 (17 males, 22 females) adult native speakers of Russian, aged between 18

and 31 (M = 23.6, s = 3.3), and living in St. Petersburg, Russia. Participants appeared

healthy, did not report any reading disabilities or cognitive impairments, and had normal

or corrected-to-normal vision. They were not linguists, philologists, or language students,

and except for three (one female, two males) who had left school aged 18, they were edu-

cated to degree level. Personal data on age, gender, place of birth and current residence,

location and type of schooling, occupation, knowledge of foreign languages, and reading

habits were collected. Participants’ identities were anonymized, and a unique numeric

code was used throughout the analyses.

The sociodemographic, educational, and reading differences did not play any role in

explaining reading time latencies and, hence, were not considered in the final statistical

models; this is unsurprising given the size and homogeneity of the sample, and no further

conclusions should be drawn from it.

2.2. Data collection and preprocessing

The experiments were run in a quiet room at the Institute for Linguistic Studies of the

St. Petersburg branch of the Russian Academy of Sciences. Participants provided personal
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information using Google forms prior to attending. They had also been sent information

sheets and consent forms and were offered the opportunity to read those again and ask

any questions at the testing location where the documents were signed and handed over

to the experimenter. Participants were informed that participation was voluntary and that

they could quit at any time. Those who completed the experiment were paid the equiva-

lent of 5 GBP for participating. Ethical approval was granted by the School of Language

& Cultures, University of Sheffield, UK.

Both tasks were administered using the same equipment, which reduces the risk of dif-

ferential task effects affecting our findings. The tasks were programed and executed in

PsychoPy (v. 1.78, released August 2013: Peirce, 2007, 2009), and a Cedrus response pad

RB-540 (designed for spatial orientation experiments) was used to collect participants’

responses. All experiments were run on the same laptop, an Intel i5 core Windows

machine with Nvidia graphics card, 15" screen, and Windows 7. All participants com-

pleted the SRT task before the SPR task, in individual sessions.

2.2.1. Serial reaction time task
To measure pattern learning, we used a variant of the multi-choice, disjunctive serial

reaction time task (Willingham & Goedert-Eschmann, 1999), which assesses improve-

ments to immediate memory span for statistically consistent, structured sequences. The

serial reaction time task has been used extensively in research on sequential pattern learn-

ing ability (Kaufman et al., 2010).

Stimuli and procedure: The task unfolded as follows. A star appeared on the screen in

one of four positions (Up = U, Right = R, Down = D, Left = L), and subjects were

asked to press the corresponding position on the response pad as quickly as possible.

After a practice session of 72 random trials, subjects entered a training block of in total

288 trials in which a 12-trial sequence was repeated. The 12-trial repeating sequence con-

sisted of a star appearing U, D, L, R, U, L, R, D, R, U, D, L. Overall, the training block

contained four blocks with six repeats of the 12-trial sequence. After the training block,

subjects entered a test block with 72 trials: twice, 24 random trials were followed by 12

test trials. Subjects were not alerted when they moved from one phase into the next. At

debrief, some participants seemed aware that they had been exposed to a pattern, but no

one was able to recall it explicitly nor use linguistic labels to name the positions (this is

in line with recent findings from Medimorec, Milin, & Divjak, in press).

Data preprocessing: An analysis of the response accuracy showed that participants were

very accurate overall, yielding correct responses in 98.7% of trials; 35 out of 40 achieved

an accuracy of 98% or more, three achieved 97% accuracy, and one achieved 96% accu-

racy. The one participant who achieved only 94% accuracy was excluded from the analy-

sis for performance on the SPR task (for details see Section 3.2). A density plot of

response time latencies revealed the presence of some outliers (both short and long). We

removed 0.5% from both extremes (173 data points in total) and log-transformed and

scaled the remaining latencies to obtain a symmetric, Gaussian-like distribution.
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2.2.2. Self-paced reading task
To capture language processing, we used data from a SPR paradigm without place-

holders, whereby one word at the time appears in the center of the screen and is replaced

by the next word at the press of a button. The SPR task has been used extensively in

research on predictive processing in language. Both the SRT and the SPR tasks are in

essence visual, but they differ in two crucial respects. Whereas the SRT task measures

“meaningless” pattern recognition in space, the SPR task captures the processing of

“meaningful” pattern recognition in language. The SRT task thus aims to measure how

well participants pick up on patterns they encounter for the first time during the experi-

ment, while the SPR task measures how well participants deal with patterns they will

have been exposed to prior to the experiment. Both tasks do, however, allow for learning

to take place over the course of the experiment, in the sense that participants can get used

to the task itself. Here, participants can explore and exploit which behavior, considering

their inclinations (a unique combination of abilities and experience), ought to yield the

highest reward.

Stimuli and procedure: Existing corpus research had provided a rich knowledge base

concerning verbs of perception, and this was used to select stimuli in which there were

no known confounds (for details of the data we refer to Divjak, 2015). From the Divjak

(2015) perception dataset, we selected 24 authentic corpus sentences, eight for each of

the three active perception verbs, smotret’ (look), slu�sat’ (listen), and trogat’ (touch). The
(Russian) stimuli and their translation are provided in our data repository, these sentences

were vetted by native speakers of Russian during the pilot phase.

Each verb was used in a typical morphological form in half of these sentences, and in

an atypical morphological form in the other half. Form typicality was established on the

basis of probabilities from a multinomial regression model run using the polytomous
package (Arppe, 2013) in R with the one-versus-all heuristic. The variables aspect, mood,

number, person, and negation were used to predict the choice of one of the three lexemes

over the other two. This yielded probabilities for lexeme selection dependent on morpho-

logical form; variation along other dimensions was controlled for statistically. Form (sur-

face) frequencies for each of the perception verb forms were extracted from a subcorpus

of texts from the Russian National Corpus, consisting of material created between 1990

and 2013, which approximated the age of the participants; the subcorpus contained

101,678,022 words in total.

In addition to controlled variation of the verb form, we made use of naturally occur-

ring variation in verb position. To achieve precision in accounting for this source of vari-

ation, we differentiate between the position of the verb in the construction, and for the

position of the verb in the sentence. Perception verb constructions are typically three-ele-

ment constructions with a subject, a verb, and sometimes also an object. The relative

word order freedom that is typical for Russian allows the verb to occupy first, second, or

third position within the construction; we will call these positions Early, Middle, and

Late. The second source of positional variation—the place that the verb occupies in the

sentence—shows that perception verbs in our sample of sentences occur in positions 1, 2,
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3, 4, 6, 8, 9, and 13. Relatively speaking, these two sources of variation in verb position

are related “hierarchically”: the verb is positioned in the construction and in the sentence.

In other words, verb is nested in construction which is nested in sentence. Both sources

of information about verb position are relevant for reading (and comprehension) as the

verb receives more or less contextual support depending on its position in the construc-

tion and depending on the position of the construction in the sentence.

Every participant saw all sentences containing perception verbs. These were inter-

spersed with 24 filler sentences containing verbs expressing attempt. Implementing stan-

dard precautions for keeping participants attentive throughout the experimental session, a

third of all sentences was followed by a yes/no question that the participants had to

answer. Prior to the presentation of the experimental trials, the participants were familiar-

ized with the procedure in five practice trials. The presentation of trials was randomized

for each participant.

Data preprocessing: To facilitate statistical modeling, we log-transformed the position of

the perception verb in the sentence (VerbPosition) and then scaled the transformed values

to standard units of deviation (i.e., z-scores). The order of the experimental trials in a

given session (TrialOrder) was also scaled but did not require log-transformation as it

appeared symmetrically bell-shaped. As suggested by the Box-Cox test (R implementa-

tion in the car package by Fox et al., 2017), the reading time (RT) latency distribution

for the perception verb was also log-transformed. Two sentences with touch were

removed because RT data were lost due to experimenter error and software malfunction.

Following Baayen and Milin (2010), we applied a minimal a priori trimming strategy,

removing only unambiguously discontinuous data points, that is, those that are visibly

extremes, leaving a solid gap between themselves and the data mass.

2.3. Extraction of learning indicators

In a final preparatory step, indicators of learning were extracted from both the SRT

task and the SPR task.

2.3.1. Indicators of learning and adaptation from the serial reaction time task
Non-linguistic structured sequence learning was measured using a SRT task, which dif-

ferentiates between random and structured response sequences. We fit mixed effects linear

regression models to the response time latencies on the random and the sequenced trials of

the SRT task separately, using the lme4 package (Bates, Maechler, Bolker, & Walker,

2015) in the R software environment (R Core Team, 2017). For both models, the main

covariate was TrialOrder (log-transformed and scaled) while the random effects part of both

models consisted of by-participant intercept and slope adjustments. These intercept and

slope adjustments were extracted to be used as our indicators of individual differences in

pattern learning, yielding four indicators of individual differences per participant: srtRan-

domIntercept, srtRandomSlope, srtPatternIntercept, and srtPatternSlope. Each by-participant

adjustment provides a single scalar value for every individual participant.
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The adjustments from the sequenced parts served as indicators of individual differences

in pattern learning, while the adjustments from the random parts were taken to be indica-

tive of an individual’s adaptation to the task at hand, that is, the increase in speed in

pressing a button upon seeing a star appear on screen due to improved manual dexterity,

independent of any (possibility for) pattern learning (given the randomness of these tri-

als). Such separate treatment allows for a straightforward prediction: for random

sequences, we expect a decrease in response latencies over experimental trials, which

reflects the experience participants gained with the task; for structured sequences, how-

ever, we expect both a decrease in response latencies as a consequence of experience and

a further decrease in latencies (i.e., a steeper change) that would reflect the effect of

learning the structured sequences. In other words, some adaptation to the task is expected

even when the patterns are random, but a more pronounced adaptation is predicted when

pattern learning takes place.

2.3.2. Indicators of learning and adaptation from the self-paced reading task
Language-specific structured sequence learning is evidenced by knowledge of linguistic

patterns as measured through word-by-word reading of naturalistic sentences in a SPR

task. In this type of task, the position that the target word occupies in a sentence (i.e.,

VerbPosition) plays a pivotal role, with readers tending to speed up as they make their

way through the sentence (cf. Kuperman, Dambacher, Nuthmann, & Kliegl, 2010). At the

same time, as readers work their way through a sentence, they accumulate more informa-

tion. This implies that the target verb’s position in a sentence is a potential source of

collinearity with other variables designed to capture aspects of information release. To

disentangle the effects of the task’s setup from those of its contents, we ran a two-step

statistical procedure that gives us a better grip on the effects each dimension has on (self-

paced) reading.

First, we fit a mixed effects linear regression model to the reading latencies, using the

lme4 package (Bates et al., 2015) in the R software environment (R Core Team, 2017).

The dependent variable was reaction time latency, which had been log-transformed to

facilitate statistical analysis (as suggested by the Box-Cox test). VerbPosition in the sen-

tence (log-transformed and scaled) was the main covariate of the statistical model, which

additionally included by-participant random intercepts and by-participant slope adjust-

ments for VerbPosition. This model was thus kept maximally similar to the one run on

the SRT data, and it differed only in terms of indicator (covariate) of learning: TrialOrder

in SRT and VerbPosition in SPR. From the SPR model we extracted the random slopes

(sprSlope) for use as individual indicators of linguistic sequence learning. Intercept

adjustments were excluded from further analyses because those are indicative only of an

individual’s baseline speed for a given task (this measure did not contribute to the model

fit in Milin et al., 2017, either).
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3. Results

In this section, we present statistical models that address the three hypotheses pre-

sented in Section 1.5. Section 3.1 presents evidence for the claim that learning non-lin-

guistic and linguistic sequences relies on the same mechanism. Next, we pursue an in-

depth understanding of the effects that an individual’s learning abilities as well as explo-

rative/exploitive learning strategies have on reading performance. In Section 3.2, we ana-

lyze the effects of pattern learning, as measured with an SRT task, on the processing of

linguistic patterns as evidenced in reading. In Section 3.3, we proceed to modeling how

different types of pattern learners approach the SPR task itself to facilitate their individual

differences in performance.

3.1. Components of pattern learning: Distinguishing learning from adaptation

One of the challenges posed by experimentally collected data on learning concerns the

apparent conflation of the effects of practice with the task and of learning of new infor-

mation on performance. Within the SRT task, this problem is usually avoided by contrast-

ing overall performance on random and structured parts of the task. To get a better grip,

and to track actual learning (vs. mere practice) across tasks, we operationalized individual

pattern learning ability using the by-participant adjustments for the slope from three lin-

ear mixed effects models (as described in Section 2.3).

Three indicators of individual differences (srtRandomSlope, srtPatternSlope, sprSlope)

were subjected to a Principal Component Analysis (cf. Cattell, 1966; Harris, 1985) along-

side VerbPosition, which captures information flow. PCA captures the structure of the

relationships between variables. It allows indicators with a common latent source (e.g.,

specific task-related effects such as the position of the verb in the sentence or physical

experience handling the button box) to be grouped and to be kept separate from indica-

tors that have different sources such as pattern learning effects and information effects

(e.g., by the time a verb is encountered that occurs later in the sentence, more informa-

tion will have been revealed). The resulting four principal components are summarized in

Table 1.

In decreasing order of importance (or explained variance), the four principal compo-

nents capture the increase in speed due to pattern learning (PC1 = Learning), the increase

in speed solely due to the accrual of experience with random SRT trials (PC2 = Mechan-

ics), the position of the verb in the sentence (PC3 = Position), and the differentiating

component between the otherwise similar aspects of two types of structured pattern tasks

—sequenced non-linguistic SRT trials and SPR sentences, respectively (PC4 = Pattern

Differentiation).5

Crucially, the slope adjustments from both SRT and SPR tasks load onto PC1, the first

and strongest component, which highlights their similarity. The fact that learning is

shared across the SRT and SPR tasks confirms that learning non-linguistic and linguistic

sequences is related. This relationship signals the domain-generality of statistical learning.
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PC2 shows that learning any type of structured sequences is not related to mere task

adaptation nor to word position.

3.2. Individual differences in pattern learning and their effect on language processing

The full dataset, consisting of participant information, measures of pattern learning,

SPR latencies, traditional lexical predictors such as word frequency and length, and the

linguistic predictors mentioned above, was submitted to generalized additive mixed mod-

eling (GAMM; for a short introduction in the context of modeling behavioral data, see

Baayen, Vasishth, Kliegl, & Bates, 2017), using the mgcv (Wood, 2006, 2011) and it-
sadug (van Rij, Wieling, Baayen, & van Rijn, 2016) packages in the R software environ-

ment (R Core Team, 2017). Fitting an additive model that allows for non-linear trends

and non-linear interactions takes justification in neuroscientific findings where evidence

has accrued to show that the effect of uncertainty should not be assumed to follow a sim-

ple linear trend (cf. Hasson, 2017, p. 6).

The mean reading latency for the perception verb was 804.32 ms (Mdn = 674.26 ms,

s = 384.51 ms). To avoid having overly influential values distort the results, we removed

one participant with an extremely steep decelerating trend in the SRT task (i.e., their

slope adjustment was discontinuous with the rest of the sample). This resulted in the loss

of 19 data points, leaving 794 for analysis (M = 799.42; Mdn = 668.03; s = 379.02). Par-

ticipant information and traditional lexical predictors appeared non-significant for all

models and were not considered further. This was also the case for all linguistic predic-

tors, except the position of VerbInConstruction.

As shown in Table 1 above, of the four principal components only the first (PC.Learn-

ing) and the fourth (PC.PatternDifferentiation) showed more than one significant loading.

The second (PC.Mechanics) and the third (PC.Position) component appeared as singletons

and we reverted to using the original underlying variables in further analyses. Ultimately,

only PC.Learning and VerbPosition turned out to be significant predictors of reading

latencies.

We consistently applied model criticism (cf. Baayen & Milin, 2010) by removing data

points with absolute standardized residuals exceeding 2.5. After removal of these data

points, the models were re-fitted. All effects remained robustly significant. In fact, they

Table 1

Principal component loadings and proportion of variance explained by a principal components analysis on

four variables. The table lists only the high, significant loadings (i.e., >0.3)

Variable PC 1 PC 2 PC 3 PC 4

VerbPosition 0.994
srtPatternSlope 0.710 0.694
srtRandomSlope �0.971
sprSlope 0.703 �0.688
Explained variance (%) 0.355 0.255 0.250 0.140
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became more pronounced, which confirms that the findings were not the result of distor-

tion by overly influential outliers.

Table 2 summarizes the final model over the full (i.e., untrimmed) dataset, for reading

latencies on the perception verb. The GAMM fitted to the reading latencies for the per-

ception verb contained a three-way non-linear interaction (i.e., a tensor product) of the

Principal Component of Learning (the increase in speed due to learning in the SPR task

and on the structured trials in the SRT task), VerbPosition, and the additional three-level

factor which captured the position of the VerbInConstruction (with levels: Early, Middle,

Late). In addition to this tensor product, there was a significant by-participant factor

smooth for Trial. This factor smooth captures differences between participants and intro-

duces the intertrial dependencies in the reading latency time-series over the sequence of

experimental trials to which a participant is exposed (cf. Baayen et al., 2017; Milin et al.,

2017). Because of the inclusion of by-participant factor smooths over Trials, the random

effects for sentence or verb appeared superfluous (p = .34). SupMat B contains details of

a simulation that corroborates the findings.

The effect of the tensor product is visualized in Fig. 1 that consists of three panels.

The left panel depicts the interaction of Learning and VerbPosition for verbs that occur

early in the perception construction (i.e., the verb is in first position and thus precedes

the subject and object). The middle panel shows the interaction for verbs that occur in

the middle of the construction (i.e., the verb occurs as second word, between subject and

object). The right panel visualizes the interaction for verbs that occur as third and last

word in the construction (i.e., the verb occurs after the subject and object). The Principal

Component of Learning is depicted on the horizontal axis, with the most content-sensitive

learners on the left. The vertical axis represents the position the verb occupies in the sen-

tence (VerbPosition), with verbs that occur early on in the sentence at the bottom and

verbs that occur late in the sentence at the top. The colors on the plot encode reading

Table 2

Generalized additive mixed model fitted to the reading latencies for the perception verb, reporting parametric

coefficients (Part A) and effective degrees of freedom (edf), reference degrees of freedom (Ref.df), F- and p-
values for the non-linear terms, tensor products, and random effects (Part B; AIC = �18.422,

fREML = 47.09, adjusted R2 = .697)

A. Parametric coefficients Estimate SE t-value p-value

Intercept �0.316 0.059 �5.403 <.001
VerbInConstruction: Middle �0.030 0.027 �1.089 .277

VerbInConstruction: Late �0.007 0.020 �0.281 .779

B. Smooth terms edf Ref.df F-value p-value

te(PC.Learning, VerbPosition) VerbInConstruction: Early 3.995 4.629 8.337 <.001
te(PC.Learning, VerbPosition) VerbInConstruction: Middle 4.339 5.113 1.797 .105

te(PC.Learning, VerbPosition) VerbInConstruction: Late 3.808 4.380 4.261 .001

s(Scaled Trial, Participant) 35.264 340.000 5.117 <.001
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latencies, with ochre/yellow signaling longer reading latencies, that is slower reading,

green average reading latencies, and blue short latencies.

In the left panel, picturing perception verbs that precede their subject and object, that

is perception verbs that occur early in the construction, we see those pattern learners who

show the most dramatic change in reading times across experimental trials: they are slow

when reading these early perception verbs if the construction occurs early in the sentence,

but they speed up as the early perception verb appears in a construction toward the end

of the sentence, and hence more context precedes. We will call these readers content-sen-

sitive pattern learners.

The middle panel sees a new pattern emerge (although the interaction is barely margin-

ally significant: p = .105), which stabilizes and becomes strong in the right panel

(p = .001). In other words, this new pattern occurs when the perception verb occurs in

between the subject and the object, and it stabilizes and receives strong statistical support

when the perception verb follows its subject and object.

For the content-sensitive learners, the overall pattern of effects remains the same: the

later the verb occurs in the sentence, the shorter the reading latency (roughly, X-axis val-
ues between �2 and �1 show changes from peach over green to blue along the Y-axis).
This downward trend, however, becomes steeper as the position of the verb in its con-

struction also becomes later (visible from the left to the right panel in Fig. 1). As the

position of the verb in the construction transits from Early over Middle to Late, the most

and the least content-sensitive learners (represented by the leftmost vs. rightmost X-values
on each of the three panels) turn into each other’s mirror image. The most content-sensi-

tive learners are slower on verbs that occur late in a construction that in itself occurs

early on in the sentence (late verbs early in the sentence) and faster on verbs that occur

late in a construction that in itself occurs late in the sentence (late verbs late in the sen-

tence); the least content-sensitive learners, conversely, appear to be faster on late verbs

early in the sentence than on late verbs late in the sentence.

Fig. 1. Tensor product in the GAMM for reading latencies on the perception verb. Left panel: interaction of

PC.Learning and VerbPosition for verbs that occur early in the construction. Middle panel: interaction of

PC.Learning and VerbPosition for verbs that occur in the middle of the construction. Right panel: interaction

of PC.Learning and VerbPosition for verbs that occur late in the construction.
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Overall, the latter type of learners seems to be focusing on the task itself, rather than

attempting to efficiently use linguistic information as it unfolds across the sentence that

they are reading. They speed up when the information is limited (e.g., when the verb is

presented early in the sentence and, thus, comes without much contextual support), and

slow down when information accumulates (e.g., when the verb is late in the construction

and the construction is late in the sentence). In other words, differences in pattern learn-

ing reveal radically different language processing signatures. Some learners may be trying

to achieve efficiency given the task rather than given the content of the sentence. This

interpretation is tested further in the following section.

3.3. Individual differences in pattern learning and their effect on task adaptation

Following the work by van Ravenzwaaij, Brown, and Wagenmakers (2011), Stafford and

Dewar (2014), and Milin et al. (2017), we hypothesize that participants’ deviations from the

average reading latencies would be a valid and reliable indicator of individual differences in

task adaptation. According to these studies, more explorative behavior (i.e., behavior

marked by greater variability in performance) is expected at the beginning of an experiment

and leads to knowledge that can be exploited to yield more rewarding behavior in later

phases. The SPR task is interesting in this respect: there is the meaningful dimension of

reading authentic sentences and the less directly meaningful dimension of coping with the

fact that the sentences are randomized and do not form a coherent text. We are particularly

interested in establishing whether pattern learning ability applies equally to these two differ-

ent challenges within the same task, that is, to their performance in terms of “receiving the

message” (the meaningful dimension) and their performance in adapting to the trial random-

ization (the meaningless dimension), as both characterize the learning/performing setup.

Stafford and Dewar (2014) suggested that the exploration-exploitation hypothesis could

be tested by examining the variability (rather than the central tendency) of participants’

behavior within an experiment.6 Milin et al. (2017) made use of estimates of moving (or

rolling) standard deviations using five consecutive data points (verb reading latencies over

successive trials) as step size. Here, we use all words as they appear within a sentence and

calculate the moving standard deviation over three consecutive data points. This procedure

was repeated for all experimental sentences in the order in which they were presented to

each individual participant given their randomization. We opted for the narrower window of

three consecutive data points, trading off a reduction in the accuracy of the estimate of devi-

ation for (a) maximization of the number of estimated deviations given the relative brevity

of the sentences (i.e., there are not many data points in a sequence), and (b) minimization of

the loss of data due to the fact that the rolling deviation is only available upon accumulation

of the required number of data points (i.e., for the first two words of each sentence, a rolling

deviation is not available). After removing the data for the one participant with an extremely

steep decelerating trend in the SRT task (the same participant was also removed from the

GAMM analysis in 3.2), we were left with 8,177 data points for analysis.

We fitted a quantile generalized additive model using the qgam package (QGAM:

Fasiolo, Goude, Nedellec, & Wood, 2020) in the R software environment (R Core Team,
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2017). A QGAM was preferred over a standard GAMM as it does not assume any partic-

ular distribution of the error term. This seemed more suitable given the fact that the

dependent variable is the moving standard deviation, which should not be taken to have

Gaussian properties. Furthermore, QGAM is particularly well-suited to reveal “snapshots”

or “slices” of effects at given quantile values of the dependent variable. This approach

allows us to emphasize the process of learning and brings us closer to a real-time model

of the change that takes place (cf. Frost et al., 2015).

The model was fitted to the logarithm of the moving standard deviations of the reading

latencies from the SPR task. We evaluated the model at the midpoint of the first quartile

(quantile = 0.125), at the median (quantile = 0.5), and at the midpoint of the fourth quar-

tile (quantile = 0.875) of the dependent variable (for more details on selecting the crite-

rion quantile points, see Schmidtke, Matsuki, & Kuperman, 2017; Tomaschek, Tucker,

Fasiolo, & Baayen, 2018).

As in the previous analysis on reading latencies (Section 3.2), our main predictor of

participants’ knowledge of language patterns was the Principal Component score for

Learning (PC.Learning, discussed in Section 3.1). We defined three groups of partici-

pants according to their PC.Learning score, to match the model evaluation points: one

for the lowest quartile (0-25%); 25% of scores around the median point (37.5%-

62.5%); and the top quartile (75%-100%). Two further predictors are time-related and

capture the position of the word in the sentence (WordInTrial) and the position of the

trial in the experiment (Trial). Because the words in a sentence form a coherent whole

but the sentences in the experiment do not, the former captures performance on struc-

tured, meaningful patterns, while the latter captures performance on random patterns;

this is parallel with the SRT task that consists of structured and random parts. Both

WordInTrial and Trial were scaled (z-transformed) prior to modeling. The model

revealed significant interactions between these two temporal predictors and three groups

of learners: task-sensitive (first quartile), balanced (median-centered quartile), and con-

tent-sensitive (fourth quartile).

First, the by-participant and by-item (i.e., word) random effect adjustments for the

intercept were statistically highly significant. At the median values of the two temporal

predictors, test results were, respectively: edf = 28.172, v2 = 1098.362, p < .001 for par-

ticipants, and edf = 15.470, v2 = 112.722, p < .001 for items. Figs. 2a and b present the

details of the interaction between types of learners (task-sensitive, balanced, content-sen-

sitive), on the one hand, and WordInTrial (Fig. 2a) and Trial (Fig. 2b), on the other hand.

The dependent variable—the 3-step moving standard deviation of reading latencies—was

inspected, as explained above, at the three quantile points (low SD, median SD, high

SD). Overall, the patterns for three groups of pattern learners are very different: the more

content-sensitive the learner (balanced to high), the more pronounced their engagement at

the sentence level (Fig. 2a). The task-sensitive learners, conversely, engage only at the

most general level, that is, across experimental trials (Fig. 2b).

As Fig. 2a shows, balanced and content-sensitive pattern learners deviate further from

the mean reading latencies. This is more pronounced at the start and then again at the

end of the sentence but the sentence-final effect is less indicative given the width of the
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confidence intervals. For both median and high SDs, the most content-sensitive learners

show a stronger, more pronounced U-shaped effect than balanced learners. Both groups,

however, show a similar trend of maximally exploitative behavior around the middle of

the sentence, while explorations do occur both at the beginning and toward the end of the

sentence. Task-oriented pattern learners, on the other hand, show a clear downward trend

across experimental trials (Fig. 2b). For high SDs, this trend is even more pronounced,

revealing a mild non-linear decrease of the indicator of exploration (i.e., the moving

Fig. 2. (A) Partial effect plots of the rolling standard deviations on the reading latencies for all words in the

SPR task. Top to bottom, the rows present panels for the three groups of learners. Left to right, the columns

contain panels for low, mid, and high standard deviations (dependent variable). The X-axis represents the

scaled position of the word in the sentence (WordInTrial). The red-highlighted panels mark statistically sig-

nificant interactions of readers by WordInTrial.
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standard deviation). This type of exploration, however, remains restricted to the level of

the task and does not indicate true engagement with the sentence. Balanced and content-

sensitive learners, conversely, perform rather consistently across trials, at the level of the

experiment; the changes are non-significant.

Thus, in sum, task-sensitive learners do not engage with the sentence content and only

show significantly deviating reading times at the level of the experiment. Both balanced

and content-sensitive learners engage with the words in the experimental sentences, show-

ing the most exploitative reading performance at the sentence midpoint.

Fig. 2. (B) Partial effect plots of the rolling standard deviations on the reading latencies for all words in the SPR

task. Top to bottom, the rows present panels for the three groups of learners. Left to right, the columns present pan-

els for low, mid, and high standard deviation. The X-axis represents the scaled position of trial in the experiment

(Trial). The red-highlighted panels mark statistically significant interactions of learners by Trial.
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4. Discussion

In this paper, we have focused specifically on testing whether individual differences in

pattern learning link directly to individual differences in linguistic processing and whether

pattern learning affects performance along multiple dimensions of a task. In the following

sections, we discuss how our analyses of data from an SPR and an SRT task answer our

three research questions: learning non-linguistic and linguistic sequences relies on the

same mechanism (Section 4.1); individuals differ in their pattern learning and this is

reflected in how they read morphological and syntactic patterns (Section 4.2); depending

on their pattern learning, individuals differ in their readiness to explore and exploit the

environment in order to adapt to the task and improve their performance (Section 4.3).

4.1. Components of pattern learning: Distinguishing learning from adaptation

One of the challenges posed by experimentally collected data on learning concerns the

apparent conflation of the effects of practice with the task and of learning new informa-

tion on performance. Using principal component analysis, we obtained a fine-grained

view on the different components that affect performance. We established that the

increase in speed due to pattern learning (PC1 = Learning) and the increase in speed

solely due to practice with the SRT task (PC2 = Mechanics) are independent from each

other. Learning any type of structured sequences is different from mere task adaptation.

Furthermore, and crucial to our argument, our results showed that the slope adjustments

from both SRT and SPR tasks load onto the same and strongest component

(PC1 = Learning). This highlights the similarity in learning structured patterns across

tasks: While non-linguistic pattern learning is evidenced by an increased speed in recog-

nizing the location at which the star appears in the SRT task, linguistic pattern learning

becomes apparent through an increase in speed when reading morphologically or syntacti-

cally typical chunks in the SPR task.

The type of pattern learning shared across the SRT and SPR tasks and captured by

PC1 confirms our hypothesis that one general mechanism supports pattern learning across

domains: Learning non-linguistic and linguistic sequences is (strongly) related and this

relationship implies the domain-generality of statistical learning. We argued earlier that

experience-based probabilistic learning, driven by pattern recognition abilities that are not

unique to language, can be invoked to argue against nativist, domain-specific accounts of

language and cognition. The ability to detect patterns in usage makes it possible to build

a grammar from exposure to the ambient language without having to posit specific cogni-

tive abilities or modules that, ultimately, separate language cognition from other areas of

cognition. Over the past three decades, usage-based theories of language have made

impressive advances in explaining how knowledge of language could be built up with the

support of general cognitive capacities only (Ambridge & Lieven, 2011). Among the

basic cognitive capacities that are generally listed are perception, attention, categorization,

abstraction, and memory. Although pattern detection is not typically mentioned explicitly,

it deserves a place on this list, too: It separates the initially unseparated experience into
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manageable chunks on which attention, categorization, abstraction, and memory operate.

Thus, grammar can be viewed as the cognitive organization of one’s experience with lan-

guage (Bybee, 2010). It is, however, recognized that languages are constantly changing,

and usage depends on the individual and the situation (Hopper, 1987). The cognitive

organization of language knowledge is, therefore, not a static structure, expressible as a

fixed set of representations.

In other words, usage-based linguists recognize that both the experience and the orga-

nization of the experience are in a perpetual state of flux. This aligns with the starting

point for theories of learning. In its most basic form, learning can be presented as a sim-

ple discriminative principle that emerges from “exposure to relations among events in the

environment” to help an organism acquire knowledge about “the structure of its world”

(Rescorla, 1988, p. 152). Initially, all is one, and wholes are only separated into their

component parts if this is indicated by adaptive pressures (cf. James, 1890). Given that

the world is in a constant state of flux, the mind—as part of that world—is, too, and

(mental) units only emerge if needed.

Theories of learning, too, have invested considerable effort to argue for one general

principle of learning. Surprisingly, the statistical learning literature does not appear to

engage with learning theory more generally. This raises the question of whether there is

anything about statistical learning that sets it apart from other types of learning? The

prevalent view on statistical learning posits that statistical learning proceeds through the

computation of transitional probabilities (Aslin, Saffran, & Newport, 1998), but the nature

of the statistical computations remains underdetermined (Perruchet & Poulin-Charronnat,

2012, p. 121). Some assume that learners perform the same computations as statisticians,

albeit unconsciously, while others work from the assumption that learners approximate

these probabilistic “guestimates” through progressive tuning of associative links between

cues and outcomes. The latter interpretation is in line with the general learning theoretic

view. In fact, all formal learning traditions assume that what is learned are probabilistic

regularities present in the environment. Competition learning (i.e., discriminative learn-

ing, like Rescorla & Wagner, 1972), attention learning (e.g., Mackintosh, 1975; Pearce &

Hall, 1980), and even comparator-driven learning (Stout & Miller, 2007) naturally accom-

modate “statistical learning,” although they would differ in their views on how cues com-

pete to gain their predictive (i.e., discriminative) value for a given outcome.

4.2. Individual differences in pattern learning and their effect on language processing

Our statistical model captures accurately how subtle differences in sequence learning

and contextual information co-determine the speed with which sentences are read and

processed on an individual basis. There is a clear difference in how pattern learners pro-

cess perception constructions, depending on whether the verb occurs first, second, or last

in the construction, and depending further on where in the sentence the construction is

positioned.

Content-sensitive learners are slow in reading perception verbs if the perception verb

occurs early in the construction and the construction occurs early in the sentence; they
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become faster as the perception verb moves to later positions, in the construction and in

the sentence. In fact, content-sensitive learners show that, when verbs occur late in the

construction, the position of the construction in the sentence will further modulate reading

speed: If the construction appears early in the sentence, reading will be at its slowest, but

if it occurs late in the sentence, reading will be at its fastest. This indicates that such

learners are tuning their reading speed to the current level of information: Late in the

construction, the verb completes the event structure, and late in the sentence, the verb

wraps up the sentence structure, at which point the information is completed and uncer-

tainty is at its lowest. Content-sensitive learners, who flexibly adjust to the accumulation

of information as the sentence unfolds, make predictions based on the available evidence:

They anticipate the verb and hence they do not need much time to read the verb in these

“doubly” late positions, i.e., when the verb appears late in the construction and late in the

sentence.

Conversely, task-sensitive learners’ reading speed is less affected by the positional

aspect of the linguistic information available. These learners, overall, implement the

opposite strategy of content-sensitive learners: Verbs occurring late in the construction

but early in the sentence are processed fastest, while verbs occurring late in the construc-

tion are processed slowest if that construction is also late in the sentence. This indicates

that task-sensitive learners are unable to engage efficiently with the information collected

over longer stretches of text. Their “guesses” are less well-grounded, which render their

reading less efficient.7

Generally, these results can be taken to show that the amount of information that is

available affects both types of learners differently. Content-sensitive learners benefit from

the accumulation of information and use it to optimize their reading speed; hence, they

suffer more from lack of information. Task-sensitive learners struggle to navigate infor-

mation and uncertainty at the sentence level, and their reading slows down as more infor-

mation accumulates over the course of the sentence; hence, they suffer more from

accumulation of information. A similar interindividual difference in local versus global

focus was recently reported by Siegelman, Bogaerts, Armstrong, and Frost (2019) for

visual statistical learning.

Furthermore, our findings reveal that the information that readers are sensitive to is

syntactic in nature. Information at a lower, morphemic level did not appear to have this

effect in word-in-sentence reading, which is in line with the findings of Schmalz et al.

(2019) on single-word reading. Although morphological (dis)preferences have been found

to facilitate or impede reading (Milin et al., 2017) and sensitivity to (dis)preferences cor-

relates with mental speed, it does not seem to be related to individual differences in

sequence learning. The units that play a role in language processing, as measured by

SPR, and that appear to be correlated with pattern learning more generally are natural
units of experience: Verb argument constructions render the core of an event, and several

such events can be concatenated to form a complex sentence. In case of perception verbs,

typically, there is someone who perceives and something that is perceived. Both in the

relevant experiential and in the corresponding linguistic context, the subject and object

will occur together with the perception verb.
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Sensitivity to the edges of short strings, such as our three-part (Subject Verb Object)

event structures, appears to be a limitation typical of sequence learning in general (see,

e.g., Williams & Rebuschat, 2012, p. 253). Why is this so? Although it has been custom-

ary to posit statistical learning as a separate learning mechanism, it may well turn out to

be more parsimonious to assume that the effect of probabilistic distributional patterns on

learning follows from basic learning principles, and from associative (i.e., discriminative)

learning principles in particular. Expressions of support for considering statistical learning

as a re-branding of associative learning are few and far between. Perruchet and Poulin-

Charronnat (2012) is one notable exception, but for them, attention plays a key role in

learning as it can be seen as a crucial condition for the formation of an association

between two events. In human beings, attentional coding of incoming information appears

to naturally segment the material into chunks. Sensitivity to the edges of short strings is

thus naturally accommodated and associations will not be learned between elements that

straddle an intonational phrase boundary because these elements are not held within the

same attentional chunk. Yet we would argue that, if we have learning, we do not need

attention as a separate construct. Due to the distribution of events in the world as we

experience it, relations between event structures and their corresponding linguistic expres-

sions form naturally; the event components occur frequently together in experience,

which ensures that they are often talked about in conjunction, too. This implies that, both

in experience and in language, certain things are likely to be highly activated at the same

time, resulting in a state that equals being in focal attention. Co-occurrence is a precondi-

tion for being considered a unit: What goes together must be often (highly) activated at

the same time. This fits well with Rescorla’s (1988) observation that discrimination

emerges from “exposure to relations among events in the environment” (p. 152). Here, it

is the linguistic, that is, syntactic, environment that is directly related to and thus relevant

for relations in the material world. From a strictly discriminative perspective, effects that

could be called “attentional” emerge naturally from the highly complex interplay between

environment and organism and the resulting adaptive pressures. Perhaps specific to

humans, that environment is also social and communicative and, thus, linguistic. What

our results show, then, is that individual pattern learning affects the discriminative event

structure for the purpose of processing written language.

4.3. Individual differences in pattern learning and their effect on task adaptation

Contrasting the top and bottom 25% of learners in terms of their pattern learning

revealed that the task adaptation trends for content-sensitive versus task-sensitive learners

are substantially different and, crucially, they appear significant for different dimensions

of the experiment. More specifically, content-sensitive learners focus on the sentence and

apply a strategy, whereby they deviate rather more from the mean, especially at the start

and end of the sentence. This could indicate that these learners are more able to engage

in parallel processing, too. Our results also show that what we observe is a trend that

develops across learning styles: It shows for balanced learners and peaks for content-sen-

sitive learners. Task-sensitive learners, on the other hand, focus on the experiment, and
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overall they deviate rather less from the mean; in addition, for task-sensitive learners,

there is a clear downward trend within the experiment, with deviations diving below aver-

age half-way through the experiment. In other words, although the general, task-related

behavior of these learners becomes more consistent, their specific reading engagement

does not.

From the perspective of RL, this indicates that content-sensitive learners end up not

only with more information, but also with more relevant information that they can exploit

in order to maximize their (reading) performance. To put it differently: not only do they

explore more; they also explore in the most relevant way, that is, at the most relevant

level. The sentences that make up the SPR task do not form a coherent text; hence, noth-

ing can be learned across trials of disconnected sentences (i.e., at the level of the experi-

ment). At the level of the sentence, however, much is to be gained: whether a verb occurs

early or late in its construction and whether that construction occurs early or late in the

sentence is a proxy for the amount of information that has been revealed before the verb

is encountered. Tracking that information and making use of it aid sentence processing.

Another interesting difference between the two types of learners—content-sensitive

and task-sensitive learners—is that, when they do show significant change (over position

of the word in the sentence for the former and over position of trial in the experiment for

the latter), they differ in their respective variability, as indicated by the confidence inter-

vals (in Figs. 2a and b, red-highlighted panels). While the task-sensitive learners show

consistently narrow confidence intervals (Fig. 2b), the content-sensitive learners exhibit

substantial change in variation, with larger deviations at the end of the sentence (Fig. 2a).

In other words, toward the end of the sentence, content-sensitive learners vary more (up-

ward trend of the curves), and they show more individual differences in that variation

(wider confidence intervals). At the same time, their reading times get shorter on average
(visible in the right-hand panel in Fig. 1). One plausible explanation is that, through

shorter but more variable reading times (given the average and the deviation), content-

sensitive learners demonstrate higher overall reading efficiency (shorter mean reading

time) and, simultaneously, content-specific and highly individualized integrative efforts

(overall higher and more dispersed deviations) that, naturally, take place towards the end

of the sentence (cf. Kuperman et al., 2010). To put it simply, content-sensitive learners

are trying their best to read to understand. Task-sensitive learners, conversely, are just

keeping up with reading.
In sum, content-sensitive and task-sensitive learners also exhibit differences in explo-

ration focus and strategy, which affect the amount of relevant information they collect for

later exploitation. Overall, content-sensitive learners benefitted more from information that

became available at a more optimal point in time during reading. Pattern learning ability

can thus be said to shape attempts to achieve optimal performance in different ways or at

different levels of the task. The information that is gathered is influenced by such attempts

and participants who differ in their respective pattern learning abilities also differ in how

they engage with the task at hand and, ultimately, how they collect their rewards.
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5. Conclusions

Our statistical pattern learning ability, that is, our ability to learn regularities in sequen-

tial input, has been invoked to explain how knowledge of a language can emerge from

exposure to usage only. In this paper, we have investigated the strength of the correlation

between statistical pattern learning and the processing of morphological and syntactic

information, and we have shown that individual differences in pattern learning are

reflected in how individuals approach a task and adapt to it. This allows to optimize

future behavior and reap further rewards, thereby strengthening and widening the impact

that pattern learning ability has on language-related performance.

Using data from a visual SRT task and a SPR task with naturalistic Russian sentences,

we have provided further evidence that the learning of non-linguistic and of linguistic

sequences is strongly related. Moreover, we have shown that learning any type of struc-

tured sequences is unrelated to mere task adaptation.

Next, we have focused on the question of whether pattern learning underpins sensitiv-

ity to morphological as well as syntactic co-occurrence patterns in native speakers. We

have found that subtle differences in sequence learning and contextual information co-de-

termine the speed with which sentences are read and processed on an individual basis,

despite the fact that all participants were highly educated young adults who did not differ

significantly in their reading habits. While task-sensitive learners struggle to navigate

through sentence uncertainty—their reading slows down as more information accumulates

over the course of the sentence—content-sensitive learners benefit from the accumulation

of information and use it to optimize their reading.

Finally, we have demonstrated that pattern learning also correlates with how the learning/

performing setup is approached. Content-sensitive and task-sensitive learners exhibit a dif-

ference in exploration focus and strategy. Not only do content-sensitive learners explore

more, they also explore at the most relevant level. This affects the amount of relevant infor-

mation they collect and have at their disposal for later exploitation. In other words, they

identify those patterns that yield the biggest return in terms of performance improvement.

Wrapping up, we can say that pattern learning ability affects performance along multi-

ple dimensions, as would be expected from a domain-general cognitive function or mech-

anism. Its effects on language processing are well known, but the way in which it shapes

exploratory behavior has long gone unnoticed. Yet, by affecting exploratory behavior, it

influences the information that is gathered and becomes available to be exploited. The

effect it has on performance consequently doubles: (exogenous) information is processed

by a (endogenous) general mechanism that is adaptively attuned to maximize efficiency

across domains and to accommodate individuals’ strengths or styles of learning.
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Notes

1. For the purposes of our study, we will not differentiate between statistical vs. im-
plicit learning. According to Perruchet (2019), these two prolific approaches to the

study of learning discuss, in fact, the very same mechanisms (or functions) of

domain-general and incidental learning. They do, however, focus on different

aspects of that same mechanism: learning the “units” (implicit) or learning the tran-

sitional probabilities (statistical) in order to discover probable “units.”

2. They discarded data from the visual embedded triplet paradigm due to the poor

psychometric properties of the task, yielding insufficient variability in the learning

performance.

3. Tasks involving sequences of auditory syllables or visual nonsense shapes seem

more powerful predictors of learning outcomes in other domains than tasks involv-

ing nonadjacent dependencies, or nonverbal auditory stimuli.
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4. We also ran a forward digit span task that turned out to be insignificant for model-

ing the data. Therefore, it is not considered further in our main analysis but

reported only as SupMat (A).

5. This is a common outcome in PCA when the maximum number of components

is exhausted (i.e., is equal to the number of input variables): The least signifi-

cant component can indicate a differentiation between variables that are strongly

loaded on the most significant components (see, e.g., PCA over measures of

individual reading abilities in Andrews & Lo, 2012, 2013). Typically (and argu-

ably), this is considered to be an artifact of the method itself. Simply put, PCA

maximizes the “greediness” of the isolated components such that the first com-

ponent takes as much as possible from the total variability of a given set of

variables (in our particular case 4). The next component takes as much as pos-

sible from what remains, and so on. This, then, ensures that the newly isolated

dimensions have the following two characteristics: (a) their explained variance

decreases (based on the “leftovers” policy) and (b) they are mutually indepen-

dent, uncorrelated, or orthogonal (exactly because they take only what is left

unexplained or unaccounted for). The former characteristic is why PCA has

many criteria for deciding the true number of components, which is usually

much smaller than the number of variables in the original set. This is why we

may consider PCA to be a method that will efficiently reduce the dimensional-

ity of our initial variable space; the later components contain progressively less

accounted variance and, thus, they are often odd and uninterpretable. In our par-

ticular case, for example, we would retain only the first two components under

the criterion of Kaiser-Guttman (cf. Cattell, 1966; Yeomans & Golder, 1982) as

these two components are the only ones that account for variance greater than

one—greater than a single variable can account for (0.355 4 = 1.42;

0.255 4 = 1.02; 0.250 4 = 1.0; 0.140 4 = 0.56). The latter characteristic,

i.e., orthogonal, uncorrelated components, conversely, allows us to effectively

reparametrize the original variable space into a new space of perfectly indepen-

dent variables. This is why, in some cases, using PCA to devise new variables

that are mutually independent and, hence, can cure the problem of multi-

collinearity is a sound statistical approach (as it is the case in the studies of

Andrews & Lo, 2012, 2013).

6. This idea links influential work of Hick (1952) on the rate of gain of information
with the drift diffusion model of Ratcliff (1978) who argued that the speed of infor-

mation processing shows a strong correlation with the deviation in processing laten-

cies (see also Ratcliff, Schmiedek, & McKoon, 2008).

7. Recent work has found, indeed, that the length of successive correct predictions in

an oculomotor SRT task is correlated to working memory capacity, with lower

working memory capacity yielding shorter chunks of successive correct predictions

(cf. Medimorec et al., in press).
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